Experiment 10 Enzymes
|
|
|
- Osborn McKenzie
- 9 years ago
- Views:
Transcription
1 Experiment 10 Enzymes Enzymes are proteins that act as catalysts for biological reactions. Enzymes, like all catalysts, speed up reactions without being used up themselves. They do this by lowering the activation energy of a reaction. All biochemical reactions are catalyzed by enzymes. Since enzymes are proteins, they can be denatured in a variety of ways, so they are most active under mild conditions. Most enzymes have optimum activity at a neutral ph and at body temperature. Enzymes are also very specific they only act on one substrate or one class of related substrate molecules. The reason for this is that the active site of the enzyme is complementary to the shape and polarity of the substrate. Typically, only one kind of substrate will fit into the active site. In this experiment, we will work with the enzyme amylase. This enzyme is responsible for hydrolyzing starch. In the presence of amylase, a sample of starch will be hydrolyzed to shorter polysaccharides, dextrins, maltose, and glucose. The extent of the hydrolysis depends on how long it is allowed to react if the starch is hydrolyzed completely, the resulting product is glucose. You will test for the presence or absence of starch in the solutions using iodine (I 2 ). Iodine forms a blue to black complex with starch, but does not react with glucose. If iodine is added to a glucose solution, the only color seen is the red or yellow color of the iodine. Therefore, the faster the blue color of starch is lost, the faster the enzyme amylase is working. If the amylase is inactivated, it can no longer hydrolyze starch, so the blue color of the starch-iodine complex will persist. You will also test for the presence of glucose in the samples using Benedict s reagent. When a blue solution of Benedict s reagent is added to a glucose solution, the color will change to green (at low glucose concentrations) or reddish-orange (at higher glucose concentrations). Starch will not react with Benedict s reagent, so the solution will remain blue. Effect of Enzyme Concentration During catalysis, the first step is the substrate (S) binding to the enzyme (E), giving an enzyme-substrate complex (ES). This is an equilibrium reaction, and will be favored by a high concentration of enzyme and/or substrate. After the substrate is bound, the reaction takes place, and then the product is released. E + S ES E + P Effect of Temperature All reactions are faster at a higher temperature. However, enzyme-catalyzed reactions become slower or stop if the temperature becomes too high, because enzymes become denatured at high temperatures. Therefore, enzymes have an optimum temperature that corresponds to maximum activity. (At higher or lower temperatures, the activity of the enzyme is lower.) The optimum temperature is usually around body temperature (37 C). 59
2 Effect of ph Each enzyme has an optimum ph. Above or below an enzyme s optimum ph, its activity is lower. The optimum ph of a particular enzyme corresponds to the ph of its natural environment. For many enzymes, this corresponds to ph values of around 7. For pepsin, which is active in the stomach, the optimum ph is 2 (the ph of the stomach). Trypsin, which is active in the small intestine, has an optimum ph of 8 that matches the ph of the small intestine. Effect of Inhibitors Inhibitors are substances that slow down or stop enzymes. Competitive inhibitors are molecules that are very similar to the substrate, so they can bind to the enzyme but cannot react. They compete with the substrate for the active site of the enzyme. Noncompetitive inhibitors are molecules that are not similar to the substrate and therefore do not bind to the active site. They do, however, bind to a different location on the enzyme and change the shape of the active site so that the substrate can no longer bind. Irreversible inhibitors form covalent bonds to the enzyme and therefore cannot be removed. Safety Precautions: Wear your safety goggles. Waste Disposal: All waste must be placed in the inorganic waste containers (which have a blue label) in one of the fume hoods. Procedure Important: read the entire procedure and make sure you understand it before you start this experiment. Before you start each part of the experiment, make sure you will have enough time to complete it. Advance planning is very important for this experiment. Preparation: Constant temperature water baths will be needed for this experiment. The laboratory has a large water bath that can be set to 37 C, and everyone will use this water bath. You will also need a low temperature and a high temperature water bath, and you can make your own. For the low temperature bath, use a 250-mL or 400-mL beaker, fill it 60
