McMush Lab Testing for the Presence of Macromolecules



Similar documents
McMush. Testing for the Presence of Biomolecules

Biochemistry of Cells

Recognizing Organic Molecules: Carbohydrates, Lipids and Proteins

Organic Compounds. Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for?

Elements in Biological Molecules

Name: Hour: Elements & Macromolecules in Organisms

Biological molecules:

Organic Molecules of Life - Exercise 2

Elements & Macromolecules in Organisms

Lab 3 Organic Molecules of Biological Importance

The Structure and Function of Macromolecules: Carbohydrates, Lipids & Phospholipids

BIOLOGICAL MOLECULES OF LIFE

The Molecules of Cells

Chapter 3 Molecules of Cells

How To Understand The Chemistry Of Organic Molecules

Chapter 5: The Structure and Function of Large Biological Molecules

Determination of Specific Nutrients in Various Foods. Abstract. Humans need to consume food compounds such as carbohydrates, proteins, fats,

Lab 2 Biochemistry. Learning Objectives. Introduction. Lipid Structure and Role in Food. The lab has the following learning objectives.

Macromolecules in my food!!

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.

Chemical Basis of Life Module A Anchor 2

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

The molecules of life. The molecules that make up living things are really big They are called macromolecules

BIOMOLECULES. reflect

Carbon-organic Compounds

Conduct A Qualitative Test For Starch, Fat, A Reducing Sugar, A Protein

Carbohydrates Lipids Proteins Nucleic Acids

Carbohydrates, proteins and lipids

Chapter 5. The Structure and Function of Macromolecule s

1. The diagram below represents a biological process

The Chemistry of Carbohydrates

The Molecules of Life - Overview. The Molecules of Life. The Molecules of Life. The Molecules of Life

Biology 13A Lab #13: Nutrition and Digestion

Proteins and Nucleic Acids

The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination

10.1 The function of Digestion pg. 402

Worksheet Chapter 13: Human biochemistry glossary

Chapter 2. The Chemistry of Life Worksheets

I. Chapter 5 Summary. II. Nucleotides & Nucleic Acids. III. Lipids

Absorption and Transport of Nutrients

LAB 3: DIGESTION OF ORGANIC MACROMOLECULES

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 2 Chemical Principles

Macromolecules 1 Carbohydrates, Lipids & Nucleic Acids

WATER CHAPTER 3 - BIOCHEMISTRY "THE CHEMISTRY OF LIFE" POLARITY HYDROGEN BONDING

Testing for Sugars and Starch

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Nutrients: Carbohydrates, Proteins, and Fats. Chapter 5 Lesson 2

Page 1. Name:

10-ml Graduated cylinder 40 ml 3% Hydrogen peroxide solution (found in stores) Straight-edged razor blade Scissors and Forceps (tweezers)

Vitamin C Content of Fruit Juice

Human Physiology Lab (Biol 236L) Digestive Physiology: Amylase hydrolysis of starch

Chemical Processes of Digestion

Page 1. Name: 4) The diagram below represents a beaker containing a solution of various molecules involved in digestion.

Digestive System Module 7: Chemical Digestion and Absorption: A Closer Look

Who took Jerell s ipod? -- An organic compound mystery 1

Fat Content in Ground Meat: A statistical analysis

Experiment 10 Enzymes

Process of Science: Using Diffusion and Osmosis

Biology for Science Majors

Catalase Enzyme Lab. Background information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Activity Sheets Enzymes and Their Functions

Diffusion, Osmosis, and Membrane Transport

THE HISTORY OF CELL BIOLOGY

Enzyme Action: Testing Catalase Activity

OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz

Metabolism: Cellular Respiration, Fermentation and Photosynthesis

Making Biodiesel from Virgin Vegetable Oil: Teacher Manual

Cell Unit Practice Test #1

thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

Molecular Cell Biology

Independent Variables, Dependent Variables and Controls Practice

Enzyme Lab. DEFINITIONS: 1. Enzyme: 2. Catalase: 3. Catalyze: 4. Hydrolysis: 5. Monomer: 6. Digestion: BACKGROUND INFORMATION

Separation of Amino Acids by Paper Chromatography

OBJECTIVES: Visitors learn what an antioxidant is and how it behaves. They also learn how to test for the presence of vitamin C..

Photo Cell Resp Practice. A. ATP B. oxygen C. DNA D. water. The following equation represents the process of photosynthesis in green plants.

Cell Membrane & Tonicity Worksheet

Amino Acids, Peptides, and Proteins

# 12 Condensation Polymerization: Preparation of Two Types of Polyesters

Cellular Respiration: Practice Questions #1

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****

Enzyme Action: Testing Catalase Activity

Table of Content. Enzymes and Their Functions Teacher Version 1

How are substances transported within cells and across cell membranes?

