THE ABRACADABRA PROBLEM

Save this PDF as:
Size: px
Start display at page:

Download "THE ABRACADABRA PROBLEM"

Transcription

1 THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected time for the first appearace of the word ABRACADABRA is We adopt the covetios N := {, 2, 3,...} ad N 0 := N {0}.. Formulatio of the problem Let U i ) i N deote radom letters draw idepedetly ad uiformly from the Eglish alphabet. More precisely, we assume that U i ) i N are idepedet ad idetically distributed radom variables, uiformly distributed i the set E := {A, B, C, D,..., X, Y, Z}, defied o some probability space Ω, A, P). For m, N with m, we use U [m,] as a shortcut for the vector U m, U m+,..., U ). Defie τ as the radom time i which the word ABRACADABRA first appears: τ := mi{ N, : U [ 0,] = ABRACADABRA},.) with the covetio mi := +. Our goal is to prove the followig result. Theorem. E[τ] = Strategy The proof is based o martigales. Let F ) N0 be the atural filtratio of U i ) i N, i.e., F 0 := {, Ω} ad F := σu,..., U ). We are goig to prove the followig results. Propositio 2. τ is a stoppig time with E[τ] <. Propositio 3. There exists a martigale M = M ) N0 ) M 0 = 0 ad M τ = τ; such that: 2) M has bouded icremets: C 0, ) such that M + M C, for all N 0. Let us recall a special case of) Doob s optioal samplig theorem, cf. [Wil9, 0.0]. Theorem 4. If M = M ) N0 is a martigale with bouded icremets ad τ is a stoppig time with fiite mea, the E[M τ ] = E[M 0 ]. Combiig this with Propositios 2 ad 3, oe obtais immediately the proof of Theorem. Date: April 0, 205.

2 2 FRANCESCO CARAVENNA 3. Proof of Propositio 2 Recall that τ is a stoppig time if ad oly if {τ } F for every N 0. Note that {τ } = if 0, while for {τ } = {U [i 0,i] = ABRACADABRA}, i= which shows that the evet {τ } is i F it is expressed as a fuctio of U, U 2,..., U ). To prove that E[τ] <, we argue as i [Wil9, 0.; Exercise E0.5]. Lemma 5. For a positive radom variable τ, i order to have E[τ] < it is sufficiet that N N, ε > 0 : Pτ + N τ > ) ε N 0. 3.) This result is proved i Appedix A below. I order to apply it, let A be the evet that the word ABRACADABRA appears ot ecessarily for the first time!) at time + : A := {U [+,+] = ABRACADABRA}. By assumptio U i are idepedet ad uiformly chose letters, hece PA ) = p > 0, where p := E = 26. Sice A {τ + }, we have Pτ + τ > ) PA τ > ) for every N. However the evets A ad {τ > } are idepedet A is a fuctio of U [+,+], while {τ > } = {τ } c F is a fuctio of U [,] ), hece PA τ > ) = PA ). Thus Pτ + τ > ) PA ) = p, i.e. relatio 3.) holds with N = ad ε = p. It follows by Lemma 5 that E[τ] <. 4. Proof of Propositio 3 The required martigale M = M ) N0 will be costructed as the total et gai of a suitable family of gamblers, built as follows. At time 0 a first gambler eters the game, with a iitial capital of e. She bets o the evet that the first letter U is A the first letter of the word ABRACADABRA ). If she loses, her capital at time drops to 0e ad she stops playig i.e. her capital will stay 0e at all later times). O the other had, if she wis, her capital at time becomes 26e ad she goes o playig, bettig o the evet that the secod letter U 2 is B the secod letter of ABRACADABRA ). If she loses, her capital at time 2 is 0e ad she stops playig, while if she wis, her capital at time 2 equals 26) 2 e ad she goes o, bettig o the evet that the third letter U 3 is R the third letter of ABRACADABRA ), ad so o, util time. The gambler s capital at time is either 26) e, if the letters U [,] have formed exactly the word ABRACADABRA, or 0e otherwise. I ay case, the gambler stops playig after time, hece her capital will stay costat at all later times. Let us deote by x i be the i-th letter of the word ABRACADABRA, for i so that x = A, x 2 = B, x 3 = R,..., x = A). The capital i e) of this first gambler at time is the give by the process K ) N0 defied as follows: if = 0 K := K 26 {U=x} if. K if 2

