A note on the boundary behavior for a modified Green function in the upper-half space



Similar documents
Asymptotic Growth of Functions

A Note on Sums of Greatest (Least) Prime Factors

A probabilistic proof of a binomial identity

On the L p -conjecture for locally compact groups

Class Meeting # 16: The Fourier Transform on R n

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK

Irreducible polynomials with consecutive zero coefficients

Degree of Approximation of Continuous Functions by (E, q) (C, δ) Means

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Sequences and Series

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

THE HEIGHT OF q-binary SEARCH TREES

Research Article Sign Data Derivative Recovery

Factors of sums of powers of binomial coefficients

ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE

Theorems About Power Series

Chapter 7 Methods of Finding Estimators

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

A sharp Trudinger-Moser type inequality for unbounded domains in R n

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

Department of Computer Science, University of Otago

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Convexity, Inequalities, and Norms

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Properties of MLE: consistency, asymptotic normality. Fisher information.

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) ALMOST SURE FUNCTIONAL LIMIT THEOREMS IN L p( ]0, 1[ ), WHERE 1 p <

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE The absolute value of the complex number z a bi is

1. MATHEMATICAL INDUCTION

ON THE DENSE TRAJECTORY OF LASOTA EQUATION

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

2-3 The Remainder and Factor Theorems

Entropy of bi-capacities

A Recursive Formula for Moments of a Binomial Distribution

The Gompertz Makeham coupling as a Dynamic Life Table. Abraham Zaks. Technion I.I.T. Haifa ISRAEL. Abstract

INFINITE SERIES KEITH CONRAD

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

How To Solve The Homewor Problem Beautifully

THE ABRACADABRA PROBLEM

MARTINGALES AND A BASIC APPLICATION

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

An Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function

Application and research of fuzzy clustering analysis algorithm under micro-lecture English teaching mode

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

Overview on S-Box Design Principles

Building Blocks Problem Related to Harmonic Series

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

TIGHT BOUNDS ON EXPECTED ORDER STATISTICS

Modified Line Search Method for Global Optimization

Infinite Sequences and Series

Some comments on rigorous quantum field path integrals in the analytical regularization scheme

Lecture 5: Span, linear independence, bases, and dimension

Soving Recurrence Relations

Plug-in martingales for testing exchangeability on-line

NATIONAL SENIOR CERTIFICATE GRADE 12

SEQUENCES AND SERIES

Section 11.3: The Integral Test

Perfect Packing Theorems and the Average-Case Behavior of Optimal and Online Bin Packing

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Inequalities for the surface area of projections of convex bodies

ABOUT A DEFICIT IN LOW ORDER CONVERGENCE RATES ON THE EXAMPLE OF AUTOCONVOLUTION

3 Energy Non-Flow Energy Equation (NFEE) Internal Energy. MECH 225 Engineering Science 2

I. Chi-squared Distributions

19 Another Look at Differentiability in Quadratic Mean


Integer Factorization Algorithms

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

3. Greatest Common Divisor - Least Common Multiple

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

CS103X: Discrete Structures Homework 4 Solutions

Eigenvalues of graphs are useful for controlling many graph

SUPPLEMENTARY MATERIAL TO GENERAL NON-EXACT ORACLE INEQUALITIES FOR CLASSES WITH A SUBEXPONENTIAL ENVELOPE

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.

Chapter 5: Inner Product Spaces

S. Tanny MAT 344 Spring be the minimum number of moves required.

Analysis Notes (only a draft, and the first one!)

5.3. Generalized Permutations and Combinations

Some Inequalities for p-geominimal Surface Area and Related Results

Inverse Gaussian Distribution

AP Calculus BC 2003 Scoring Guidelines Form B

Incremental calculation of weighted mean and variance

How To Solve An Old Japanese Geometry Problem

THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE

BASIC STATISTICS. f(x 1,x 2,..., x n )=f(x 1 )f(x 2 ) f(x n )= f(x i ) (1)

NATIONAL SENIOR CERTIFICATE GRADE 11

Automatic Tuning for FOREX Trading System Using Fuzzy Time Series

Partial Di erential Equations

Stock Market Trading via Stochastic Network Optimization

A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length

Ekkehart Schlicht: Economic Surplus and Derived Demand

Capacity Management for Contract Manufacturing

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

Rényi Divergence and L p -affine surface area for convex bodies

2. Degree Sequences. 2.1 Degree Sequences

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Review: Classification Outline