3 about halfway with tap water, and add some ice to the water. The temperature of this bath when it comes to constant temperature should be between 0 and 5 C. To make the high temperature water bath, fill a 250-mL or 400-mL beaker about two-thirds full and heat it until it boils. (You can heat it on a hotplate or on a Bunsen burner.) When it boils, you can reduce the heat, but keep it boiling. The temperature of this bath should be close to 100 C. You will need some 1% starch solution for each part of the experiment. Shake up the bottle of starch, and collect about 50 ml of the solution in a small beaker. You will also need some of the iodine reagent for each part of the experiment. If dropper bottles of the iodine reagent are available, obtain one of them. If there are no dropper bottles, collect a small amount of this reagent (about 3-5 ml) in a small beaker, and get a clean dropper that you will only use for this iodine solution (to avoid contamination). You can prepare your own fresh amylase solution by collecting about 1-2 ml of your own saliva in a small beaker. (You will need to spit politely into the beaker.) After you have collected 1-2 ml of saliva, add about 50 ml of water to the saliva and mix well. For health reasons, you should work with your own saliva solution (not someone else s). If a commercial amylase solution is available, you may use it instead of saliva. Collect about 40 ml of the solution in a small beaker. You will also need a white spot plate and some clean droppers. It is important that you rinse a dropper well with deionized water before using it on a new solution to avoid contamination. If remnants of one solution on a dropper are accidentally transferred to a different solution, your tests will be inconclusive. Reference tests: Test for starch Transfer a few drops of starch to one of the wells in the spot plate. Add one drop of the iodine reagent. Starch and iodine should react to give a deep blue-black complex. Test for glucose Place 3 ml of 1% glucose solution in a test tube. Add 2 ml of Benedict s solution and heat for 3-4 minutes in a boiling water bath. The reaction should produce a red-orange solid. We will be using visual tests to evaluate the activity of the enzyme in each part of the experiment. You will collect samples of the enzyme-starch mixture at different times and add a drop of iodine reagent to each sample. The resulting color will tell you roughly how much starch has been hydrolyzed. When the enzyme activity is high, it won t take very much time to hydrolyze the starch. When the enzyme is slowed down or is inactive, the blue-black color will be seen for a longer time. You can assess the relative enzyme activity as follows: 61
4 Iodine test for starch Amount of starch Enzyme activity level remaining Dark blue-black All None (0) Blue Most Low (1) Light brown Some Moderate (2) Gold None High (3) Part 1: Effect of Enzyme Concentration 1. Label five test tubes 1-5. Place 4 ml of 1 % starch in each of the first four test tubes. Place 4 ml of amylase solution in the fifth tube. Place all of the tubes in the 37 C water bath for 5 minutes. Obtain 5 clean droppers and label them 1-5. (To avoid contamination of these solutions, you will use a separate dropper for each mixture.) 2. Tube 1 will be your control and it will not contain any enzyme. Remove the tubes from the water bath momentarily, and quickly add 3 drops of the warmed amylase solution to tube 2, add 6 drops amylase to tube 3, and add 10 drops amylase to tube 4. Mix the tubes quickly by shaking them gently, and immediately put them back in the 37 C water bath. Record the time at which you added enzyme. Go on immediately to the next step. 3. Transfer four drops of each reaction mixture (tubes 1-4) using a separate clean dropper for each to separate wells on a spot plate. (Keep the test tubes in the water bath.) Add one drop of the iodine reagent to each. Record your observations. Use the visual color reference table to assess the enzyme activity. After you have recorded your observations, rinse off the spot plate. 4. Repeat step 3 after the mixtures have had five minutes of reaction time. 5. Repeat step 3 after the mixtures have had ten minutes of reaction time. 6. In the test tubes where hydrolysis occurred, the presence of glucose can be confirmed with Benedict s reagent. Add 3 ml of Benedict s reagent to each test tube and put them in the boiling water bath for 3-4 minutes. The appearance of a green to orange or red precipitate indicates the presence of glucose. If the solution remains blue with no solid, then no glucose is present and no hydrolysis of the starch has taken place. 7. Make a graph of the enzyme activity vs. the amount of amylase solution using your results at 10 minutes. Part 2: Effect of Temperature 8. Place 4 ml of 1 % starch solution in each of three clean test tubes. Place 4 ml of amylase solution in 3 separate clean test tubes (so you will have a total of six test tubes: 3 containing starch and 3 containing enzyme). 9. Place a starch tube and an amylase tube in the 37 C water bath. Place one tube of each in an ice-water bath, and one of each tube in a boiling water bath. Keep the 62
