Department of Computer Science, University of Otago


 Gladys Lawrence
 4 years ago
 Views:
Transcription
1 Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly Departmet of Mathematics, Uiversity of Florida Imre Leader Departmet of Pure Mathematics ad Mathematical Statistics, Uiversity of Cambridge Status: Submitted to Aals of Combiatorics Departmet of Computer Sciece, Uiversity of Otago, PO Box 56, Duedi, Otago, New Zealad
2 PERMUTATIONS CONTAINING MANY PATTERNS M. H. ALBERT, MICAH COLEMAN, RYAN FLYNN, AND IMRE LEADER Abstract. It is show that the maximum umber of patters that ca occur i a permutatio of legth is asymptotically 2. This sigificatly improves a previous result of Colema. 1. Itroductio Give a sequece t = t 1,t 2,...,t k of distict elemets from some totally ordered set, there is a uique permutatio τ of [k] = {1, 2,...,k} with the property that for all 1 i,j k, t i < t j if ad oly if τi) < τj). We call τ the patter of t. For example, the patter of 5, 10, 2 writte i oe lie otatio is 231. I other words, the sequece represetig τ is obtaied from t simply by replacig each elemet of t by its rak i t. Let σ be a permutatio of legth, writte i oelie otatio as σ1)σ2) σ), ad thought of as a sequece of legth. For each oempty subset X of [] defie σ X to be the patter of that subsequece of σ whose idices belog to X. Defie: Pσ) = {σ X : X []}. That is, Pσ) is the set of patters that occur i σ. Also defie h) to be the maximum value of Pσ) take over all permutatios σ of legth. Trivially, h) 2 1. Slightly more precisely, for ay permutatio σ of legth : )) 1) Pσ) mi k!, k k=1 sice ot more tha k! patters of legth k ca occur. However, the expressio o the right had side of this iequality is easily see to be asymptotically 2. At the 2003 coferece o Permutatio Patters, Herb Wilf raised the issue of determiig the asymptotic) behaviour of h), ad exhibited a sequece of permutatios which established that h) exceeded the th Fiboacci umber. Micah Colema the 1
3 2 ALBERT, COLEMAN, FLYNN, AND LEADER demostrated i [1] a sequece of permutatios π, for a perfect square, 1 for which: Pπ ) > Of course this establishes that h) 1/ 2 for all, ot just perfect squares, usig the fact that h) is o decreasig). However, this left ope the questio of whether or ot h)/2 teds to 1 as teds to ifiity. I this paper, we refie the coutig argumets cocerig the umber of patters i π, for a eve perfect square, ad the exted the costructio to all other values of, i order to show that Pπ ) /2 1. Ideed, we will obtai: h) > ) 2 /2 for all positive itegers. 2. The mai costructio Let k be a positive iteger ad let = 4k 2. Let s be the sequece: s = 2k) 4k) 6k) 4k 2 ) ad cosider the permutatio π which i oe lie otatio is defied by: π = s s 1) s 2) s 2k + 1). Here s i idicates the sequece obtaied by subtractig i from each elemet of s. Geerally, we will suppress the subscript o π whe there is o risk of cofusio. Iformally, the graph of π is obtaied by takig a stadard orthogoal 2k 2k grid ad rotatig it slightly i the clockwise directio aroud its lower left had corer. We associate to each subset X of the idices of) π a 2k 2k 01 matrix, M X, whose 1 etries correspod to the elemets of the subset. We also view M X as beig partitioed ito four k k submatrices called the corer submatrices) i the usual way, that is, so that they form a 2 2 block decompositio of M X. We say that X or M X ) is ample if each k k corer submatrix of M X has o zero rows or zero colums. A example is show i Figure 1. Propositio 1. The umber of ample matrices is greater tha ) /2 1 We have adjusted the otatio slightly from that of [1] what was there called π k we are callig π k 2 so that the subscript is equal to the legth of the permutatio.
