Electromagnetic Laboratory Stations

Similar documents
Preview of Period 16: Motors and Generators

Chapter 22: Electric motors and electromagnetic induction

Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet

1. The diagram below represents magnetic lines of force within a region of space.

The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

Magnetic Fields and Their Effects

This topic explores the key concepts of magnetism as they relate to: the phenomenon of magnetism magnetic forces and fields a theory of magnetism.

Cathode Ray Tube. Introduction. Functional principle

Electromagnetic Induction: Faraday's Law

E/M Experiment: Electrons in a Magnetic Field.

Motor Fundamentals. DC Motor

DIRECT CURRENT GENERATORS

ElectroMagnetic Induction. AP Physics B

Students will investigate the characteristics of electromagnetism and then use what they learn to plan and conduct an experiment on electromagnets.

Electric Motor. Your Activity Build a simple electric motor. Material. Create. Science Topics. What s going on? 2 Jumbo Safety Pins (or Paper Clips)

Chapter 7. Magnetism and Electromagnetism ISU EE. C.Y. Lee

MEASURING INSTRUMENTS. By: Nafees Ahmed, Asstt, Prof, EE Deptt, DIT, Dehradun

Think About This How do the generators located inside the dam convert the kinetic and potential energy of the water into electric energy?

Introduction to Electricity & Magnetism. Dr Lisa Jardine-Wright Cavendish Laboratory

Build A Simple Electric Motor (example #1)

Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!

Chen. Vibration Motor. Application note

STUDY GUIDE: ELECTRICITY AND MAGNETISM

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

Physics 221 Experiment 5: Magnetic Fields

ELECTRON SPIN RESONANCE Last Revised: July 2007

Using an Oscilloscope

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

The DC Motor. Physics 1051 Laboratory #5 The DC Motor

ELECTRODYNAMICS 05 AUGUST 2014

Lab 37: Magnetic Field ; Magnets - Drawing magnetic fields - Magnetic poles - Forces between magnets

GETTING CURRENT: Generating Electricity Using a Magnet

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

5. Measurement of a magnetic field

Electromagnetic Induction Experiment

Making an Electromagnet Grade 4

Mechanical Energy. Mechanical Energy is energy due to position or motion.

UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS

Permanent Magnet Motor Kit, Magnetic Reed Type. (SKY-ReedMotorKit) Instructions

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

Lab 8: DC generators: shunt, series, and compounded.

Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).

OPTICAL FIBERS INTRODUCTION

DC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Mapping the Magnetic Field

Objectives. Capacitors 262 CHAPTER 5 ENERGY

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

Inductance. Motors. Generators

Candidate Number. General Certificate of Education Advanced Level Examination June 2010

NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706

Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.

SYNCHRONOUS MACHINES

Experiment 3: Magnetic Fields of a Bar Magnet and Helmholtz Coil

Magnetic Field of a Circular Coil Lab 12

RLC Series Resonance

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.

Lab 14: 3-phase alternator.

FORCE ON A CURRENT IN A MAGNETIC FIELD

Build Your Own Solar Car Teach build learn renewable Energy! Page 1 of 1

Chapter 27 Magnetic Field and Magnetic Forces

Understanding the Alternator

Basics of Electricity

Eðlisfræði 2, vor 2007

Exploring Magnetism. DataQuest

Experiment 7: Forces and Torques on Magnetic Dipoles

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

Chapter 29 Electromagnetic Induction and Faraday s Law. Basis of generators Alternators, transformers Tape recording And computer memory

Magnetic Field and Magnetic Forces

Inductors & Inductance. Electronic Components

Low cost Electrostatic generators made from FunFlyStick toy

Electrical Resonance

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Induced voltages and Inductance Faraday s Law

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T.