5 tubes in their baths for 10 minutes to allow them to reach the temperature of their baths. 10. Read and record the temperature of the ice-water bath. Pour the amylase solution into the starch solution, mix, and put the tube back into the bath. Record the time. 11. Repeat step 10 for the 37 C bath. 12. Repeat step 10 for the boiling water bath. 13. For each mixture, after 10 minutes of reaction have elapsed, transfer 4 drops of the mixture to a spot plate. Add 1 drop of iodine reagent to each sample. Record the color and activity level of the enzyme in each case. 14. Graph the enzyme activity level vs. temperature. Part 3: Effect of ph 15. Label four test tubes ph 2, 4, 7, and 10. In each tube, place 4 ml of the appropriate buffer (with the corresponding ph). Add 4 ml of amylase solution to each of the tubes. Get 4 additional clean test tubes, and put 4 ml of 1% starch solution in each tube. Place all 8 of these tubes in the 37 C water bath for about 5 minutes to allow the temperature to equilibrate. Rinse out four separate droppers. 16. Pour the contents of each starch test tube into a different amylase-buffer test tube. Mix them and return the tubes to the 37 C water bath. 17. After 15 minutes have elapsed, transfer 4 drops of each reaction mixture (using clean droppers) to a spot plate. Add 1 drop of iodine reagent to each. Record your observations and determine the enzyme activity level for each mixture. Rinse off the spot plate with deionized water. 18. Make a graph of the enzyme activity level vs. ph. Part 4: Effect of Inhibitors 19. Place 4 ml of amylase solution in each of three test tubes. To the first tube, add 10 drops of 1 % NaCl solution. Add 10 drops of 95 % ethanol to the second test tube. Add 10 drops of either AgNO 3 or Pb(NO 3 ) 2 solution to the third test tube. 20. In each of three separate clean test tubes, place 4 ml of 1 % starch. 21. Place all six test tubes in the 37 C water bath for 5 minutes. When the 5 minutes is up, pour a tube of starch solution into each of the enzyme-inhibitor mixures. Mix each tube and return the tubes to the water bath for 15 minutes. Meanwhile, rinse out three droppers. 22. After 15 minutes, transfer 4 drops of each mixture (using a clean dropper each time) to a spot plate. Add 1 drop of iodine reagent to each sample. Record your observations and the enzyme activity level in each case. Questions 1. What is the substrate of the enzyme α amylase? 2. What are the products of the hydrolysis of the substrate? 63
6 3. In part 1, at which enzyme concentration was starch hydrolyzed the fastest? Slowest? 4. Describe the effect of enzyme concentration on enzyme activity. 5. In part 2, what was the optimum temperature for amylase? 6. Why did the enzyme activity differ at 0 C and at 100 C? 7. How is the activity of amylase affected by a low ph? By a high ph? Explain. 8. What was the optimum ph for amylase? 9. Pepsin hydrolyzes proteins in the stomach. The ph in the stomach is 2, and the optimum ph for pepsin is 2. What do you think would happen to the activity of pepsin when it reaches the small intestine, where the ph is 8? Explain why. 10. In part 4, in which reaction mixtures did hydrolysis of starch occur? 11. What substances added to the mixtures were inhibitors? 12. Explain how an organic solvent like hexane could inhibit enzyme action. 13. Explain how addition of base could inhibit enzyme action. 64
LAB 3: DIGESTION OF ORGANIC MACROMOLECULES
LAB 3: DIGESTION OF ORGANIC MACROMOLECULES INTRODUCTION Enzymes are a special class of proteins that lower the activation energy of biological reactions. These biological catalysts change the rate of chemical
The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination
The Huntington Library, Art Collections, and Botanical Gardens How Sweet It Is: Enzyme Action in Seed Germination Overview This experiment is intended to familiarize students with the macromolecule starch,
Human Physiology Lab (Biol 236L) Digestive Physiology: Amylase hydrolysis of starch
Human Physiology Lab (Biol 236L) Digestive Physiology: Amylase hydrolysis of starch Introduction Enzymes are proteins composed of amino acid building blocks. Enzymes catalyze or increase the rate of metabolic
