DESIGN AND BUILD YOUR OWN AUDIO AMPLIFIER



Similar documents
Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P

Lab #9: AC Steady State Analysis

EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

11: AUDIO AMPLIFIER I. INTRODUCTION

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).

OPERATIONAL AMPLIFIERS

LM1036 Dual DC Operated Tone/Volume/Balance Circuit

Laboratory 4: Feedback and Compensation

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

Frequency Response of Filters

Lab 7: Operational Amplifiers Part I

School of Engineering Department of Electrical and Computer Engineering

Common Base BJT Amplifier Common Collector BJT Amplifier

ENEE 307 Electronic Circuit Design Laboratory Spring A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742

Voltage/current converter opamp circuits

Operational Amplifier - IC 741

FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER

Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

TUBE-TECH HLT 2A Stereo High- and Low shelving, T- filter & Low- and High cut

Reading: HH Sections , (pgs , )

Lab 5 Operational Amplifiers

AM Receiver. Prelab. baseband

Step Response of RC Circuits

Inductors in AC Circuits

Germanium Diode AM Radio

BJT AC Analysis 1 of 38. The r e Transistor model. Remind Q-poiint re = 26mv/IE

Chapter 19 Operational Amplifiers

CTCSS REJECT HIGH PASS FILTERS IN FM RADIO COMMUNICATIONS AN EVALUATION. Virgil Leenerts WØINK 8 June 2008

Service Manual. (9 Inch) LCD Color Monitor & DVD Player & DVB-T&ATV. mp-man PDV-TY995

Selected Filter Circuits Dr. Lynn Fuller

Kit 27. 1W TDA7052 POWER AMPLIFIER

AC : MEASUREMENT OF OP-AMP PARAMETERS USING VEC- TOR SIGNAL ANALYZERS IN UNDERGRADUATE LINEAR CIRCUITS LABORATORY

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

OrCAD Capture with PSpice and Allegro DE CIS with AMS Simulator. Describes how to create a PSpice Archive File with Capture

What you will do. Build a 3-band equalizer. Connect to a music source (mp3 player) Low pass filter High pass filter Band pass filter

A Versatile Audio Amplifier

Building the AMP Amplifier

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Common-Emitter Amplifier

MAS.836 HOW TO BIAS AN OP-AMP

6.101 Final Project Report Class G Audio Amplifier

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electronic Circuits Spring 2007

6.101 Final Project Proposal Class G Audio Amplifier. Mark Spatz

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

How To Calculate The Power Gain Of An Opamp

Understanding Power Impedance Supply for Optimum Decoupling

TDA W Hi-Fi AUDIO POWER AMPLIFIER

Routinely DIYers opt to make themselves a passive preamp - just an input selector and a volume control.

LM386 Low Voltage Audio Power Amplifier

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

DATA SHEET. TDA1510AQ 24 W BTL or 2 x 12 W stereo car radio power amplifier INTEGRATED CIRCUITS

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz

Audio Tone Control Using The TLC074 Operational Amplifier

3. On the top menu bar, click on File > New > Project as shown in Fig. 2 below: Figure 2 Window for Orcad Capture CIS

Physics 120 Lab 6: Field Effect Transistors - Ohmic region

The 2N3393 Bipolar Junction Transistor

TS34119 Low Power Audio Amplifier

Common Emitter BJT Amplifier Design Current Mirror Design

Analog Sound From A Digital Delay

Chapter 12: The Operational Amplifier

The Phase Modulator In NBFM Voice Communication Systems

SIMPLE HEART RATE MONITOR FOR ANALOG ENTHUSIASTS

The Critical Length of a Transmission Line

SUPER SNOOPER BIG EAR

Department of Engineering. A Pulse Induction Metal Detector. ENGN3227 Analogue Electronics. Dr Salman Durrani. Group TA5

TDA W Hi-Fi AUDIO POWER AMPLIFIER


Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment # (4) AM Demodulator

Lab 1: Introduction to PSpice

Brio-Rmanual:Cursamanual.qxd 08/04/ :25 Page1

Class D Audio Amplifier

F(t) Forssell Technologies Inc

Redesigned by Laurier Gendron (Aug 2006 ) Download this project in PDF. Horn circuit. Train Circuitry

AN-837 APPLICATION NOTE

DATA SHEET. TDA1518BQ 24 W BTL or 2 x 12 watt stereo car radio power amplifier INTEGRATED CIRCUITS

Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II

Bipolar Transistor Amplifiers

Electrical Resonance

Laboratory 2. Exercise 2. Exercise 2. PCB Design

Fully Differential CMOS Amplifier

RC & RL Transient Response

Oscilloscope, Function Generator, and Voltage Division

ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section

Series AMLDL-Z Up to 1000mA LED Driver

Voltage Divider Bias

Content Map For Career & Technology

Application Note. Line Card Redundancy Design With the XRT83SL38 T1/E1 SH/LH LIU ICs

Precision Diode Rectifiers

Transistor Amplifiers

Kit Watt Audio Amplifier

Output Ripple and Noise Measurement Methods for Ericsson Power Modules

TL074 TL074A - TL074B

A Digital Timer Implementation using 7 Segment Displays

DATA SHEET. TDA8560Q 2 40 W/2 Ω stereo BTL car radio power amplifier with diagnostic facility INTEGRATED CIRCUITS Jan 08

Experiment 8 : Pulse Width Modulation

phonostage RIP YOUR VINYL TO BITS, WITH A USB Design

INTRODUCTION. Please read this manual carefully for a through explanation of the Decimator ProRackG and its functions.