Unit 2: Cells, Membranes and Signaling CELL MEMBRANE. Chapter 5 Hillis Textbook

Ch24_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Cell Membrane Coloring Worksheet

Factors Affecting Enzyme Activity

Teacher Demo: Photosynthesis and Respiration: Complementary Processes

Endocrine System: Practice Questions #1

Enzymes: Practice Questions #1

THE ACTIVITY OF LACTASE

Digestive System Why is digestion important? How is food digested? Physical Digestion and Movement

Chapter 5 Classification of Organic Compounds by Solubility

The Properties of Water (Instruction Sheet)

Membrane Structure and Function

Transcription:

5 Testing for the Presence of Macromolecules OBJECTIVE Students will learn confirmation tests for the presence of glucose, starch, lipids and proteins. Students will then apply the test procedures to a slurry made from a McDonald s Happy Meal to determine the presence of these macromolecules in the sample. LEVEL Biology I NATIONAL STANDARDS UCP.1, A.1, A.2, B.2, B.3, E.1, E.2, F.1, G.2 T E A C H E R P A G E S TEKS 9(A) CONNECTIONS TO AP AP Biology: I. Molecules and Cells A. Chemistry of Life 2. Organic molecules in organisms TIME FRAME 90 minutes MATERIALS (For a class of 28 working in pairs) McDonald s Happy Meal McMush slurry 64 test tubes (20mm x 150mm) 400 ml gelatin solution 14 50 ml graduated cylinders 400 ml glucose solution 28 test tube holders 400 ml starch solution blender 56 beakers or plastic cups hot water bath 14 dropper bottles of Benedict s solution 14 dropper bottles of Biuret Reagent 14 dropper bottles of Lugol s iodine 14 dropper bottles of Sudan III 400 ml vegetable oil TEACHER NOTES Preparation of solutions Gelatin solution Dissolve 4 g gelatin in 396 ml distilled water. Refrigerate until needed. Glucose solution Mix 20 g glucose (or dextrose) with 380 ml of distilled water. 302 Laying the Foundation in Biology

5 Starch solution Add 4 g of cornstarch to 396 ml of distilled water and heat until the starch dissolves. Alternatively, you can use aerosol fabric spray starch. Spray the starch directly into the water, holding for a count of five. McMush Slurry Unwrap and place the entire contents of a Happy Meal into the blender, including the drink. Ask for a regular drink rather than a diet drink when purchasing your Happy Meal. In fact, a clear drink like Sprite is recommended since it will not interfere with the color indicating tests. Blend thoroughly. Add 250 ml of distilled water to make the solution thin enough to be poured into the test tubes. Benedict s Solution, Biuret reagent and Lugol s solution can be purchased from science suppliers and should be placed into dropper bottles for each lab group. Students will need access to a hot water bath, either at their stations or in a central location. It is possible to divide this lab over several class periods. You could present prelab information about the structure and function of a particular group of macromolecules and then move to the laboratory to perform the test for that group. The following day you could address a second macromolecule group, and so on. If this lab is going to be done over a series of days, you will need to refrigerate the gelatin solution and the McMush slurry. POSSIBLE ANSWERS TO THE CONCLUSION QUESTION AND SAMPLE DATA Data Table 1: Positive Tests Performed on Knowns Test Performed Substance Tested Results Benedict s Test Glucose solution Orange to brick red color Lugol s Test Starch solution Blue-black color Biuret Test Gelatin solution Purplish color Sudan III Oil Diffused orange/pink Data Table 2: McMush Tests Test Performed Results Benedict s Test Positive if you used a regular (not diet) drink Lugol s Test Positive Biuret Test Positive Sudan III Positive T E A C H E R P A G E S 1. How are monomers and polymers different? Monomers are the smaller building blocks of the larger polymers. 2. What are the monomers for each of these macromolecules? a. Carbohydrates - monosaccharide b. Lipids - glycerol & fatty acids c. Proteins - amino acids Laying the Foundation in Biology 303

5 3. Circle any of the following compounds that would be classified as carbohydrates. a. amino acids e. fructose b. triglycerides f. hemoglobin c. glucose g. chitin d. enzymes h. starch 4. If you were given an unknown food sample and asked to identify its contents, which test would you use to determine the presence of a. Lipids - Sudan III b. Proteins - Biuret s reagent c. Glucose - Benedict s test d. Starch - Lugol s test 5. Which macromolecule groups were found in the McMush slurry? Carbohydrates, lipids, proteins T E A C H E R P A G E S 6. What portion of the Happy Meal may have provided each of these macromolecules? a. Lipids - oil from fries b. Protein - hamburger patty c. Glucose - drink, if not a diet drink d. Starch - hamburger bun 7. Jonathan and Molly performed a similar lab except they tested a slurry made from crackers. Their results show that the crackers contain both protein and fat. After checking the packaging for the crackers, the students were surprised to find that protein and fat are not listed on the nutritional label. No other groups in their class have results that show protein and fat present in the sample. Describe three factors that could contribute to their erroneous results: Inaccurate measurement Improper heating Contamination 8. Predict which macromolecules should be present in the following food substances and indicate which test you would apply in order to detect the presence of that macromolecule. You may need to consult additional resources. Food Substance Predicted Test to be used Macromolecule a. Potato juice Starch Lugol s b. Cracker Starch Lugol s c. Egg white Protein Biuret s d. Honey Glucose Benedict s 304 Laying the Foundation in Biology