Chemical Processes of Digestion
Chemical Processes of Digestion Objective: To explain in short essays or diagrams how carbohydrates, proteins, and fats are digested into end products that can be absorbed into the blood, at the level
Absorption and Transport of Nutrients
Page1 Digestion Food travels from mouth esophagus stomach small intestine colon rectum anus. Food mixes with digestive juices, moving it through the digestive tract Large molecules of food are broken into
Effect of temperature and ph on the enzymatic activity of salivary amylase
Effect of temperature and ph on the enzymatic activity of salivary amylase Gae Khalil Rodillas, Nonia Carla Ysabel Samson, Raphael Jaime Santos* and Brylle Tabora Department of Biological Sciences, College
The Chemistry of Carbohydrates
The Chemistry of Carbohydrates Experiment #5 Objective: To determine the carbohydrate class of an unknown by carrying out a series of chemical reactions with the unknown and known compounds in each class
Enzyme Action: Testing Catalase Activity 50 Points
Names: LabQuest Enzyme Action: Testing Catalase Activity 50 Points 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the
General Properties Protein Nature of Enzymes Folded Shape of Enzymes H-bonds complementary
Proteins that function as biological catalysts are called enzymes. Enzymes speed up specific metabolic reactions. Low contamination, low temperature and fast metabolism are only possible with enzymes.
Enzyme Action: Testing Catalase Activity
Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities
Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.
Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential
Enzyme Action: Testing Catalase Activity
Enzyme Action: Testing Catalase Activity Experiment 6A Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities
CHAPTER 4: Enzyme Structure ENZYMES
CHAPTER 4: ENZYMES Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor
Evaluation copy. Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2
Enzyme Action: Testing Catalase Activity (Method 1 O 2 Gas Sensor) Computer 2 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most
Enzymes: Amylase Activity in Starch-degrading Soil Isolates
Enzymes: Amylase Activity in Starch-degrading Soil Isolates Introduction This week you will continue our theme of industrial microbiologist by characterizing the enzyme activity we selected for (starch
Biology 3A Laboratory: Enzyme Function
Biology 3A Laboratory: Enzyme Function Objectives To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate the effect
Do not put any wastes down the sink! All materials will be collected as-is at the end of class.
Chemical and Physical Processes of Digestion Exercise 39A / 39 (begins page 597 in 9 th &10 th eds, page 595 in 11 th edition, page 599 in 12 th edition) Lab 7 Objectives Read lab Exercise 39A / 39 Do
Enzyme Action: Testing Catalase Activity
Enzyme Action: Testing Catalase Activity DataQuest 12 Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically. Enzymes are globular proteins, responsible for most of the chemical activities
CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes
CHAPTER 6 AN INTRODUCTION TO METABOLISM Section B: Enzymes 1. Enzymes speed up metabolic reactions by lowering energy barriers 2. Enzymes are substrate specific 3. The active site in an enzyme s catalytic
Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.
Enzyme Pre-Lab Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Background: In this investigation, you will study several
Factors Affecting Enzyme Activity
INTRODUCTION Factors Affecting Enzyme Activity The chemical reactions occurring in living things are controlled by enzymes. An enzyme is a protein in the cell which lowers the activation energy of a catalyzed
Experiment 8 Synthesis of Aspirin
Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The
Figure 5. Energy of activation with and without an enzyme.
Biology 20 Laboratory ENZYMES & CELLULAR RESPIRATION OBJECTIVE To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate
10-ml Graduated cylinder 40 ml 3% Hydrogen peroxide solution (found in stores) Straight-edged razor blade Scissors and Forceps (tweezers)
Name: Class: Date: Objectives * Measure the effects of changes in temperature, ph, and enzyme concentration on reaction rates of an enzyme catalyzed reaction in a controlled experiment. * Explain how environmental
ENZYME ACTION: TESTING CATALASE ACTIVITY
ENZYME ACTION: TESTING CATALASE ACTIVITY LAB ENZ 1.CALC From Biology with Calculators, Vernier Software & Technology, 2000 INTRODUCTION Many organisms can decompose hydrogen peroxide (H 2 O 2 ) enzymatically.
