Acids and Bases: A Brief Review, see also pp and pp Brønsted-Lowry Acids and Bases 143. The H + Ion in Water



Similar documents
Acids and Bases: A Brief Review

Chapter 14 - Acids and Bases

Chapter 17. How are acids different from bases? Acid Physical properties. Base. Explaining the difference in properties of acids and bases

Since we will be dealing with aqueous acid and base solution, first we must examine the behavior of water.

CHAPTER 16: ACIDS AND BASES

Chapter 16: Acid-Base and Solubility Equilibria: Reactions in Soil and Water

An acid is a substance that produces H + (H 3 O + ) Ions in aqueous solution. A base is a substance that produces OH - ions in aqueous solution.

Chapter 16 Acid-Base Equilibria

Acid-Base Chemistry. Brønsted-Lowry Acids & Bases

Chapter 14: Acids and Bases

Chapter 15 Acids and Bases. Fu-Yin Hsu

3/6/2014. Chapter 15. Acids and Bases. Stomach Acid and Heartburn GERD. Curing Heartburn. Common Acids. Properties of Acids. Lecture Presentation

NH 3 + H 2 O + OH - NH 4. Acid-Base Concepts -- Chapter 15 + H + Conjugate Acid-Base Pairs: - H + base. acid

Chem101: General Chemistry Lecture 9 Acids and Bases

TOPIC 11: Acids and Bases

ACID-BASE REACTIONS/ THE PH CONCEPT.

CHM1 Review for Exam 12

Acids and Bases. An Introduction. David A Katz Department of Chemistry Pima Community College, Tucson, AZ, USA

Topic 5. Acid and Bases

Ch 15: Acids and Bases

Topic 8 Acids and bases 6 hours

CHAPTERS 15 FAKE TEST QUESTIONS. 1. According to the Brønsted Lowry definition, which species can function both as an acid and as a base?

Acids and Bases HW PSI Chemistry

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH

Acids and Bases. Chapter 16

Name period Unit 9: acid/base equilibrium

Acid-Base (Proton-Transfer) Reactions

UNIT (6) ACIDS AND BASES

Chapter 19: Acids and Bases Homework Packet (50 pts) Name: Score: / 50

Q.1 Classify the following according to Lewis theory and Brønsted-Lowry theory.

Chapter 13 & 14 Practice Exam

Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present.

Chapter 16 Acid-Base Equilibria. Most solutions that occur in nature are slightly acidic. One reason for this is that when carbon

ph: Measurement and Uses

Titrations. Acid-Base Indicators and Titration Curves. Shapes of Titration Curves. A titration curve is a graphical history of a titration

Note: (H 3 O + = hydronium ion = H + = proton) Example: HS - + H 2 O H 3 O + + S 2-

AP Chemistry Summary Acids, Bases and Buffers Definitions:

Review for Solving ph Problems:

Chemistry 52. Reacts with active metals to produce hydrogen gas. Have a slippery, soapy feeling. React with carbonates to produce CO 2

CHEM 1212 Test II. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical?

Arrhenius Definition. Chapter 15 Acids and Bases. Brønsted-Lowry Concept. Brønsted-Lowry Concept. Conjugate Acid-Base Pairs

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICAL REACTIONS

Chapter 9 Lecture Notes: Acids, Bases and Equilibrium

Unit Two: Acids and Bases

Notes on Unit 4 Acids and Bases

Acid/base Definitions. Acid/Base Definitions. Acid / Base Chemistry. Acid/Base Definitions. Identifying Acids and Bases

EXPERIMENT 20: Determination of ph of Common Substances

AP*Chemistry The Chemistry of Acids and Bases

Acid/Base Definition. Acid/Base Reactions. Major vs. Minor Species. Terms/Items you Need to Know. you need to memorize these!!