4 PERMUTATIONS CONTAINING MANY PATTERNS Figure 1. The graph of the permutatio π 64, a ample subset of its elemets idicated by filled circles, together with the correspodig matrix divided ito its corer submatrices. Proof. Recall that = 4k 2. Suppose that we sample a 01 matrix uiformly at radom from amog all 01 matrices. The probability that ay particular row or colum sum of oe of the corer submatrices is 0 is 1/2 k. There are 8k such sums which must all be o zero i order for the matrix to be ample. However, the probability that ay of them are 0 is less tha 8k/2 k. So, the probability that all are o zero is greater tha 1 8k 2 = 1 4 k 2, /2 which is equivalet to the stated result. Propositio 2. Let X ad Y be ample sets. The π X = π Y implies X = Y. Proof. We must show that, if X is ample, the it ca be recostructed from just the permutatio π X. Sice X is ample, the colum sum of both the top half ad bottom half of each colum of M X is o zero. Therefore, there are 2k 1 descets i π X, correspodig to the trasitios betwee colums of M X. Thus, we ca associate the elemets of π X with their correct colums. However, this argumet applies equally well to the rows of M X as is most easily see by cosiderig π 1. Determiig the row ad colum that represets each elemet of π X is exactly the same as recostructig X. Combiig these two results we have:
5 4 ALBERT, COLEMAN, FLYNN, AND LEADER Theorem 3. If is a eve perfect square, the h) > ) /2 We will refer to the secod term iside the paretheses above as the correctio term for this estimate. 3. Refiemets It is easy to exted the above argumets to give lower bouds o h) that are valid for all values of. We ca do this by usig the basic costructio of the previous sectio, ad addig some extra elemets i appropriate places to costruct permutatios π of legth that cotai may patters. First suppose that = 4k 2 + l where 0 < l < 2k. Take the grid associated to the permutatio π 4k 2 ad add a partial) colum o the right had side at the bottom cotaiig ot more tha k elemets, ad, if ecessary, a partial row o top at the right had side, also ot cotaiig more tha k elemets, so that the total umber of elemets added is l. As before, rotate this grid slightly, ad view the result as the graph of a permutatio, π. A example is show i Figure 2. Call the elemets of this permutatio arisig from the origial grid defiig π 4k 2 the mai elemets, ad the remaiig elemets the extra elemets. Defie a subset of the idices of π to be ample if its itersectio with the mai elemets would be ample for π 4k 2. Figure 2. The graph of the permutatio π 70, together with the matrix associated with a particular ample subset of its elemets idicated by filled circles.
6 PERMUTATIONS CONTAINING MANY PATTERNS 5 Propositio 4. Let X ad Y be ample sets. The π X = π Y implies X = Y. Proof. As before, we must describe how to recostruct X from π X. However, we ca idetify the extra elemets ad hece the mai elemets) i π X. If there are ay belogig to the ew partial colum, the they are exactly the elemets followig the 2k) th descet, while those belogig to the ew partial row, if such exist, are exactly those lyig above the maximum elemet of the first k colums. Sice the mai elemets form a ample subset of π 4k 2 we ca use the precedig result to idetify their values. Oce the values of the mai elemets are kow, so are the values of the extra elemets. Therefore, for such, h) Pπ ) > 2 4k2 1 8k ) 2 l. 2 k Certaily k /2, but also 2k + 1/2) 2 > so k > 1/2)/2. Applyig these estimates we obtai: h) > /4 ) /2 This differs from our previous estimate by a factor of 2 1/4 i the correctio term. For = 4k 2 + 2k, we switch to a grid cosistig of 2k + 1 colums of size 2k ad defie π appropriately. As i the previous sectio, we defie the four corer submatrices, except ow those o the right had side of the matrix are k k + 1) istead of k k. The probability of a subset of the matrix ot beig ample is ot as much as: 22k + 1) + 2k 2 k 2 + 2k 7k + 2 =. k 2k+1 2 k Usig the same bouds as before which still apply) plus trivial estimates for k 2 it is easy to check that the boud h) > /4 ) 2 /2 still applies i this case. We ca proceed from this poit with the halfrow/halfcolum costructio agai possibly at a pealty of aother factor of 2 1/4 i the correctio term) as far as = 2k + 1) 2. At this poit we pause for a detailed reevaluatio. I a 2k+1) 2k+1) grid, divided ito corer submatrices of sizes k k, k k + 1), k + 1) k