Activity Sheets Enzymes and Their Functions
Name: Date: Activity Sheets Enzymes and Their Functions amylase What are Enzymes? starch glucose Enzymes are compounds that assist chemical reactions by increasing the rate at which they occur. For example,
This laboratory explores the affects ph has on a reaction rate. The reaction
Joy Paul Enzyme Catalyst lab Abstract: This laboratory explores the affects ph has on a reaction rate. The reaction studied was the breakdown of hydrogen peroxide catalyzed by the enzyme peroxidase. Three
Conduct A Qualitative Test For Starch, Fat, A Reducing Sugar, A Protein
Conduct A Qualitative Test For Starch, Fat, A Reducing Sugar, A Protein Biology Leaving Cert Experiments Materials/Equipment Starch solution (1%) Iodine Solution Glucose Solution (1%) 100 C) Benedict s
Investigation 2- ENZYME ACTIVITY BACKGROUND catalase Learning Objectives
Investigation 2-13 ENZYME ACTIVITY How do abiotic or biotic factors influence the rates of enzymatic reactions? BACKGROUND Enzymes are the catalysts of biological systems. They speed up chemical reactions
Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy
Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within
Laboratory 5: Properties of Enzymes
Laboratory 5: Properties of Enzymes Technical Objectives 1. Accurately measure and transfer solutions with pipettes 2. Use a Spectrophotometer to study enzyme action. 3. Properly graph a set of data. Knowledge
Enzymes: Practice Questions #1
Enzymes: Practice Questions #1 1. Compound X increases the rate of the reaction below. Compound X is most likely A. an enzyme B. a lipid molecule C. an indicator D. an ADP molecule 2. The equation below
Name Date Period. Keystone Review Enzymes
Name Date Period Keystone Review Enzymes 1. In order for cells to function properly, the enzymes that they contain must also function properly. What can be inferred using the above information? A. Cells
Enzymes. A. a lipid B. a protein C. a carbohydrate D. a mineral
Enzymes 1. All cells in multicellular organisms contain thousands of different kinds of enzymes that are specialized to catalyze different chemical reactions. Given this information, which of the following
Enzyme Lab. DEFINITIONS: 1. Enzyme: 2. Catalase: 3. Catalyze: 4. Hydrolysis: 5. Monomer: 6. Digestion: BACKGROUND INFORMATION
Enzyme Lab DEFINITIONS: 1. Enzyme: 2. Catalase: 3. Catalyze: 4. Hydrolysis: 5. Monomer: 6. Digestion: BACKGROUND INFORMATION Many living tissues contain the enzyme catalase. This enzyme breaks down hydrogen
CHM 130LL: ph, Buffers, and Indicators
CHM 130LL: ph, Buffers, and Indicators Many substances can be classified as acidic or basic. Acidic substances contain hydrogen ions, H +, while basic substances contain hydroxide ions, OH. The relative
Table of Content. Enzymes and Their Functions Teacher Version 1
Enzymes and Their Functions Jeisa Pelet, Cornell University Carolyn Wilczynski, Binghamton High School Cornell Learning Initiative in Medicine and Bioengineering (CLIMB) Table of Content Title Page Abstract..