QUESTION (2012:3) (a) (i) Complete the table below showing the conjugate acids and bases. CO 3 H 2 O OH HCN CN -

Properties of Aqueous Solutions of Acids and Bases. CHAPTER 10 Acids, Bases and Salts. Properties of Aqueous Solutions of Acids and Bases

Suggested Problems: p #58, 59, 65, 69, 74, 80, 85, 86, 90, 92, 93, 98, 99

p3 Recognizing Acid/Base Properties when p11 Recognizing Basic versus Nonbasic

Acid-Base Equilibrium

Stoichiometry and Aqueous Reactions (Chapter 4)

Required Reading Material.

Classification of Reagents in Chemistry I: Acids and Bases

Chemistry Unit 2 Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases

Q1: What is the ph Scale? Q6: As acids become more acidic, their ph values

Answer Key, Problem Set 5 (With explanations)--complete

CHAPTER 18 ACID-BASE EQUILIBRIA

Auto-ionization of Water

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 2 Polar Covalent Bonds; Acids and Bases

Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent

Brønsted-Lowry Acids and Bases

ph. Weak acids. A. Introduction

Topic 18 Acids and Bases Exercises

Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

stoichiometry = the numerical relationships between chemical amounts in a reaction.

RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS

Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change

Sketch the model representation of the first step in the dissociation of water. H 2. O (l) H + (aq) + OH- (aq) + H 2. OH - (aq) + H 3 O+ (aq)

Aqueous Ions and Reactions

Chem 116 POGIL Worksheet - Week 10 - Solutions Weak Acid and Base Equilibria

1. Read P , P & P ; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11

4. Acid Base Chemistry

3 The Preparation of Buffers at Desired ph

6 Reactions in Aqueous Solutions

Acid Base Chemistry. Farmington Public Schools Grade Level: 10 Discipline:Chemistry

Equilibrium Constants The following equilibrium constants will be useful for some of the problems.

Chemical Reactions in Water Ron Robertson

Copyright 2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved.

Acids and Bases CHAPTER 12. Opening Essay

Acids and Bases. Problem Set: Chapter 17 questions 5-7, 9, 11, 13, 18, 43, 67a-d, 71 Chapter 18 questions 5-9, 26, 27a-e, 32

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

10. Acids, Bases, and Salts. Acids and bases Arrhenius Acid-Base Theory Bronsted-Lowry Acid-Base Theory

AP FREE RESPONSE QUESTIONS ACIDS/BASES

Chapter 11: Acids and Bases

Upon completion of this lab, the student will be able to: H3O + (aq) + A (aq) BH + (aq) + OH (aq) O + ] [H 3. ph = log[h 3.

EXPERIMENT 10 Chemistry 110. Solutions Part 2 ACIDS, BASES, AND ELECTROLYTES

CHEMISTRY II FINAL EXAM REVIEW

4.1 Aqueous Solutions. Chapter 4. Reactions in Aqueous Solution. Electrolytes. Strong Electrolytes. Weak Electrolytes

Transcription:

Quiz number 5 will be given in recitation next week, Feb 26Mar 2 on the first part of Chapter 16, to be covered in lectures this week. 16.1 Acids and Bases: A Brief Review 16.2 BronstedLowry Acids and Bases H in water, Protontransfer, Conjugate acids and bases, Relative strengths 16.3 The Autoionization of Water 16.4 other p scales, measuring ph 16.5 Strong Acids and Bases Strong Acids, Strong Bases 16.6 K a from ph, Using Ka to Calculate ph, Polyprotic Acids 16.7 Weak Bases Types of Weak Bases 16.8 Relationship Between Ka and Kb 16.9 AcidBase Properties of Salt Solutions 16.10 AcidBase Behavior and Chemical Structure 16.11 Lewis Acids and Bases Acids and Bases: A Brief Review, see also pp 121127 127 and pp 134143. 143. Acid: taste sour. Bases: taste bitter and feel soapy. BrønstedLowry Acids and Bases The H Ion in Water The H (aq) ion is simply a proton with no electrons. (H has one proton, one electron, and no neutrons.) Arrhenius: acids increase [H ] bases increase [OH ] in solution. Arrhenius: acid base salt water. In water, the H (aq) form clusters. The simplest cluster is H 3 O (aq). are H 5 O 2 and H 9 O 4. Larger clusters Problem: the definition confines us to aqueous solution. Generally we use H (aq) and H 3 O (aq) interchangeably to mean a hydrated proton. The H Ion in Water BrønstedLowry Acids and Bases Proton Transfer Reactions Focus on the H (aq). BrønstedLowry: acid donates H and base accepts H. BrønstedLowry base does not need to contain OH. Consider HCl(aq) H 2 O(l) = H 3 O (aq) Cl (aq): HCl donates a proton to water. Therefore, HCl is an acid. H 2 O accepts a proton from HCl. Therefore, H 2 O is a base. Water can behave as either an acid or a base. Amphoteric substances can behave as acids and bases. K a = K eq for an equilibrium as described above.