Force on Moving Charges in a Magnetic Field

Modern Physics Laboratory e/m with Teltron Deflection Tube

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT)

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

Lab E1: Introduction to Circuits

Table of Contents 1. Introduction 2. Electrical Fundamentals Electron Theory Matter 4 MOLECULE

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component

Principles of Adjustable Frequency Drives

Section 9.5 Electric Motors

Experiment 8: Undriven & Driven RLC Circuits

Permanent Magnetic Generator Construction Manual

E&I MAINTENANCE ENTRY TEST ENABLING OBJECTIVES. DESCRIBE hazards and precautions taken to avoid injury in the workplace.

Teaching Time: One 25-minute period. Lesson Summary Students use iron filings to observe the 2 and 3- D field lines around a magnet.

Standex-Meder Electronics. Custom Engineered Solutions for Tomorrow

INTERFERENCE OF SOUND WAVES

ECEN 1400, Introduction to Analog and Digital Electronics

Direction of Induced Current

Generate Your Own Hydropower

Circuit symbol. Each of the cells has a potential difference of 1.5 volts. Figure 1. Use the correct answer from the box to complete the sentence.

One- and Two-dimensional Motion

TELEPHONE LINE ANALYZER KIT

Transcription:

Electromagnetic Laboratory Stations The following laboratory exercises are designed to help you study magnetic fields produced by magnets and current carrying wires, and study other well-known electromagnetic phenomena. The order of the experiments will lead you through magnetic field production, the effects of magnetic fields on moving charges and current-carrying wires, the dual nature of moving charges and its effect in electric motors, electric generators, and cathode-ray tubes, and descriptive experiments in Lenz law, eddy currents, and magnetic levitation using paramagnetism. During these experiments, you will be making observations and explaining these observations. No numerical data should be taken. You will investigate the electromagnetic phenomena for yourself, so don t watch someone, do it yourself! It is not necessary that you perform the experiments in the order they are written up. The write up in your lab notebook should consist of a brief description of what you observed, relevant sketches, relevant force diagrams and (for PH 4B students ONLY) descriptions of how the applicable laws (e.g. Faraday s Law and Lenz s Law) explain the observed phenomena. 1. Magnetic Lines of Force By using iron filings suspended in oil, we can see the lines of force produced by permanent magnets. Use the 3D or 2D box with permanent magnets to observe these lines. 3D Magnetic Field observation container 2D Magnetic Field observation container 2 cylindrical magnets 2 flat magnets 1 horseshoe magnet Aluminum weights for spacers 3D observation container Shake the container until the filings are evenly distributed throughout the box. Insert two magnets in line with one another and sketch the field. Reshake the container and insert the two magnets so that they oppose. Do not press them together; just allow them to repel each other. Sketch this field. Option: Shake container, place two magnets on the inside and place another magnet on the outside and draw resulting field. 2D observation container Shake container until the filings are evenly distributed throughout the liquid. Place two or three different magnets under the container, taking care that they don t attract. Sketch the resulting field display. If the field is not very clear, use spacers to raise the container above the magnets so that there is some room between the magnets and the container.

2. The Electromagnet Create an electromagnet by passing current through a wire wrapped around a soft iron core. Soft iron bar or nail Length of insulated wire 1 or 2 batteries Paper clips or other light steel objects Compass, Questions and Analysis Wrap the insulated wire around the iron bar as closely and tightly as possible. Leave leads of 20cm long from the coil. Attach leads to the battery terminals Check to see if your electromagnet will pick up paper clips and other stuff. Use the compass to determine which end is North. What happens to the pole of the magnet if you reverse the battery leads? What happens if you use two batteries in series? Can you derive a rule for finding the orientation of your battery based on current direction through your battery? 4B students: Describe what is happening in the iron bar as current is passed the through the wire. Determine direction of B field using Right Hand rule and knowledge of current direction. 3. Magnetic Field of a Solenoid As current passes through a solenoid, the magnetic field inside the solenoid is nearly uniform. Solenoid in small black box Iron filings Power supply Turn on the power supply and observe the magnetic field set up by the iron filings in the 3D box. Sketch the magnetic field set up through the center of the solenoid in the box. NOTE: You may have to collect the iron filings into your hand and then sprinkle them over the solenoid to see them aligned with the solenoid s magnetic field.