Transcription:

DESIGN AND BUILD YOUR OWN AUDIO AMPLIFIER Reshed Hussein Kevin Wade Final Report ENEE 47-5 University of Maryland @ College Park

Introduction The purpose of this project was to design and build your own audio amplifier from scratch. Good audio amplifiers take a small input signal and magnify it several times, without distorting it, so that it can be heard at the speakers. In order to design our audio amplifier we used the scheme provided by professor Yang as a starting point, and made a few changes in order to meet the required specifications of high input impedance, low output impedance, and a gain of about. The project was very instructive because it not only helped us solidify our theoretical knowledge acquired in Microelectronics classes, but it also gave us an insight into the procedures an engineer must take from a design on paper to a final working product. Another benefit of this project is the satisfaction that is gained after completing such a challenging task. Even though our design satisfies all requirements there are many other ways to design a good audio amplifier; either by using op-amps or JFET instead of the BJT used in our design. The design of our audio amplifier was done on PSPICE, where we made sure that all requirements were met. After completing the design we built the circuit on the bread board and compared the observed DC voltages and currents with the ones obtained in PSPICE. We then designed a PCB layout on Microsoft Paint and built the PCB board. Few changes were made from the initial design in order to improve the performance of our circuit. This report contains all design schematics and measurements, as well as observed measurements done on the PCB board. Circuit design Our audio amplifier consists of two parts: a differential stage built using 2 BJTs and an emitter follower. The differential pair is used to amplify the input signal while the 2

emitter follower is used as a power amp stage providing the necessary current to the load. Figure below shows the circuit built in PSPICE. Figure : Final Audio Amplifier Schematic 3

Figure 2: DC Voltages in PSPICE Figure 3: DC Currents in PSPICE. 4

Figure 2 and 3 above, show the various DC voltages and currents that were obtained in PSPICE. Figure 4 below shows the voltage gain as a function of frequency. From the figure we can see that the gain is approximately across the audio range (from Hz to 2 KHz)...Hz Hz Hz.KHz KHz KHz V(Vout)/ V(Vin:+) Frequency Figure 4: Voltage Gain as a function of Frequency 6d 4d 2d d -2d.Hz Hz Hz.KHz KHz KHz.MHz P(V(Vout)/V(Vin:+)) Frequency Figure 5: Phase as a function of Frequency 5

As it can be seen from Figure 6 below the input impedance in the audible frequency range is approximately KΩ. In the ideal case the input impedance would be infinite, but since our circuit is far from being ideal KΩ is an acceptable value..m K K.Hz Hz Hz.KHz KHz KHz.MHz ABS(V(V5:+)/I(V5)) Frequency Figure 6: Input Impedance vs. Frequency (Amplitude) 8d 7d 6d 5d 4d.Hz Hz Hz.KHz KHz KHz.MHz P(V(V5:+)/I(V5)) Frequency Figure 7: Input Impedance vs. Frequency (Phase) As it can be seen from the figure below the output impedance is approximately zero, which is the desired value. 6

9.e-3 7.e-3 5.e-3 3.e-3.e-3.Hz Hz Hz.KHz KHz KHz ABS(V(V6:+)/ I(V6)) Frequency Figure 8: Output impedance vs. Frequency (Amplitude).ud.5ud d -.5ud -.ud.hz Hz Hz.KHz KHz KHz P(V(V6:+)/I(V6)) Frequency Figure 9: Output impedance vs. Frequency (Phase) Figure shows the input vs. the output as simulated in PSPICE. 7

V V -V s.5ms.ms.5ms 2.ms 2.5ms 3.ms 3.5ms 4.ms V(Vout) V(V8:+) Time Figure : Input vs. Output Figure below shows the PCB layout for our circuit. Figure : PCB layout 8