3 THE ABRACADABRA PROBLEM 3 Note that if K = 0, the K = 0 irrespectively of U, as described above.) Now a secod gambler arrives, playig the same game, but with oe time uit of delay. Her iitial capital stays e at time 0 ad at time, the she bets o the evet that U 2 = x = A: if she loses, her capital at time 2 is 0e ad she stops playig, while if she wis, her capital at time 2 is 26e ad she goes o playig, bettig o the evet that U 3 = x 2 = B, etc. At time 2, the secod gambler s capital will be either 26) e or 0e, accordig to whether the letters U [2,2] have formed precisely the word ABRACADABRA or ot. At this poit she stops playig ad her capital stays costat at all later times. Geeralizig the picture, imagie that for each j N there is a j-th gambler with a iitial capital of e, who starts playig just before time j, bettig o the evet that U j = x, the if she wis) o U j+ = x 2,..., ad fially if she has wo all the previous bets) o U j+0 = x. After time j + 0 the gambler stops playig ad her capital stays costat. Deotig by K j) the capital i e) of the j-th gambler at time, for N 0, we have if < j K j) := 26 {U =x j)+ } if j j ) j+0 if > j + 0 We ca fially defie the process we are lookig for, that will be show to be a martigale: ) M 0 := 0, M := K j) 0 ) = K j). 4.2) Thus M is the sum of the et gais equality i 4.2), recall that 0 = for all j N. 0 of the first gamblers at time. For the Lemma 6. For τ defied as i.), oe has M τ = 26) + 26) τ. Proof. We eed to evaluate M τ = τ Recall that K τ j) is the capital at time τ of the gambler who starts bettig just before time j. It suffices to show that K τ j) = 0 except for j {τ 0, τ 3, τ}, for which τ ) τ. K τ 0) τ = 26), K τ 3) τ = 26) 4, K τ) τ = 26. Sice the complete word ABRACADABRA appears at time τ, the gambler who started playig just before time τ 0 has a capital of 26), i.e. K τ τ 0) = 26). The gambler who started playig just before time τ 3 has a capital K τ τ 3) = 26) 4, because the last four letters of ABRACADABRA are ABRA ad coicide with the first four letters of that word. Aalogously, sice the last letter A is the same as the first letter, the gambler who started playig just before time τ has wo his first bet ad his capital is K τ τ) = 26. Fially, for all j {τ 0, τ 3, τ} all gamblers have lost at least oe bet ad their capital is K τ j) = 0, because τ is the first time the word ABRACADABRA appears. We could have equivaletly summed the et gais of all gamblers, defiig M := Kj) because = 0 for j >. 0 ),

4 4 FRANCESCO CARAVENNA To complete the proof of Propositio 3, it remais to show that M = M ) N0 is a martigale with bouded icremets. We start lookig at the capital processes. Lemma 7. For every fixed j N, the capital process ) N0 is a martigale. Proof. We argue for fixed j N. Plaily, 0 = is F 0 -measurable. By 4.), K j) is a measurable fuctio of ad U, assumig iductively that is F -measurable, it follows that Sice is F -measurable. This shows that K j) ) N0 is a adapted process. by 4.), it follows iductively that Kj) 26 for all N, 26 are bouded ad, i particular, itegrable). Fially, the relatio E[K j) F ] = is trivially satisfied if < j or if > j + 0, while for {j,..., j + 0}, agai by 4.), hece the radom variables E[K j) F ] = E[ 26 {U =x j)+ } F ] = 26 PU = x j)+ ) =, because U is idepedet of F ad PU = a) = 26 for every a E. Lemma 8. The capital processes ) N0 have uiformly bouded icremets: 25, j, N. 4.3) Proof. Oe has K j) = 0 if < j or > j+0, by 4.), while for {j,..., j+0} Sice j =, relatio 4.3) follows. 26 {U =x j)+ } 25 Kj). We ca fially show that M is a martigale. Note that M is F -measurable ad i L, for every N, because by 4.2) M is a fiite sum of K j), each of which is F -measurable ad i L by Lemma 7. Furthermore, agai by 4.2), for all N we ca write E[M F ] = E[K j) F ] =. However for j = we have = K) = by defiitio, cf. 4.), hece E[M F ] = + = ) = M. This shows that M is a martigale. Fially, for all N M M = ) ) = K j) ), agai because for j = we have = K) =. Now observe that, agai by 4.), for j + oe has K j) = = Kj) j+0, hece M M = j= 0 K j) ) j= 0 25, havig applied 4.3). This shows that M has bouded icremets, completig the proof.