5 9. Design and describe an experiment to test for the presence of carbohydrates, lipids, and proteins in a taco. Press for good experimental design in the answers to question 9. No control was included in the original protocol so you may need to discuss this point with your students as they write their experimental design. T E A C H E R P A G E S REFERENCES Bob Heun. Re: Lab Tips at Teacher s Corner AP Central 3/15/01http://apcentral.collegeboard.com/members/article/1,3046,151-165-0-3895,00.html Biology Laboratory Manual. Prentice Hall. Englewood Cliffs. 1991 Laying the Foundation in Biology 305

5 McMush Lab Testing for the Presence of Macromolecules Carbohydrates, lipids, proteins, and nucleic acids are organic molecules found in every living organism. These macromolecules are large carbon-based structures. Joining several smaller units, called monomers, together and then removing a molecule of water assemble the macromolecules. This reaction is called dehydration synthesis. Reversing the process and adding a molecule of water can disassemble the resulting polymer. The reversed process is called hydrolysis. Simple carbohydrates are made of carbon, hydrogen and oxygen atoms in a 1:2:1 ratio. This means that for every carbon atom present in the carbohydrate there are two hydrogen atoms and one oxygen atom present. The monomers for carbohydrates are referred to as monosaccharides. When many monosaccharides are chained together the resulting molecule is called a polysaccharide. Carbohydrates are used by living organisms as an important source of energy. Common examples of monosaccharides include glucose, fructose, galactose, ribose, and deoxyribose. Sucrose or table sugar, and lactose, the sugar found in milk are double sugars made from two monosaccharides. Important polysaccharides include cellulose, starch, and chitin. Lipids are also made of carbon, hydrogen and oxygen but the ratio of carbon, hydrogen, and oxygen is not 1:2:1. Instead, lipids have a much higher number of carbons and hydrogens with few oxygen atoms present. Lipids are biological-organic compounds that do not dissolve in water. The nonpolar bonds that form between the carbon and hydrogen atoms of a lipid cause them to be hydrophobic, or waterrepellent, molecules. This explains why water and oil do not mix. The large number of carbon to hydrogen bonds also serves to make lipids energy rich storage molecules. One gram of lipid stores twice as much energy as one gram of a carbohydrate. Lipids from animals are referred to as fats and are solids at room temperature, while those found in plants are referred to as oils, which are liquids at room temperature. Fats and oils are triglycerides, which are composed of a glycerol and three fatty acid molecules. One important relative of triglycerides are the phospholipids. Phospholipids differ in structure from regular triglycerides in that phospholipids are made of a glycerol and two fatty acids. A charged phosphate group replaces the third fatty acid. This arrangement makes phospholipid molecules have both hydrophilic and hydrophobic regions. This feature makes phospholipids an ideal structural component of the plasma membrane of cells. Steroids are another significant group of lipids. They differ in structure because the carbon atoms are arranged in four rings. Examples of steroids include cholesterol, estrogen, testosterone and morphine. Proteins are made of monomers called amino acids, which are composed of atoms of carbon, hydrogen, oxygen and nitrogen. Proteins serve as the major building blocks of organisms. Proteins are large complex molecules that combine to form various components of living organisms such as muscle fibers, enzymes, and hemoglobin. Proteins are made of specific sequence of amino acids. A string of amino acid monomers joined together by peptide bonds is called a polypeptide. PURPOSE This lab activity provides an opportunity for the development of skills involved in chemically testing for the presence of the carbohydrates, lipids and proteins found in food samples. You will learn how to test for the presence of proteins using the Biuret test, to test for the presence of monosaccharides using the 306 Laying the Foundation in Biology