Proton transfer reactions: Conjugate AcidBase Pairs Whatever is left of the acid after the proton is donated is called its conjugate base. Similarly, whatever remains of the base after it accepts a proton is called a conjugate acid. Consider HA(aq) H 2 O(l) H 3 O (aq) A (aq) After HA (acid) loses its proton it is converted into A (base). Therefore HA and A are conjugate acidbase pairs. After H 2 O (base) gains a proton it is converted into H 3 O (acid). Therefore, H 2 O and H 3 O are conjugate acidbase pairs. Conjugate acidbase pairs differ by only one proton. BrønstedLowry Acids and Bases Relative Strengths of Acids and Bases The stronger the acid, the weaker the conjugate base. H is the strongest acid that can exist in equilibrium in aqueous solution. OH is the strongest base that can exist in equilibrium in aqueous solution. BrønstedLowry Acids and Bases Relative Strengths of Acids and Bases Any acid or base that is stronger than H or OH simply reacts stoichiometrically to produce H and OH. The conjugate base of a strong acid (e.g. Cl ) has negligible acidbase properties. Similarly, the conjugate acid of a strong base has negligible acidbase properties.

The Ion Product of Water In pure water the following equilibrium is established H 2 O(l) H 2 O(l) H 3 O (aq) OH (aq) at 25 C [H 3O ][OH ] Kc = [H 2 2O] K [H 2 2O] [H3O c = ][OH ] K = [H 14 3O ][OH ] = 1.0 10 w The above is called the autoionization of water. In most solutions [H (aq)] is quite small. We define ph = log[h ] = log[h 3 O ]. Similarly poh = log[oh ]. In neutral water at 25 C, ph = poh = 7.00. In acidic solutions, [H ] > 1.0 10 7, so ph < 7.00. In basic solutions, [H ] < 1.0 10 7, so ph > 7.00. The higher the ph, the lower the poh, the more basic the solution. Most ph and poh values fall between 0 and 14. There are no theoretical limits on the values of ph or poh. (e.g. ph of 2.0 M HCl is 0.301) Other p Scales In general for a number X, px = log X For example, pk w = log K w. Since K = [H O ][OH ] 1.0 10 14 3 = w ( O ][OH ]) pkw = log [H3 = 14.00 log[h O ] log[oh 3 ] = 14.00 ph poh = 14.00 Measuring ph Most accurate method to measure ph is to use a ph meter. However, certain dyes change color as ph changes. These are indicators. Indicators are less precise than ph meters. Many indicators do not have a sharp color change as a function of ph. Most indicators tend to be red in more acidic solutions (two exceptions: phenolphthalein and alizarin yellow R are both red in base). Measuring ph Indicators