5 THE ABRACADABRA PROBLEM 5 The assumptios imply that Appedix A. Proof of Lemma 5 as we show below. We are goig to use the formula Pτ > ln) ε) l l N 0, A.) E[τ] = 0 Pτ > t) dt, A.2) valid for every radom variable τ takig values i [0, ]. Breakig up the itegral i the sub-itervals [ln, l + )N], with l N 0, sice Pτ > t) Pτ > ln) for t ln, we get E[τ] = l+)n Pτ > t) dt Pτ > ln) l N 0 l N 0 = ln N ε) = N ε <, l+)n ln dt l N 0 ε) l N havig applied the geometric series N 0 q = q. This shows that E[τ] <, as required. It remais to prove A.), which we do by iductio. For l = 0 there is othig to prove. For every l N 0, sice {τ > l + )N} {τ > ln}, we ca write Pτ > l + )N) = Pτ > l + )N, τ > ln) = Pτ > ln) Pτ > l + )N τ > ln). The iductio step yields Pτ > ln) ε)l, while assumptio 3.) gives Pτ > + N τ > ) ε), N. A.3) Choosig = ln yields Pτ > l + )N τ > ln) ε), which plugged ito A.3) yields Pτ > l + )N) ε) l+, as required. Refereces [Wil9] D. Williams 99), Probability with martigales, Cambridge Uiversity Press Dipartimeto di Matematica e Applicazioi, Uiversità degli Studi di Milao-Bicocca, via Cozzi 55, 2025 Milao, Italy address: For every T [0, ] oe has T = T dt = 0 0 {T t} dt, hece τω) = 0 {τω)>t} dt for every radom variable τ takig values i [0, ]. Takig expectatios of both sides ad exchagig the expectatio with the itegral which is justified by Fubii-Toelli, thaks to positivity) oe obtais A.2).

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

Factors of sums of powers of binomial coefficients

Factors of sums of powers of binomial coefficients ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

More information

A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Moments of a Binomial Distribution A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

More information

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E MCCARTHY, SANDRA POTT, AND BRETT D WICK Abstract We provide a ew proof of Volberg s Theorem characterizig thi iterpolatig sequeces as those for

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutios ad vertices of polyhedra Due to the fudametal theorem of Liear Programmig, to solve ay LP it suffices to cosider the vertices (fiitely may) of the polyhedro P of the feasible

More information

Estimating Probability Distributions by Observing Betting Practices

Estimating Probability Distributions by Observing Betting Practices 5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

3 Basic Definitions of Probability Theory

3 Basic Definitions of Probability Theory 3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

2. Degree Sequences. 2.1 Degree Sequences

2. Degree Sequences. 2.1 Degree Sequences 2. Degree Sequeces The cocept of degrees i graphs has provided a framewor for the study of various structural properties of graphs ad has therefore attracted the attetio of may graph theorists. Here we

More information

THE HEIGHT OF q-binary SEARCH TREES

THE HEIGHT OF q-binary SEARCH TREES THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Trading the randomness - Designing an optimal trading strategy under a drifted random walk price model

Trading the randomness - Designing an optimal trading strategy under a drifted random walk price model Tradig the radomess - Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY

A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY J. Appl. Prob. 45, 060 070 2008 Prited i Eglad Applied Probability Trust 2008 A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY MARK BROWN, The City College of New York EROL A. PEKÖZ, Bosto Uiversity SHELDON

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

A sharp Trudinger-Moser type inequality for unbounded domains in R n

A sharp Trudinger-Moser type inequality for unbounded domains in R n A sharp Trudiger-Moser type iequality for ubouded domais i R Yuxiag Li ad Berhard Ruf Abstract The Trudiger-Moser iequality states that for fuctios u H, 0 (Ω) (Ω R a bouded domai) with Ω u dx oe has Ω

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Optimal Strategies from Random Walks

Optimal Strategies from Random Walks Optimal Strategies from Radom Walks Jacob Aberethy Divisio of Computer Sciece UC Berkeley jake@csberkeleyedu Mafred K Warmuth Departmet of Computer Sciece UC Sata Cruz mafred@cseucscedu Joel Yelli Divisio

More information

Universal coding for classes of sources

Universal coding for classes of sources Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

A Constant-Factor Approximation Algorithm for the Link Building Problem

A Constant-Factor Approximation Algorithm for the Link Building Problem A Costat-Factor Approximatio Algorithm for the Lik Buildig Problem Marti Olse 1, Aastasios Viglas 2, ad Ilia Zvedeiouk 2 1 Ceter for Iovatio ad Busiess Developmet, Istitute of Busiess ad Techology, Aarhus

More information

A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING

A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING MATTHEW ACTIPES Abstract. This paper begis by defiig a probability space ad establishig probability fuctios i this space over discrete radom variables.