4. Magnetic Field due to a current through a long wire As current is passed through a wire, a magnetic field is generated at right angles to the current. Use this phenomenon to explore the effects on compasses. Long wire Steel pole and table clamp Ring stand Compasses & cardboard sheet Power supply Observe the orientation of the compasses, then turn on the power supply and observe the orientation of the compasses. Sketch the compasses. What does this indicate about the direction of the magnetic field surrounding the wire? Map the direction of the magnetic field lines on your paper. How do compasses orient themselves relative to magnetic field lines? Be sure to de-energize the circuit when complete. 5. Energized Solenoid with Soft Iron Core Current passing through the coils of a solenoid develop a magnetic field within the hollow core of the solenoid. Examine what happens to the iron rod. Solenoid Power supply Iron core small enough to fit within Solenoid 2 patch cords Connect patch cords to the power supply and the solenoid. Set the voltage on the power supply to 5V and turn on the power supply. Place the iron rod just inside the hole and let it go, it should be attracted into the hole. a. What happens when you de-energize the circuit? Record your results. b. Is the rod magnetized? Use a compass to find out. If it is, carefully hit the rod on the ground. Why would this cause the rod to lose its magnetism? Record your theory. c. Since the rod is no longer magnetized, try inserting it into the energized solenoid again. What phenomenon causes the rod to be so forcefully drawn into the

solenoid s core? Also, why doesn t the rod shoot out of the opposite side of the solenoid? Record your results. d. Describe what is happening and sketch the setup. e. Be sure to de-energize the solenoid when complete. 4. 4B students: Draw the magnetic field using the RH rule. 6. Electron Beam and Magnetic Force Interaction Moving charges are influenced by the presence of magnetic forces. Examine this interaction using an oscilloscope and a permanent magnet. Oscilloscope Magnet When you turn on an oscilloscope, computer monitor, or TV, electrons exciting the phosphorus molecules in a screen behind the glass produce the picture that you see. In an oscilloscope, the phenomenon is rather simple. A single beam of electrons is emitted onto a phosphorus screen and deflected based upon input by an external device, such as a function generator. This beam consists of moving charges, and as such can be affected by magnetic forces. Plug in the oscilloscope and turn it on. Under the HORIZONTAL section, set the knob marked SEC/DIV to X-Y. You should see a dot appear on the screen. Using a permanent magnet, move the dot around on the screen. Take care not to touch the magnet to the screen because you may end up scratching the screen. Sketch what is happening here. Does the direction of the deflection change if you use different poles of the magnet. 7. Magnetic Force on a Current Carrying Wire Using the swinging wire apparatus, connect the leads of the wire to two dry cells wired in series. Note the displacement of the wire. Why does this occur? Reverse the polarity of the leads. Does this change anything? Record your results. Be sure to de-energize the circuit when complete. 8. DC Motor Connect the leads of the St. Louis motor to a de-energized power supply. Starting on the 0-18V setting, turn the course voltage to maximum, and turn the current to minimum. Switch on the power supply. Slowly increase the current until the motor begins to turn. f. What is the correlation between current supply and motor speed?