16.5 Strong Acids and Bases Strong Acids Strong Bases 16.6 Calculating Ka from ph Using Ka to Calculate ph Polyprotic Acids 16.7 Weak Bases Types of Weak Bases 16.8 Relationship Between Ka and Kb 16.9 AcidBase Properties of Salt Solutions 16.10 AcidBase Behavior and Chemical Structure Factors That Affect Acid Strength Binary Acids Oxyacids Carboxylic Acids 16.11 Lewis Acids and Bases Hydrolysis of Metal Ions Strong Acids and Bases Strong Acids The strongest common acids are HCl, HBr, HI, HNO 3, HClO 3, HClO 4, and H 2 SO 4. Strong acids are strong electrolytes. All strong acids ionize completely in solution: HNO 3 (aq) H 2 O(l) H 3 O (aq) NO 3 (aq) Since H and H 3 O are used interchangeably, we write HNO 3 (aq) H (aq) NO 3 (aq) Strong Acids and Bases Strong Acids In solutions the strong acid is usually the only source of H. (If the molarity of the acid is less than 10 6 M then the autoionization of water needs to be taken into account.) Therefore, the ph of the solution is the initial molarity of the acid. Strong Bases Most ionic hydroxides are strong bases (e.g. NaOH, KOH, and Ca(OH) 2 ). Strong Acids and Bases Strong Bases Strong bases are strong electrolytes and dissociate completely in solution. The poh (and hence ph) of a strong base is given by the initial molarity of the base. Be careful of stoichiometry. In order for a hydroxide to be a base, it must be soluble. Bases do not have to contain the OH ion: O 2 (aq) H 2 O(l) 2OH (aq) H (aq) H 2 O(l) H 2 (g) OH (aq) N 3 (aq) H 2 O(l) NH 3 (aq) 3OH (aq) Weak acids are only partially ionized in solution. There is a mixture of ions and unionized acid in solution. Therefore, weak acids are in equilibrium: HA(aq) H 2 O(l) H 3 O (aq) A (aq) HA(aq) [H O ][A 3 ] K a = [HA] H (aq) A (aq) or [H ][A ] K a = [HA] K a is the acid dissociation constant.

Note [H 2 O] is omitted from the K a expression. (H 2 O is a pure liquid.) The larger the K a the stronger the acid (i.e. the more ions are present at equilibrium relative to unionized molecules). If K a >> 1, then the acid is completely ionized and the acid is a strong acid. Weak acids are simply equilibrium calculations. The ph gives the equilibrium concentration of H. Using K a, the concentration of H (and hence the ph) can be calculated. Write the balanced chemical equation clearly showing the equilibrium. Write the equilibrium expression. Find the value for K a. Write down the initial and equilibrium concentrations for everything except pure water. We usually assume that the change in concentration of H is x. Substitute into the equilibrium constant expression and solve. Remember to turn x into ph if necessary. Percent ionization is another method to assess acid strength. For the reaction HA(aq) H 2 O(l) H 3 O (aq) A (aq) [H ] eqm % ionization = 100 [HA] 0 Percent ionization relates the equilibrium H concentration, [H ] eq, to the initial HA concentration, [HA] 0. The higher percent ionization, the stronger the acid. Percent ionization of a weak acid decreases as the molarity of the solution increases. For acetic acid, 0.05 M solution is 2.0 % ionized whereas a 0.15 M solution is 1.0 % ionized. Measuring ph

Polyprotic Acids Polyprotic acids have more than one ionizable proton. The protons are removed in steps not all at once: H 2 SO 3 (aq) HSO 3 (aq) H (aq) HSO 3 (aq) H (aq) SO 3 2 (aq) K a1 = 1.7 x 10 2 K a2 = 6.4 x 10 8 It is always easier to remove the first proton in a polyprotic acid than the second. Therefore, K a1 > K a2 > K a3 etc. Most H (aq) at equilibrium usually comes from the first ionization (i.e. the K a1 equilibrium). Polyprotic Acids Weak bases remove protons from substances. There is an equilibrium between the base and the resulting ions: Weak base H 2 O conjugate acid OH Example: NH 3 (aq) H 2 O(l) NH 4 (aq) OH (aq) The base dissociation constant, K b, is defined as [NH ][OH 4 ] K b = [NH3] Weak Bases The larger K b the stronger the base. Types of Weak Bases Bases generally have lone pairs or negative charges in order to attack protons. Most neutral weak bases contain nitrogen. Amines are related to ammonia and have one or more NH bonds replaced with NC bonds (e.g., CH 3 NH 2 is methylamine). Anions of weak acids are also weak bases. Example: OCl is the conjugate base of HOCl (weak acid): ClO (aq) H 2 O(l) HClO(aq) OH (aq) K b = 3.3 x 10 7