THE ACTIVITY OF LACTASE
THE ACTIVITY OF LACTASE Lab VIS-8 From Juniata College Science in Motion Enzymes are protein molecules which act to catalyze the chemical reactions in living things. These chemical reactions make up the
AP BIOLOGY 2010 SCORING GUIDELINES
AP BIOLOGY 2010 SCORING GUIDELINES Question 2 An experiment was conducted to measure the reaction rate of the human salivary enzyme α- amylase. Ten ml of a concentrated starch solution and 1.0 ml of α-amylase
OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz
OSMOSIS AND DIALYSIS 2003 BY Wendy Weeks-Galindo with modifications by David A. Katz OSMOSIS Osmosis is the reason that a fresh water fish placed in the ocean desiccates and dies. Osmosis is the reason
Sample Liver Enzyme Lab
Sample Liver Enzyme Lab Design Aspect 1: Research Question This lab will be driven by the research question, Do changes in temperature have an effect on the activity of the enzyme catalase? Pearson Baccalaureate:
LAB TOPIC 4: ENZYMES. Enzyme catalyzed reactions can be expressed in the following way:
LAB TOPIC 4: ENZYMES Objectives Define enzyme and describe the activity of enzymes in cells. Discuss the effects of varying enzyme concentrations on the rate of enzyme activity. Discuss the effects of
Chemistry 20 Chapters 15 Enzymes
Chemistry 20 Chapters 15 Enzymes Enzymes: as a catalyst, an enzyme increases the rate of a reaction by changing the way a reaction takes place, but is itself not changed at the end of the reaction. An
1. 4. 1: Biochemistry of macromolecules and metabolic pathways
1. 4 Investigating enzymes Many factors affect the activity of enzymes and it is very easy to investigate these factors using common enzymes. Enzymes work at their optimum temperature and ph. Any changes
Enzyme Activity Measuring the Effect of Enzyme Concentration
6 Measuring the Effect of Enzyme Concentration Enzymes are proteins that serve as biological catalysts in a wide variety of life sustaining chemical reactions that take place in cells. As catalysts, enzymes
experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.
81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum
Name. Lab 3: ENZYMES. In this lab, you ll investigate some of the properties of enzymes.
Name Lab 3: ENZYMES In this lab, you ll investigate some of the properties of enzymes. So what are enzymes? Enzymes are large protein molecules (macromolecules) They catalyze or speed up chemical reactions
Catalytic Activity of Enzymes
Catalytic Activity of Enzymes Introduction Enzymes are biological molecules that catalyze (speed up) chemical reactions. You could call enzymes the Builders and Do-ers in the cell; without them, life could
Physical and Chemical Changes
Physical and Chemical Changes Jana Barrow West Point Jr. High 2775 W 550 N 801-402-8100 West Point, UT 84015 [email protected] Eighth Grade Integrated Science Standard I: Students will understand the
Amino Acids, Peptides, and Proteins
1 Amino Acids, Peptides, and Proteins Introduction Amino Acids Amino acids are the building blocks of proteins. In class you learned the structures of the 20 common amino acids that make up proteins. All
In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..
Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set
Testing for Sugars and Starch
The Science of Nutrition Laboratory Science 70 Testing for Sugars and Starch Carbohydrates are the body's most important and readily available source of energy. Even though they've gotten a bad reputation
Experiment 1: Colligative Properties
Experiment 1: Colligative Properties Determination of the Molar Mass of a Compound by Freezing Point Depression. Objective: The objective of this experiment is to determine the molar mass of an unknown
1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.
1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of
DNA SPOOLING 1 ISOLATION OF DNA FROM ONION
DNA SPOOLING 1 ISOLATION OF DNA FROM ONION INTRODUCTION This laboratory protocol will demonstrate several basic steps required for isolation of chromosomal DNA from cells. To extract the chromosomal DNA,
Enzymes and Metabolism
Enzymes and Metabolism Enzymes and Metabolism Metabolism: Exergonic and Endergonic Reactions Chemical Reactions: Activation Every chemical reaction involves bond breaking and bond forming A chemical reaction
McMush. Testing for the Presence of Biomolecules
Biology McMush Testing for the Presence of Biomolecules MATERIALS AND RESOURCES EACH GROUP aprons beaker, 250 ml 2 clamps, test tube goggles graduated cylinder, 50 ml paper towels test tube brush test
The digestive system, also called the gastrointestinal
exercise 8 Chemical and Physical Processes of Digestion Objectives 1. To define digestive tract, accessory glands, digestion, hydrolases, salivary amylase, carbohydrates, proteins, lipids, bile salts,
Recovery of Elemental Copper from Copper (II) Nitrate
Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform
Macromolecules in my food!!
Macromolecules in my food!! Name Notes/Background Information Food is fuel: All living things need to obtain fuel from something. Whether it is self- made through the process of photosynthesis, or by ingesting
OBJECTIVES: Visitors learn what an antioxidant is and how it behaves. They also learn how to test for the presence of vitamin C..