g. De-energize the power supply, and reverse the leads. Does this affect the direction of rotation? h. Why do the brushes spark for brief periods during rotation? i. Are the brushes reversing the direction of current through the stator (fixed electromagnets), rotor (rotating electromagnets), or both? j. Record your results, and summarize the operation of a DC Brush motor. k. Be sure to de-energize the power supply when complete. 9. E/M Induction Connect a hollow coil of wire to a galvanometer. Generate an electrical current by moving a permanent magnet in and out of the coil of wire. Also try moving the coil while holding the magnet still. Is the same effect achieved? How do you vary the amplitude of the current? Record your results. 10. Generator Connect the Cowan Dynamo (hand crank generator) to a galvanometer. Experiment with generating pulsed direct current and alternating current, by moving the brushes. Why does the direct current pulsate? What is the relationship between the rotation of the handle and the frequency of the alternating current? Record your results. 11. Transformer Connect the DC power supply to outer coil connect galvanometer to inner coil; note surge of current through galvanometer when power supply is turned on or off; note effect of metal core. 12. Loudspeaker Examine the large loudspeaker. Explain how the frequency generator causes linear motion in the loudspeaker. It may be helpful to set the frequency at 1-5Hz. Does the loudspeaker act as a generator or a motor in this instance? Knowing this, what is the fundamental difference between a loudspeaker and a simple microphone? Record your results. 13. Big A.C. Coil Examine the construction of the large alternating current coil, and the properties of the ring. Why does the coil cause the ring to fly off? Be cautious of alternating current. Record your results. 14. Doorbell Connect the doorbell apparatus to a battery. Explain the oscillating motion. How does a direct current battery allow the armature to switch directions so quickly, without brushes? Also try operating the apparatus with a hand crank generator. Record your results. 15. Oscilloscope Connect a signal generator to the vertical input of an oscilloscope. Adjust the signal generator to a sine wave, starting with a very low frequency of 1-2Hz. Also adjust the Horizontal Division on the O-scope until a familiar sine wave is displayed. a. A cathode ray tube works by deflecting a stream of electrons (from the electron gun) with a set of high voltage deflector plates. The potential on these plates can vary in both amplitude and sign (+ or -), thereby changing the electric and magnetic field. The deflected electrons excite a phosphorescent screen, causing an image to be formed.

b. Knowing this, how does the signal generator control the O-scope? In this setup, does the signal generator affect the horizontal deflector plates, or the vertical deflector plates? c. What does the Horizontal Division setting change on the O-scope? How does it achieve this? d. How would a pure direct current signal be displayed on the O-scope? e. Record your results.

16. Hand Crank Generator and Light Bulbs Connect the small hand crank generator to a lamp. Turn the crank to light the lamp. Remove the lamp and try it again. Explain the difference you experience. Record your results. 17. A. C. Electric Motor Analyze the alternating current electric motor making sure you under stand how it runs. What is the relationship between the frequency of the signal generator and the frequency of the rotating armature? 18. Eddy Currents Swinging Aluminum Combs a. Connect the comb to the pivot and release it from a height to swing between the permanent magnets. Note the speed of the comb as it passes between the magnets. b. Connect the closed comb (the one with the loop around the perimeter) to the pivot and release it from the same height as in part (a) letting it swing between the permanent magnets again. Note the speed of the closed comb as it passes between the magnets. c. Connect the solid comb to the pivot and release it from the same height as in part (a) letting it swing between the permanent magnets again. Note the speed of the solid comb as it passes between the magnets. d. Is the stationary aluminum attracted to one of the magnets? Why or why not? e. Rank the three combs according to their speeds as they pass between the magnets for the first time and explain why the variation in damping is observed. Magnet on Incline a. Release a magnet from rest so it slides down an angled non-conducting sheet (let magnet slide, not roll to get best results) Note the speed of the magnet during the motion. b. Release the magnet from rest so it slides down an angled conducting sheet (let magnet slide, not roll to get best results) Note the speed of the magnet during the motion. c. Which is the lower speed and why. 19. Pipe w/ WEIGHTS Drop the two taped weights through the vertical aluminum pipe. a. What are the properties of aluminum? b. Explain why one of the weights takes longer to fall than the other. c. Draw a free-body diagram (FBD) of the slower weight as it is falling. d. Can the slower weight ever come to rest in the vertical pipe? Why or why not. 20. PIPE w/ weights a. Read the scale that is suspending the pipe. b. Drop the magnet provided through the vertical aluminum pipe, while noting the reading on the scale. c. Explain your observations. d. Draw a FBD of the pipe as the weight is falling. e. Is there any relationship between the forces in the FBD of the falling weight in 19 c (above) and the forces in the FBD of the pipe? If so, what?