Relationship Between K a and K b We need to quantify the relationship between strength of acid and conjugate base. When two reactions are added to give a third, the equilibrium constant for the third reaction is the product of the equilibrium constants for the first two: Reaction 1 reaction 2 = reaction 3 has K 1 K 2 = K 3. Relationship Between K a and K b For a conjugate acidbase pair K a K b = K w Therefore, the larger the K a, the smaller the K b. That is, the stronger the acid, the weaker the conjugate base. Taking negative logarithms: pk a pk b = pk w AcidBase Properties of Salt Solutions Nearly all salts are strong electrolytes. Therefore, salts exist entirely of ions in solution. Acidbase properties of salts are a consequence of the reaction of their ions in solution. The reaction in which ions produce H or OH in water is called hydrolysis. Anions from weak acids are basic. Anions from strong acids are neutral. Anions with ionizable protons (e.g. HSO 4 ) are amphoteric. To determine whether a salt has acidbase properties we use: Salts derived from a strong acid and strong base are neutral (e.g. NaCl, Ca(NO 3 ) 2 ). Salts derived from a strong base and weak acid are basic (e.g. NaOCl, Ba(C 2 H 3 O 2 ) 2 ). Salts derived from a weak base and strong base are acidic (e.g. NH 4 Cl, Al(NO 3 ) 3 ). Salts derived from a weak acid and weak base can be either acidic or basic. Equilibrium rules apply! Factors That Affect Acid Strength Consider HX. For this substance to be an acid we need: HX bond to be polar with Hδ and Xδ (if X is a metal then the bond polarity is Hδ, Xδ and the substance is a base), the HX bond must be weak enough to be broken, the conjugate base, X, must be stable. Binary Acids Binary Acids Acid strength increases across a period and down a group. Conversely, base strength decreases across a period and down a group. HF is a weak acid because the bond energy is high. The electronegativity difference between C and H is so small that the CH bond is nonpolar and CH 4 is neither an acid nor a base.

Binary Acids Oxyacids Oxyacids contain OH bonds. All oxyacids have the general structure YOH. The strength of the acid depends on Y and the atoms attached to Y. If Y is a metal (low electronegativity), then the substances are bases. If Y has intermediate electronegativity (e.g. I, EN = 2.5), the electrons are between Y and O and the substance is a weak oxyacid. Oxyacids If Y has a large electronegativity (e.g. Cl, EN = 3.0), the electrons are located closer to Y than O and the OH bond is polarized to lose H. The number of O atoms attached to Y increase the OH bond polarity and the strength of the acid increases (e.g. HOCl is a weaker acid than HClO 2 which is weaker than HClO 3 which is weaker than HClO 4 which is a strong acid).

Carboxylic Acids These are organic acids which contain a COOH group (R is some carbon containing unit): O Carboxylic Acids When the proton is removed, the negative charge is delocalized over the carboxylate anion: O O R C OH R C O R C O The acid strength increases as the number of electronegative groups on R increases. BrønstedLowry acid is a proton donor. Focusing on electrons: a BrønstedLowry acid can be considered as an electron pair acceptor. Lewis acid: electron pair acceptor. Lewis base: electron pair donor. Note: Lewis acids and bases do not need to contain protons. Therefore, the Lewis definition is the most general definition of acids and bases. Lewis acids generally have an incomplete octet (e.g. BF 3 ). Transition metal ions are generally Lewis acids. Lewis acids must have a vacant orbital (into which the electron pairs can be donated). Compounds with πbonds can act as Lewis acids: H 2 O(l) CO 2 (g) H 2 CO 3 (aq) Hydrolysis of Metal Ions Metal ions are positively charged and attract water molecules (via the lone pairs on O). The higher the charge, the smaller the metal ion and the stronger the MOH 2 interaction. Hydrated metal ions act as acids: Fe(H 2 O) 6 3 (aq) Fe(H 2 O) 5 (OH) 2 (aq) H (aq) K a = 2 x 10 3 The ph increases as the size of the ion increases (e.g. Ca 2 vs. Zn 2 ) and as the charge increases (Na vs. Ca 2 and Zn 2 vs. Al 3 ).