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies

More information

Irreducible polynomials with consecutive zero coefficients

Irreducible polynomials with consecutive zero coefficients Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

The Stable Marriage Problem

The Stable Marriage Problem The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

Analysis Notes (only a draft, and the first one!)

Analysis Notes (only a draft, and the first one!) Aalysis Notes (oly a draft, ad the first oe!) Ali Nesi Mathematics Departmet Istabul Bilgi Uiversity Kuştepe Şişli Istabul Turkey aesi@bilgi.edu.tr Jue 22, 2004 2 Cotets 1 Prelimiaries 9 1.1 Biary Operatio...........................

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

Sequences and Series Using the TI-89 Calculator

Sequences and Series Using the TI-89 Calculator RIT Calculator Site Sequeces ad Series Usig the TI-89 Calculator Norecursively Defied Sequeces A orecursively defied sequece is oe i which the formula for the terms of the sequece is give explicitly. For

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Entropy of bi-capacities

Entropy of bi-capacities Etropy of bi-capacities Iva Kojadiovic LINA CNRS FRE 2729 Site école polytechique de l uiv. de Nates Rue Christia Pauc 44306 Nates, Frace iva.kojadiovic@uiv-ates.fr Jea-Luc Marichal Applied Mathematics

More information

Heavy Traffic Analysis of a Simple Closed Loop Supply Chain

Heavy Traffic Analysis of a Simple Closed Loop Supply Chain Heavy Traffic Aalysis of a Simple Closed Loop Supply Chai Arka Ghosh, Sarah M. Rya, Lizhi Wag, ad Aada Weerasighe April 8, 2 Abstract We cosider a closed loop supply chai where ew products are produced

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Plug-in martingales for testing exchangeability on-line

Plug-in martingales for testing exchangeability on-line Plug-i martigales for testig exchageability o-lie Valetia Fedorova, Alex Gammerma, Ilia Nouretdiov, ad Vladimir Vovk Computer Learig Research Cetre Royal Holloway, Uiversity of Lodo, UK {valetia,ilia,alex,vovk}@cs.rhul.ac.uk

More information

On the L p -conjecture for locally compact groups

On the L p -conjecture for locally compact groups Arch. Math. 89 (2007), 237 242 c 2007 Birkhäuser Verlag Basel/Switzerlad 0003/889X/030237-6, ublished olie 2007-08-0 DOI 0.007/s0003-007-993-x Archiv der Mathematik O the L -cojecture for locally comact

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

NOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016

NOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016 NOTES ON PROBBILITY Greg Lawler Last Updated: March 21, 2016 Overview This is a itroductio to the mathematical foudatios of probability theory. It is iteded as a supplemet or follow-up to a graduate course

More information

THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE

THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE JAVIER CILLERUELO Abstract. We obtai, for ay irreducible quadratic olyomial f(x = ax 2 + bx + c, the asymtotic estimate log l.c.m. {f(1,..., f(} log. Whe

More information

Quaderni di Dipartimento. Rate of Convergence of Predictive Distributions for Dependent Data. Patrizia Berti (Università di Modena e Reggio Emilia)

Quaderni di Dipartimento. Rate of Convergence of Predictive Distributions for Dependent Data. Patrizia Berti (Università di Modena e Reggio Emilia) Quaderi di Dipartimeto Rate of Covergece of Predictive Distributios for Depedet Data Patrizia Berti Uiversità di Modea e Reggio Emilia Iree Crimaldi Uiversità di Bologa Luca Pratelli Accademia Navale di

More information

Designing Incentives for Online Question and Answer Forums

Designing Incentives for Online Question and Answer Forums Desigig Icetives for Olie Questio ad Aswer Forums Shaili Jai School of Egieerig ad Applied Scieces Harvard Uiversity Cambridge, MA 0238 USA shailij@eecs.harvard.edu Yilig Che School of Egieerig ad Applied

More information

MAXIMUM LIKELIHOODESTIMATION OF DISCRETELY SAMPLED DIFFUSIONS: A CLOSED-FORM APPROXIMATION APPROACH. By Yacine Aït-Sahalia 1