Vitamin C Visitors use iodine to compare the reactivity of two starch solutions one with vitamin C added, one without vitamin C. OBJECTIVES: Visitors learn what an antioxidant is and how it behaves. They
Working With Enzymes. a world of learning. Introduction. How Enzymes Work. Types and Sources of Enzymes
Working With Enzymes a world of learning Presented by Peter J Ball, Southern Biological. For further information, please contact the author by phone (03) 9877-4597 or by email [email protected].
ENZYME KINETICS ENZYME-SUBSTRATE PRODUCTS
ENZYME KINETICS INTRODUCTION The study of reaction rates catalyzed by enzymes and the factors affecting them is generally referred to as enzyme kinetics. The basic components of an enzyme catalyzed reaction
Chapter 8: Energy and Metabolism
Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules
Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****
AP BIOLOGY BIOCHEMISTRY ACTIVITY #9 NAME DATE HOUR CATALASE LAB INTRODUCTION Hydrogen peroxide (H 2 O 2 ) is a poisonous byproduct of metabolism that can damage cells if it is not removed. Catalase is
2(H 2 O 2 ) catalase 2H 2 O + O 2
Enzyme Model Catalase Student Guide Catalysts accelerate chemical reactions that otherwise proceed slowly. The enzyme called catalase is a catalyst. It exists in plant and animal cells and breaks down
How to write a formal lab report correctly. This is based off a lab done in AP biology and all examples are taken from student lab write-ups.
How to write a formal lab report correctly. This is based off a lab done in AP biology and all examples are taken from student lab write-ups. Title: Potato Catalase Enzyme Lab (1 point). * Objective, variables,
Organic Molecules of Life - Exercise 2
Organic Molecules of Life - Exercise 2 Objectives -Know the difference between a reducing sugar and a non-reducing sugar. -Distinguish Monosaccharides from Disaccharides and Polysaccharides -Understand
Biopharmaceuticals and Biotechnology Unit 2 Student Handout. DNA Biotechnology and Enzymes
DNA Biotechnology and Enzymes 35 Background Unit 2~ Lesson 1 The Biotechnology Industry Biotechnology is a process (or a technology) that is used to create products like medicines by using micro-organisms,
Properties of Acids and Bases
Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? What
EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification
EXPERIMENT 9 (rganic hemistry II) Pahlavan - herif Materials Hot plate 125-mL Erlenmeyer flask Melting point capillaries Melting point apparatus Büchner funnel 400-mL beaker Stirring rod hemicals Salicylic
1. The diagram below represents a biological process
1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set
Making Biodiesel from Virgin Vegetable Oil: Teacher Manual
Making Biodiesel from Virgin Vegetable Oil: Teacher Manual Learning Goals: Students will understand how to produce biodiesel from virgin vegetable oil. Students will understand the effect of an exothermic
Experiment #10: Liquids, Liquid Mixtures and Solutions
Experiment #10: Liquids, Liquid Mixtures and Solutions Objectives: This experiment is a broad survey of the physical properties of liquids. We will investigate solvent/solute mixtures. We will study and
The purpose of this lab is to investigate the impact of temperature, substrate concentration,
Lee 1 Jessica Lee AP Biology Mrs. Kingston 23 October 2013 Abstract: The purpose of this lab is to investigate the impact of temperature, substrate concentration, enzyme concentration, and the presence
Running Head: ACTION OF CATALASE IN DIFFERENT TISSUES 1. Action of Catalase in Different Tissues. San Nguyen. [email protected]. Biol 1730.
Running Head: ACTION OF CATALASE IN DIFFERENT TISSUES 1 Action of Catalase in Different Tissues San Nguyen [email protected] Biol 1730.537 October 12, 2012 Aswad Khadilka October 12, 2012; 8:00 am
CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes*
CM220 Addition lab Experiment: Reactions of alkanes, alkenes, and cycloalkenes* Purpose: To investigate the physical properties, solubility, and density of some hydrocarbon. To compare the chemical reactivity
green B 1 ) into a single unit to model the substrate in this reaction. enzyme
Teacher Key Objectives You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.