5 Benedicts test, to test for the presence of starches using Lugol s solution and to detect the presence of lipids using Sudan III. Once familiar with the detection techniques, you will apply those techniques to a slurry that has been made by blending a complete Happy Meal. Using the skills that you have developed you should be able to determine which organic compounds are present in the slurry. MATERIALS McDonald s Happy Meal McMush slurry gelatin solution glucose solution starch solution vegetable oil 2 beakers or plastic cups Benedict s solution in dropper bottle 6-8 test tubes 50 ml graduated cylinder 2 test tube holders hot water bath Biuret Reagent in dropper bottle Sudan III in dropper bottle Safety Alert 1. Goggles and aprons should be worn at all times during this lab investigation. 2. Point test tubes away from all people when heating samples. 3. Handle hot test tubes with test tube clamps. PROCEDURE PART I: TESTING FOR MONOSACCHARIDES 1. Benedict s solution can be used to detect the presence of monosaccharides. In the presence of a monosaccharide like glucose, Benedict s solution will change color from blue to orange when heated. Place 5 ml of the glucose solution into your test tube. 2. Add 3 ml of Benedict's solution. 3. Using a test tube holder, place the tube in a beaker of boiling water and boil for five minutes or until a color change to orange occurs. 4. Record the color of the solution in Data Table 1. 5. Rinse out your test tube and record your results for the glucose test in Data Table 1. PART II: TESTING FOR STARCHES 1. Lugol s solution can be used to test for the presence of the polysaccharide or starch. In the presence of starch, the Lugol s solution will change color from amber to a dark blue. Place 5 ml of the starch solution into your test tube. 2. Add 5 drops of Lugol s iodine solution. Observe the change in color. Laying the Foundation in Biology 307

5 3. Rinse out your test tube and record your results for the starch test in Data Table 1. PART III: TESTING FOR PROTEINS 1. Biuret s reagent can be used to test for the presence of protein. Place 5 ml of the gelatin solution into your test tube. 2. Add 10 drops of Biuret s reagent. The gelatin is a protein-rich solution and will test positive for the presence of protein. Biuret s reagent will change color from blue to blue-violet in the presence of protein. 3. Rinse out your test tube and record your results for the protein test in Data Table 1. PART IV: TESTING FOR LIPIDS 1. Sudan III can be used to detect the presence of lipids. In the presence of a lipid-rich solution and water, Sudan III will diffuse through the solution producing an orange-pink color. Add 5 ml of water and 5 ml of oil to a clean test tube. 2. Add 5 drops of Sudan III to the test tube. Observe the results. 3. Rinse out your test tube and record your results for the lipid test in Data Table 1. PART V: TESTING THE M C MUSH SLURRY OF UNKNOWNS 1. Using the Benedict s solution test and the procedure described in Part I, determine whether or not the McMush slurry contains any monosaccharides and record your findings in Data Table 2. 2. Using the Lugol s solution and the procedure described in Part II, determine whether or not the McMush slurry contains starch. Record your findings in Data Table 2. 3. Using the Biuret s test for protein and the procedure described in Part III, test the McMush slurry to determine whether or not protein is present. Record your findings in Data Table 2. 4. Using the Sudan III test and the procedure described in Part IV, determine whether or not the McMush slurry contains lipids. Record your findings in Data Table 2. 308 Laying the Foundation in Biology

5 Name Period Testing for the Presence of Macromolecules DATA AND OBSERVATIONS Data Table 1: Positive Tests Performed on Knowns Test Performed Substance Tested Results Benedict s Test Lugol s Test Biuret Test Sudan III Data Table 2: McMush Tests Test Performed Benedict s Test Lugol s Test Biuret Test Sudan III Results CONCLUSION QUESTIONS 1. How are monomers and polymers different? 2. What are the monomers for each of these macromolecules? a. Carbohydratesb. Lipidsc. Proteins- 3. Circle any of the following compounds that would be classified as carbohydrates. a. amino acids e. fructose b. triglycerides f. hemoglobin c. glucose g. chitin d. enzymes h. starch Laying the Foundation in Biology 309

5 4. If you were given an unknown food sample and asked to identify its contents, which test would you use to determine the presence of a. Lipidsb. Proteinsc. Glucosed. Starch- 5. Which macromolecule groups were found in the McMush slurry? 6. What portion of the Happy Meal may have provided each of these macromolecules? a. Lipids- b. Proteins- c. Glucose- d. Starch- 7. Jonathan and Molly performed a similar lab except that in their lab they tested a slurry made from crackers. Their results show that crackers contain both protein and fat. After checking the cracker package, the students were surprised to find that protein and fat are not listed on the nutritional label. No other groups in their class have results that show protein and fat present in the sample. Describe three factors that could contribute to their erroneous results: 8. Predict which macromolecules should be present in the following food substances and indicate which test you would apply in order to detect the presence of that macromolecule. You may need to consult additional resources. Food Substance Predicted Test to be used Macromolecule a. Potato juice b. Cracker c. Egg white d. Honey 310 Laying the Foundation in Biology

5 9. Design and describe an experiment to test for the presence of carbohydrates, lipids, and proteins in a taco. Laying the Foundation in Biology 311