7 6 ALBERT, COLEMAN, FLYNN, AND LEADER ad k + 1) k + 1), the probability that a subset is ot ample is less tha: 2k k k 2 + k + 1 ) 2k + 1) + = 6k + 3. k+1 2 k 2 k+1 2 k Sice k = 1)/2, this equals 3 2) /2 We ca pursue these costructios through to the ext eve perfect square, ad, allowig for a further pealty of 2 i the correctio term which we leave to the reader to verify is geerous), obtai: Theorem 5. For all positive itegers, h) > ) /2 4. Coclusios It would be iterestig to kow just how close to 2 the value of h) actually is. A more careful aalysis of the various steps i movig from oe square grid to the ext might well provide a small improvemet i the costat factor of the correctio term of our estimate. Similarly, a aalysis of coditios weaker tha ample which oe the less would allow for a recostructio result might actually improve the asymptotic form of the correctio term. However, the simplicity of the mai costructio for = 4k 2 ) ad of the proof that ample subsets ca be recostructed from their patters, together with the lack of ay great eed for more precise estimates of h) somewhat dampes our ethusiasm for further ivestigatios i that directio. Of perhaps greater iterest would be to ivestigate the distributio of the statistic Pπ) as π rages over permutatios of legth. We would like to thak Herb Wilf for havig posed such a iterestig problem! Refereces [1] Micah Colema. A aswer to a questio by Wilf o packig distict patters i a permutatio. Electro. J. Combi., 111):Note 8, 4 pp. electroic), 2004.
8 PERMUTATIONS CONTAINING MANY PATTERNS 7 Departmet of Computer Sciece, Uiversity of Otago address: Departmet of Mathematics, Uiversity of Florida Departmet of Mathematics, Uiversity of Florida Departmet of Pure Mathematics ad Mathematical Statistics, Uiversity of Cambridge
Lecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationChapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More informationTHIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK
THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E MCCARTHY, SANDRA POTT, AND BRETT D WICK Abstract We provide a ew proof of Volberg s Theorem characterizig thi iterpolatig sequeces as those for
More information5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationCME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
More informationON THE EDGEBANDWIDTH OF GRAPH PRODUCTS
ON THE EDGEBANDWIDTH OF GRAPH PRODUCTS JÓZSEF BALOGH, DHRUV MUBAYI, AND ANDRÁS PLUHÁR Abstract The edgebadwidth of a graph G is the badwidth of the lie graph of G We show asymptotically tight bouds o
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationFactors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationA Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design
A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 168040030 haupt@ieee.org Abstract:
More informationIrreducible polynomials with consecutive zero coefficients
Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem
More informationPerfect Packing Theorems and the AverageCase Behavior of Optimal and Online Bin Packing
SIAM REVIEW Vol. 44, No. 1, pp. 95 108 c 2002 Society for Idustrial ad Applied Mathematics Perfect Packig Theorems ad the AverageCase Behavior of Optimal ad Olie Bi Packig E. G. Coffma, Jr. C. Courcoubetis
More informationA RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY
J. Appl. Prob. 45, 060 070 2008 Prited i Eglad Applied Probability Trust 2008 A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY MARK BROWN, The City College of New York EROL A. PEKÖZ, Bosto Uiversity SHELDON
More informationTHE HEIGHT OF qbinary SEARCH TREES
THE HEIGHT OF qbinary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationNotes on exponential generating functions and structures.
Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a elemet set, (2) to fid for each the
More information1.3. VERTEX DEGREES & COUNTING
35 Chapter 1: Fudametal Cocepts Sectio 1.3: Vertex Degrees ad Coutig 36 its eighbor o P. Note that P has at least three vertices. If G x v is coected, let y = v. Otherwise, a compoet cut off from P x v
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationSolutions to Exercises Chapter 4: Recurrence relations and generating functions
Solutios to Exercises Chapter 4: Recurrece relatios ad geeratig fuctios 1 (a) There are seatig positios arraged i a lie. Prove that the umber of ways of choosig a subset of these positios, with o two chose
More informationPermutations, the Parity Theorem, and Determinants
1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More information4. Trees. 4.1 Basics. Definition: A graph having no cycles is said to be acyclic. A forest is an acyclic graph.
4. Trees Oe of the importat classes of graphs is the trees. The importace of trees is evidet from their applicatios i various areas, especially theoretical computer sciece ad molecular evolutio. 4.1 Basics
More information5.3. Generalized Permutations and Combinations
53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible
More informationTHE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
More informationYour organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationBINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients
652 (1226) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More informationOverview on SBox Design Principles
Overview o SBox Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA 721302 What is a SBox? SBoxes are Boolea
More informationExploratory Data Analysis
1 Exploratory Data Aalysis Exploratory data aalysis is ofte the rst step i a statistical aalysis, for it helps uderstadig the mai features of the particular sample that a aalyst is usig. Itelliget descriptios
More informationRepeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More information2. Degree Sequences. 2.1 Degree Sequences
2. Degree Sequeces The cocept of degrees i graphs has provided a framewor for the study of various structural properties of graphs ad has therefore attracted the attetio of may graph theorists. Here we
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More informationRamseytype theorems with forbidden subgraphs
Ramseytype theorems with forbidde subgraphs Noga Alo Jáos Pach József Solymosi Abstract A graph is called Hfree if it cotais o iduced copy of H. We discuss the followig questio raised by Erdős ad Hajal.
More informationLecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a dregular
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationClass Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES  CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationSEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationInteger Factorization Algorithms
Iteger Factorizatio Algorithms Coelly Bares Departmet of Physics, Orego State Uiversity December 7, 004 This documet has bee placed i the public domai. Cotets I. Itroductio 3 1. Termiology 3. Fudametal
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More information3. Greatest Common Divisor  Least Common Multiple
3 Greatest Commo Divisor  Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
More informationHOW MANY TIMES SHOULD YOU SHUFFLE A DECK OF CARDS? 1
1 HOW MANY TIMES SHOULD YOU SHUFFLE A DECK OF CARDS? 1 Brad Ma Departmet of Mathematics Harvard Uiversity ABSTRACT I this paper a mathematical model of card shufflig is costructed, ad used to determie
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More information23 The Remainder and Factor Theorems
 The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationEGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND 1 OBTAINED WITH ENGEL SERIES
EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND OBTAINED WITH ENGEL SERIES ELVIA NIDIA GONZÁLEZ AND JULIA BERGNER, PHD DEPARTMENT OF MATHEMATICS Abstract. The aciet Egyptias epressed ratioal
More information. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2
4. Basic feasible solutios ad vertices of polyhedra Due to the fudametal theorem of Liear Programmig, to solve ay LP it suffices to cosider the vertices (fiitely may) of the polyhedro P of the feasible
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More informationTrackless online algorithms for the server problem
Iformatio Processig Letters 74 (2000) 73 79 Trackless olie algorithms for the server problem Wolfgag W. Bei,LawreceL.Larmore 1 Departmet of Computer Sciece, Uiversity of Nevada, Las Vegas, NV 89154, USA
More informationA Faster ClauseShortening Algorithm for SAT with No Restriction on Clause Length
Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 4960 A Faster ClauseShorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationElementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More information3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
More informationThe analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
More informationGCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4
GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook Alevel Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5
More information