NATIONAL SENIOR CERTIFICATE GRADE 11

Transcription:

Zhag ad Pisarev Boudary Value Problems (015) 015:114 DOI 10.1186/s13661-015-0363-z RESEARCH Ope Access A ote o the boudary behavior for a modified Gree fuctio i the upper-half space Yulia Zhag1 ad Valery Pisarev* * Correspodece: v.pisarev@outloo.com Faculty of Sciece ad Techology, Uiversity of Wollogog, Wollogog, NSW 5, Australia Full list of author iformatio is available at the ed of the article Abstract Motivated by (Xu et al. i Boud. Value Probl. 013:6, 013) ad (Yag ad Re i Proc. Idia Acad. Sci. Math. Sci. 14():175-178, 014), i this paper we aim to costruct a modified Gree fuctio i the upper-half space of the -dimesioal Euclidea space, which geeralizes the boudary property of geeral Gree potetial. Keywords: modified Gree fuctio; capacity; upper-half space 1 Itroductio ad mai results Let R ( ) deote the -dimesioal Euclidea space. The upper half-space H is the set H = x = (x, x,..., x ) R : x > }, whose boudary ad closure are H ad H respectively. For x R ad r >, let B(x, r) deote the ope ball with ceter at x ad radius r. Set Eα (x) = log x if α = =, if < α <. x α Let Gα be the Gree fuctio of order α for H, that is, Gα (x, y) = Eα (x y) Eα x y, x, y H, x = y, < α, where deotes reflectio i the boudary plae H just as y = (y, y,..., y ). I case α = =, we cosider the modified erel fuctio, which is defied by E,m (x y) = E (x y) E (x y) + (log y m if y <, x = ( y )) if y. I case < α <, we defie Eα,m (x y) = Eα (x y) Eα (x y) m α x = y α+ C if y <, x y ( x y ) if y, 015 Zhag ad Pisarev. This article is distributed uder the terms of the Creative Commos Attributio 4.0 Iteratioal Licese (http://creativecommos.org/liceses/by/4.0/), which permits urestricted use, distributio, ad reproductio i ay medium, provided you give appropriate credit to the origial author(s) ad the source, provide a li to the Creative Commos licese, ad idicate if chages were made.

Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page of 7 where m is a o-egative iteger, C ω α (t) (ω = ) is the ultraspherical (or Gegebauer) polyomial (see [1]). The expressio arises from the geeratig fuctio for Gegebauer polyomials ( 1 tr + r ) ω = C ω (t)r, (1.1) =0 where r <1, t 1adω > 0. The coefficiet C ω (t) is called the ultraspherical (or Gegebauer) polyomial of degree associated with ω, the fuctio C ω (t) isapolyomial of degree i t. The we defie the modified Gree fuctio G α,m (x, y)by G α,m (x, y)= E,m+1 (x y) E,m+1 (x y ) ifα = =, E α,m+1 (x y) E α,m+1 (x y ) if0<α <, where x, y H ad x y. We remar that this modified Gree fuctio is also used to give uique solutios of the Neuma ad Dirichlet problem i the upper-half space [ 4]. Write G α,m (x, μ)= G α,m (x, y), H where μ is a o-egative measure o H. HereotethatG,0 (x, μ) is othig but the geeral Gree potetial. Let be a o-egative Borel measurable fuctio o R R,adset (y, μ)= (y, x) dμ(x) ad (μ, x)= (y, x) E E for a o-egative measure μ o a Borel set E R.WedefieacapacityC by C (E)=sup μ ( R ), E H, where the supremum is tae over all o-egative measures μ such that S μ (the support of μ) is cotaied i E ad (y, μ) 1foreveryy H. For β 0, δ 0adβ δ, we cosider the erel fuctio α,β,δ (y, x)=x β y δ G α(x, y). Now we prove the followig result. For related results i a smooth coe ad tube, we refer the reader to the papers by Qiao (see [5, 6]) ad Liao-Su (see [7]), respectively. The readers may also fid some related iterestig results with respect to the Schrödiger operator i the papers by Su (see [8]), by Polidoro ad Ragusa (see [9]) ad the refereces therei. Theorem Let + m α + δ + 0. If μ is a o-egative measure o H satisfyig H <, (1.) +m α+δ+

Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page 3 of 7 the there exists a Borel set E H with properties: x α β+δ+1 (1) lim x 0,x H E (1 + x ) G α,m(x, μ)=0; +m α+δ+ () i( α+β+δ) C α,β,δ (E i )<, i=1 where E i = x E : i x < i+1 }. Remar By usig Lemma 4 below, coditio () i Theorem with α =,β =0,δ =0 meas that E is -thi at H i the sese of [10]. Some lemmas Throughout this paper, let M deote various costats idepedet of the variables i questios, which may be differet from lie to lie. Lemma 1 There exists a positive costat M such that G α (x, y) M, where 0< x y α+ α, x =(x 1, x,...,x ) ad y =(y 1, y,...,y ) i H. This ca be proved by a simple calculatio. Lemma Gegebauer polyomials have the followig properties: (1) C ω(t) Cω Ɣ(ω+) (1) = Ɣ(ω)Ɣ(+1), t 1; d () dt Cω (t)=ωcω+1 1 (t), 1; (3) =0 Cω (1)r =(1 r) ω ; (4) C α (t) C α (t ) ( α)c α+ 1 (1) t t, t 1, t 1. Proof (1) ad () ca be derived from [1], p.3. Equality (3) follows from expressio (1.1) by taig t = 1; property (4) is a easy cosequece of the mea value theorem, (1) ad also (). Lemma 3 For x, y R (α = =),we have the followig properties: (1) I m =0 x m 1 x x y +1 =0 ; y + () I =0 x+m+1 m+1 x y x m ; (3) G,m (x, y) G (x, y) M m x y x 1 =1 ; y +1 (4) G,m (x, y) M x y x 1 =m+1. y +1 The followig lemma ca be proved by usig Fuglede (see [11], Théorèm 7.8). Lemma 4 For ay Borel set E i H, we have C α (E)=Ĉ α (E), where Ĉ α (E)=if λ(h), α = α,0,0, the ifimum beig tae over all o-egative measures λ o H such that α (λ, x) 1 for every x E. Followig [10], we say that a set E H is α-thi at the boudary H if i( α) C α (E i )<, i=1 where E i = x E : i x < i+1 }. x y

Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page 4 of 7 3 Proof of Theorem We write [ G α,m (x, μ)= G α (x, y) + G α (x, y) + Gα,m (x, y) G α (x, y) ] G 1 G G 3 + G α,m (x, y) + G α,m (x, y) G 4 G 5 = U 1 (x)+u (x)+u 3 (x)+u 4 (x)+u 5 (x), where G 1 = y H : x y x }, G = y H : y 1, x } < x y 3 x, G 3 = y H : y 1, x y 3 x }, G 4 = y H : y 1, x y >3 x }, G 5 = y H : y <1, x y > x }. We distiguish the followig two cases. Case 1. 0 < α <. By assumptio (1.)wecafidasequecea i } of positive umbers such that lim i a i = ad i=1 a ib i <,where b i = y H: i 1 <y < i+ } Cosider the sets +m α+δ+. E i = x H : i x < i+1 x α β+δ+1 }, (1 + x ) U 1(x) a 1 +m α+δ+ i (i 1)β for i =1,,...Set G = ( B x, x ). x E i The G y H : i 1 < y < i+ }.Letν be a o-egative measure o H such that S ν E i,wheres ν is the support of ν.thewehave α,β,δ (y, ν) 1fory H ad H dν a i ( i+1)β x α β+δ+1 H (1 + x ) U 1(x) dν(x) +m α+δ+ Ma i ( i+1)β ( i+1)( α+δ+1) α,β,δ (y, ν) G Ma i ( i+1)β ( i+1)( α+δ+1) i+1 M α+β+δ+ i( α+β+δ) a i b i. y H: i 1 <y < i+ } y δ +m α+δ+ +m α+δ+

Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page 5 of 7 So that C α,β,δ (E i ) M i( α+β+δ) a i b i, which yields i( α+β+δ) C α,β,δ (E i )<. i=1 Settig E = i=1 E i, we see that () i Theorem is satisfied ad lim x 0,x H E x α β+δ+1 (1 + x ) +m α+δ+ U 1(x)=0. (3.1) For U (x), by Lemma 1 we have U (x) y Mx G x y α+ Mx α 1 x +m α+δ+ 1 G y δ Mx α 1 x +m α+ G +m α+δ+ +m α+δ+. (3.) Note that C0 ω x y (t) 1. By (3) ad (4) i Lemma,wetaet = x y, t = x y x y i Lemma (4) ad obtai U 3 (x) G 3 m =1 Mx x m x α+ ( α)c y α+ 1 (1) x y x y m =1 α+ y C 1 1 (1) G3 δ+1 1 4 y +m α+δ+ +m α+δ+ +m α+δ+ Mx x m. (3.3) Similarly, we have by (3) ad (4) i Lemma U4 (x) G 4 =m+1 Mx x m x y α+ ( α)c α+ 1 (1) x y x y =m+1 α+ y C 1 1 (1) G4 δ+1 1 y +m α+δ+ +m α+δ+ +m α+δ+ Mx x m. (3.4) Fially, by Lemma 1,wehave U 5 (x) Mx α 1 G5. (3.5) +m α+δ+

Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page 6 of 7 Combiig (3.1), (3.), (3.3), (3.4) ad(3.5), by Lebesgue s domiated covergece theorem, we prove Case 1. Case. α = =. I this case, U 1 (x), U (x) adu 5 (x) cabeprovedsimilarlyasicase1.hereweomit the details ad state the followig facts: lim x 0,x H E x δ β+1 (1 + x ) m+δ+ U 1(x)=0, (3.6) where E = i=1 E i ad i=1 i(β+δ) C α,β,δ (E i )<, lim x 0,x H x δ β+1 (1 + x ) m+δ+ [ U (x)+u 5 (x) ] =0. (3.7) ByLemma 3(3), we obtai U 3 (x) G 3 m x y x 1 =1 Mx x m y +1 m =1 4 1 y m+δ+ G3 m+δ+ m+δ+ Mx x m. (3.8) ByLemma 3(4), we have U4 (x) G 4 =m+1 Mx x m x y x 1 =m+1 y +1 1 y m+δ+ G4 m+δ+ m+δ+ Mx x m. (3.9) Combiig (3.6), (3.7), (3.8)ad(3.9), we provecase. Hece the proof of the theorem is completed. Competig iterests The authors declare that they have o competig iterests. Authors cotributios All authors cotributed equally to the writig of this paper. All authors read ad approved the fial mauscript. Author details 1 College of Mathematics ad Statistics, Hea Istitute of Educatio, Zhegzhou, 450046, Chia. Faculty of Sciece ad Techology, Uiversity of Wollogog, Wollogog, NSW 5, Australia. Acowledgemets The authors are highly grateful for the referees careful readig ad commets o this paper. This wor was completed while the authors were visitig the Departmet of Mathematical Scieces at the Uiversity of Wollogog, ad they are grateful for the id hospitality of the Departmet. Received: 13 April 015 Accepted: 8 May 015

Zhag ad Pisarev Boudary Value Problems (015) 015:114 Page 7 of 7 Refereces 1. Szegö, G: Orthogoal Polyomials. America Mathematical Society Colloquium Publicatios, vol. 3. Am. Math. Soc., Providece (1975). Re, YD, Yag, P: Growth estimates for modified Neuma itegrals i a half space. J. Iequal. Appl. 013, 57 (013) 3. Xu, G, Yag, P, Zhao, T: Dirichlet problems of harmoic fuctios. Boud. Value Probl. 013, 6 (013) 4. Yag, DW, Re, YD: Dirichlet problem o the upper half space. Proc. Idia Acad. Sci. Math. Sci. 14(), 175-178 (014) 5. Qiao, L: Itegral represetatios for harmoic fuctios of ifiite order i a coe. Results Math. 61, 6-74 (01) 6. Qiao, L, Pa, GS: Geeralizatio of the Phragmé-Lidelöf theorems for subfuctios. It. J. Math. 4(8), 135006 (013) 7. Liao, Y, Su, BY: Solutios of the Dirichlet problem i a tube domai. Acta Math. Si. 57(6), 109-10 (014) 8. Su, BY: Dirichlet problem for the Schrödiger operator i a half space. Abstr. Appl. Aal. 01, Article ID 578197 (01) 9. Polidoro, S, Ragusa, MA: Harac iequality for hypoelliptic ultraparabolic equatios with a sigular lower order term. Rev. Mat. Iberoam. 4(3), 1011-1046 (008) 10. Armitage, H: Tagetial behavior of Gree potetials ad cotractive properties of L p -potetials. Toyo J. Math. 9, 3-45 (1986) 11. Fuglede, B: Le théorèm du miimax et la théorie fie du potetiel. A. Ist. Fourier 15, 65-88 (1965)