Although we came up with a scheme for the Tuner we were not able to test it or build it due time restrictions. The figure below shows the schematic for the Tuner. V2.5Vac Vdc.uFC R k R9 32 C3.uF C2.uF R2 32 R3 6 3 2 LM74 U5 + - 7 V+ 4 V- OS2 OUT OS 5 6 V Vdc R5 k R8 32 C6.uF C5.uF R6 32 R7 6 U6 3 + 2 - LM74 7 V+ 4 V- OS2 OUT OS 5 6 R k R4 k C4 uf Figure 2: Tuner Schematic Experiment The actual built circuit is shown in Figure 3. As it can be seen almost all voltages are close to the ones simulated in PSPICE. The output voltage is -4.2 mv; ideally this would be equal to zero but -4.2 mv is small enough not to burn the speaker. There were several problems associated with the original circuit so we had to change the biasing resistors in order to achieve the desired output. After obtaining a good result on the bread board we built our circuit on the PCB board. The most challenging part of our project was probably troubleshooting the PCB board. We had to build the circuit twice and make sure that we did not have a cold solder anywhere. In fact after rebuilding the circuit the second time the circuit was not working because one side of the 47uF capacitor was not soldered correctly. One of our recommendations for future student is that they should make sure that every single item is properly soldered. 9

2 V 2V V.85V R6 k R5 5 R7.5k.6 V.24 V Q3 2 Q2N396 94 mv D N45 3 mv Q4 TIP29 28 mv R2 C -28 mv Q Q2N394 D2 Q2 N45-3 mv R9-4.2 mv 2 R4 V3 2.2uF VOFF = VAMPL = V FREQ = Hz R4 k -95 mv R k Q2N394 -. V R2 k R8 k C2 47uF k 2-29 mv D3 N45-92 mv R -29 mv TIP3 8 -.7 V R3 k SET = 6.5k R k Q5 2V V2-2 V Figure 3: Actual DC Voltages. Figure 4: Gain Amplitude vs. Frequency.

Figure 5: Gain Phase vs. Frequency Figure 4 and 5 represent the Amplitude and Phase of the Gain plotted against the Frequency. The plots were done using LabView and as it can be seen the log-log plot of the Amplitude increases smoothly and settles around 2; while the linear-log plot of the phase has a steep slope, but since the circuit is far from being ideal this is an acceptable result. Input and Output Impedance In order to measure the input impedance we used Kirchoff's current law after inserting a K resistor at the input. The picture shown below shows the scheme that was used: V Vac V4 R5 k Rin x V

The procedure we followed was to measure the V and V shown in the picture and use the following equation to solve for Rin: (V V) / K = V / Rin Rin = (V*K) / (V V) For input amplitude of 2mV and frequency of Hz the input impedance we obtained was: Rin = (58 mv * K) / (63 mv 58 mv) = 6 KΩ. This value is very close to the one obtained using PSPICE which was KΩ. The following table list input impedances measured at different frequencies. Frequency (Hz) Input Impedance (KΩ) 5 9 2 2 54 5 256 5 4 6 Table : Input Impedance as a function of Frequency The Output Impedance was measured using a similar scheme as the one used to measure the input impedance. The pictures shown below show the scheme that was used: V Rout R V Rout R2 x y x y V V2 By measuring V and V2 and using known resistor values R and R2, we plugged the values in the following equations and solved them for Rout:. (V V) / Rout = V / R 2. (V V2) / Rout = V2 / R2 After equating equation and 2, we solved them for Rout. The result we obtained is the following: Rout = (V- V2) / [(V2/R2) (V/R)] 2

Table 2 shows the Output Impedance for several values of input Frequency: Freq (KHz) R(Ω) V(mV) R2(Ω) V2(mV) Rout(Ω).4 3.6 59.9 5.6 57.8.355 5.295 3.6 56.9 5.6 54.9.356 9.927 3.6 58.3 5.6 56.2.365 8.684 3.6 58.8 5.6 57.5.29 Table 2: Output Impedance as a function of Frequency As it can be seen from the table above all Output Impedance values are very close to zero as desired. The following are pictures of the PCB circuit that we built. Figure 6: Actual Audio Amplifier (top view) 3

Figure 7: Actual Audio Amplifier (side view) Discussions The main obstacle that we encountered with our circuit was not with the design but with its real world application. We found that PSPICE can really only be a guide or reference tool used to give the general expected results. When the design gives the desired results in PSPICE, the challenge is achieving those results on the breadboard. Once we built our circuit on the breadboard we spent a considerable amount of time tweaking our design to get the desired gain at the output. Most of our problems rooted in voltage and current biasing problems. We went through a series of labs testing a seemingly infinite amount of resistor value configurations until we achieved a functional output. The only remaining problem lied in an output voltage that was too large. We remedied this problem by placing a potentiometer before the emitters in our differential amp stage which made the granular adjustment needed to correct our circuits biasing currents. 4

With pleasing breadboard results, we moved on to building our PC board. After constructing a malfunctioning channel in route to our final working board, the main thing we learned was that the physical quality of the board is what characterizes your results. It is of optimal concern to draw a layout that allows clean copper paths followed by solid solder connections in order to attain the breadboard results. Overall, this lab gave us a real opportunity to experience what it is like to design and build a real world circuit. It gave us the necessary benefit of realizing the circuits we have been studying only in textbooks in previous classes at the University. Future projects may have involved building amplifiers of different classes or selective tuners like those used in AM/FM radios. 5