MAXIMUM LIKELIHOODESTIMATION OF DISCRETELY SAMPLED DIFFUSIONS: A CLOSED-FORM APPROXIMATION APPROACH. By Yacine Aït-Sahalia 1 Ecoometrica, Vol. 7, No. 1 (Jauary, 22), 223 262 MAXIMUM LIKELIHOODESTIMATION OF DISCRETEL SAMPLED DIFFUSIONS: A CLOSED-FORM APPROXIMATION APPROACH By acie Aït-Sahalia 1 Whe a cotiuous-time diffusio is

More information

Exploratory Data Analysis

Exploratory Data Analysis 1 Exploratory Data Aalysis Exploratory data aalysis is ofte the rst step i a statistical aalysis, for it helps uderstadig the mai features of the particular sample that a aalyst is usig. Itelliget descriptios

More information

Notes on exponential generating functions and structures.

Notes on exponential generating functions and structures. Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE

ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Economic Surplus and Derived Demand Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

More information

Doktori értekezés Katona Zsolt 2006

Doktori értekezés Katona Zsolt 2006 Doktori értekezés Katoa Zsolt 2006 Radom Graph Models Doktori értekezés Iformatika Doktori Iskola, Az Iformatika Alapjai program, vezető: Demetrovics Jáos Katoa Zsolt Témavezető: Móri Tamás, doces Eötvös

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

Solutions to Exercises Chapter 4: Recurrence relations and generating functions

Solutions to Exercises Chapter 4: Recurrence relations and generating functions Solutios to Exercises Chapter 4: Recurrece relatios ad geeratig fuctios 1 (a) There are seatig positios arraged i a lie. Prove that the umber of ways of choosig a subset of these positios, with o two chose

More information

Ramsey-type theorems with forbidden subgraphs

Ramsey-type theorems with forbidden subgraphs Ramsey-type theorems with forbidde subgraphs Noga Alo Jáos Pach József Solymosi Abstract A graph is called H-free if it cotais o iduced copy of H. We discuss the followig questio raised by Erdős ad Hajal.

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

arxiv:0908.3095v1 [math.st] 21 Aug 2009

arxiv:0908.3095v1 [math.st] 21 Aug 2009 The Aals of Statistics 2009, Vol. 37, No. 5A, 2202 2244 DOI: 10.1214/08-AOS640 c Istitute of Mathematical Statistics, 2009 arxiv:0908.3095v1 [math.st] 21 Aug 2009 ESTIMATING THE DEGREE OF ACTIVITY OF JUMPS

More information

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while

More information

A Mathematical Perspective on Gambling

A Mathematical Perspective on Gambling A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal

More information

Integer Factorization Algorithms

Integer Factorization Algorithms Iteger Factorizatio Algorithms Coelly Bares Departmet of Physics, Orego State Uiversity December 7, 004 This documet has bee placed i the public domai. Cotets I. Itroductio 3 1. Termiology 3. Fudametal

More information

ESTIMATING THE DEGREE OF ACTIVITY OF JUMPS IN HIGH FREQUENCY DATA

ESTIMATING THE DEGREE OF ACTIVITY OF JUMPS IN HIGH FREQUENCY DATA The Aals of Statistics 2009, Vol. 37, No. 5A, 2202 2244 DOI: 10.1214/08-AOS640 Istitute of Mathematical Statistics, 2009 ESTIMATING THE DEGREE OF ACTIVITY OF JUMPS IN HIGH FREQUENCY DATA BY YACINE AÏT-SAHALIA

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

ON THE DENSE TRAJECTORY OF LASOTA EQUATION

ON THE DENSE TRAJECTORY OF LASOTA EQUATION UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLIII 2005 ON THE DENSE TRAJECTORY OF LASOTA EQUATION by Atoi Leo Dawidowicz ad Najemedi Haribash Abstract. I preseted paper the dese trajectory

More information

Subject CT5 Contingencies Core Technical Syllabus

Subject CT5 Contingencies Core Technical Syllabus Subject CT5 Cotigecies Core Techical Syllabus for the 2015 exams 1 Jue 2014 Aim The aim of the Cotigecies subject is to provide a groudig i the mathematical techiques which ca be used to model ad value

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Analogy Between Gambling and Measurement-Based Work Extraction

Analogy Between Gambling and Measurement-Based Work Extraction Aalogy Betwee Gamblig ad Measuremet-Based Work Extractio Dror A. Vikler Dept. of Electrical & Computer Eg. Be-Gurio Uiversity of the Negev Beer-Sheva 84105, Israel Email: viklerd@post.bgu.ac.il Haim H.

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information