Chemical reaction (slow): Enzyme-catalyzed reaction (much faster):
1 Enzymes Introduction Enzymes are Biological Catalysts Recall that a catalyst is an agent which speeds up a chemical reaction without actually being consumed or changed by the reaction. Enzymes are proteins
Experiment 7 (Lab Period 8) Quantitative Determination of Phosphatase Activity
Experiment 7 (Lab Period 8) Quantitative Determination of Phosphatase Activity Phosphatases are enzymes that catalyze the hydrolysis of organic-phosphate compounds, releasing inorganic phosphate from the
PRACTICAL 3: DIGESTIVE ENZYMES, SPECIFICITY AND ph
PRACTICAL 3: DIGESTIVE ENZYMES, SPECIFICITY AND ph 3.1 Introduction The aims of this practical are: to illustrate the different ph dependence of gastric and pancreatic digestive proteases to illustrate
COMMON LABORATORY APPARATUS
COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen
Enzymes Lab Pre-Lab Exercise
Pre-Lab Exercise Name 1. For the reaction we are studying in this week s lab: a. What is the name of the enzyme? b. What is the substrate? c. What are the products of the reaction? 2. What is the purpose
Chapter 8: An Introduction to Metabolism
Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism
What happens to the food we eat? It gets broken down!
Enzymes Essential Questions: What is an enzyme? How do enzymes work? What are the properties of enzymes? How do they maintain homeostasis for the body? What happens to the food we eat? It gets broken down!
Recognizing Organic Molecules: Carbohydrates, Lipids and Proteins
Recognizing Organic Molecules: Carbohydrates, Lipids and Proteins Oct 15 8:05 PM What is an Organic Molecule? An Organic Molecule is a molecule that contains carbon and hydrogen and oxygen Carbon is found
Determination of Specific Nutrients in Various Foods. Abstract. Humans need to consume food compounds such as carbohydrates, proteins, fats,
Determination of Specific Nutrients in Various Foods Abstract Humans need to consume food compounds such as carbohydrates, proteins, fats, and vitamins to meet their energy requirements. In this lab, reagents
Lab 4: Osmosis and Diffusion
Lab 4: Osmosis and Diffusion The plasma membrane enclosing every cell is the boundary that separates the cell from its external environment. It is not an impermeable barrier, but like all biological membranes,
What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.
CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by
Lab 2 Biochemistry. Learning Objectives. Introduction. Lipid Structure and Role in Food. The lab has the following learning objectives.
1 Lab 2 Biochemistry Learning Objectives The lab has the following learning objectives. Investigate the role of double bonding in fatty acids, through models. Developing a calibration curve for a Benedict
The Digestive System Grade 5
TEACHING LEARNING COLLABORATIVE (TLC) LIFE SCIENCE The Digestive System Grade 5 Created by: Shelly Bell (Kelseyville Elementary School), Bart Pontoni (Riviera Elementary School), Shane Lee (Pomo Elementary
Digestive System Lecture 5 Winter 2014
Digestive System Lecture 5 Winter 2014 This lecture tells the story of the Flow of Matter from Food to Cells. The pictures are only there to help you visualize structures don t worry about names of structures
Investigating cells. Cells are the basic units of living things (this means that all living things are made up of one or more cells).
SG Biology Summary notes Investigating cells Sub-topic a: Investigating living cells Cells are the basic units of living things (this means that all living things are made up of one or more cells). Cells
MULTIPLE CHOICE QUESTIONS
MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group
Sugar or Salt? Ionic and Covalent Bonds
Lab 11 Sugar or Salt? Ionic and Covalent Bonds TN Standard 2.1: The student will investigate chemical bonding. Have you ever accidentally used salt instead of sugar? D rinking tea that has been sweetened
Chemical reactions allow living things to grow, develop, reproduce, and adapt.
Section 2: Chemical reactions allow living things to grow, develop, reproduce, and adapt. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the parts of a chemical reaction?
Non-polar hydrocarbon chain
THE SCIENCE OF SOAPS AND DETERGENTS 2000 by David A. Katz. All rights reserved Reproduction permitted for educational purposes as long as the original copyright is included. INTRODUCTION A soap is a salt
Experiment 8 - Double Displacement Reactions
Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are
The Properties of Water (Instruction Sheet)
The Properties of Water (Instruction Sheet) Property : High Polarity Activity #1 Surface Tension: PILE IT ON. Materials: 1 DRY penny, 1 eye dropper, water. 1. Make sure the penny is dry. 2. Begin by estimating
