Inverse Gaussian Distribution

Size: px
Start display at page:

Download "Inverse Gaussian Distribution"

Transcription

1 5 Kauhisa Matsuda All rights reserved. Iverse Gaussia Distributio Abstract Kauhisa Matsuda Departmet of Ecoomics The Graduate Ceter The City Uiversity of New York 65 Fifth Aveue New York NY March 5 This paper presets the basic kowledge of the iverse Gaussia distributio. 5 Kauhisa Matsuda All rights reserved.

2 5 Kauhisa Matsuda All rights reserved. [] Iverse Gaussia Distributio: JKB (994) Parameteriatio There are may differet parameteriatios of the iverse Gaussia distributio which ca be really cofusig to begiers. I this sectio basic properties of the iverse Gaussia distributio is preseted followig Johso Kot ad Balakrisha (994) s parameteriatio of the equatio (5.4a). The probability desity fuctio of the iverse Gaussia distributio is a two parameter family: λ / λ IG(; µλ ) = exp ( µ ) x> () π µ where µ R ad λ R. By Fourier trasformig the IG probability desity () its characteristic fuctio φ ( ω ) is calculated as: iω φ ( ω ) F [ IG ( ; µ λ)]( ω) e IGd ( ) iω λ λ φ ( ω) = e IG( ) d = exp i µ λ µ ω. () Simplifyig the equatio () yields: ( ) exp λ λ i exp λ φ ω λ ω µ λ = = λiω µ µ µ λ µ λ µ λ µ φ ( ω) = exp λiω µ λ µ λ λ µ iω φ ( ω) = exp µ λ. () The characteristic expoet (i.e. cumulat geeratig fuctio) ψ ( ω ) of the IG distributio is: λ ψ ( ω) l φ( ω) = µ λ µ iω. (4)

3 5 Kauhisa Matsuda All rights reserved. ψ ( ω) Usig (4) the first four cumulats defied by cumulat( ) ω= i ω calculated as the follows: are cumulat = µ cumulat = µ λ / cumulat µ / λ 7 cumulat 4 = 5 µ / λ. 5 = Usig the above cumulats the mea variace skewess ad excess kurtosis of the IG radom variable are obtaied as (cosult Table 4. of Matsuda (4)): E [ ] = µ (5) Variace[ ] = µ / λ Skewess[ ] = µ / λ Excess Kurtosis[ ] = 5 µ / λ. The momet geeratig fuctio M ( ω ) of the IG distributio ca be expressed as: ω ( ) ω M ω e IG ( ; µ λ) d= e IGd ( ) ( ) M ( ω) = exp ξ ( ω) where the Laplace expoet ξ ( ω ) is give by: ξ ( ω) = µ λ λ µω. (6) Usig the momet geeratig fuctio M ( ω ) with (6) first four raw momets (i.e. r M ( ω) ω ω= ) of the IG distributio are computed as: r E[ ] = µ µ r E[ ] = µ λ 4 5 r µ µ E[ ] = µ λ λ µ 5µ 5µ r4 E[ ] = µ. λ λ λ

4 5 Kauhisa Matsuda All rights reserved. Note tha t the form of cetered momets of (5) tells us that the IG probability desity is always positively skewed ad the excess kurtosis is always positive. Figure illustrates the shape of the IG distributio with varyig parameters. I Pael A as λ icreases its variace ske wess ad excess kurtosis decreases. I Pael B as µ rises holdig λ costat all momets rise. Probability Desit y.5.5 λ=. λ=.5 λ= λ= λ=4 λ=8 λ=6 A) µ = ad varyig λ.5.5 Probability Desit y.5.5 µ=.5 µ= µ= µ=4 µ=8 µ=6 λ= B) Varyig µ ad λ = 4 5 Figure Plot of IG probability desity 4

5 5 Kauhisa Matsuda All rights reserved. Probably the most importat property of the IG distributio is its ifiite divisibility. Let be a IG radom variable with µ R ad λ R. The there exist pieces of iid... radom variable... each from the IG distributio with µ / R ad λ / R such that: d... which is the defiitio. of Matsuda (5). This idicates that the IG distributio geerates a class of icreasig Lévy processes (subordiators). [] Iverse Gaussia Distributio: Bardorff-Nielse (998) Parameteriatio I this sectio basic properties of the iverse Gaussia distributio is preseted followig Bardorff-Nielse (998) s parameteriatio. Reparameterie the IG probability desity () usig µ = δ / γ ad λ = δ : IG(; µλ ) = λ / λ exp ( µ ) x> π µ IG(; δγ ) = δ / δ δ exp π ( δ / γ) γ δ / γ δ δ IG(; δγ ) = exp π γ γ δ γ δ π / (; δγ ) = exp δγ x> IG IG δ = π ( δ γ ) / (; δγ ) exp δγ x> x> x> (7) where δ R ad γ R. By Fourier trasformig the IG probability desity (7) its characteristic fuctio φ ( ω ) is calculated as: iω φ ( ω) F [ IG ( ; δ γ)]( ω) e IGd ( ) ( ) iω φ ( ω) = e IG( ) d = exp δγ δ γ iω. (8) 5

6 5 Kauhisa Matsuda All rights reserved. The characteristic expoet (i.e. cumulat geeratig fuctio) ψ ( ω ) of the IG distributio is: ψ ω φ ω = δγ δ γ ω. (9) ( ) l ( ) i ψ ( ω) Usig (9) the first four cumulats defied by cumulat( ) ω= i ω calculated as the follows: are cumulat cumulat = δ / γ = δ / γ cumulat δ / γ 7 cumulat4 = 5 δ / γ. 5 = Usig the above cumulats the mea variace skewess ad excess kurtosis of the IG radom variable are obtaied as (cosult Table 4. of Matsuda (4)): E [ ] = δ / γ () Variace[ ] = δ / γ Skewess[ ] = δγ 5 Excess Kurtosis[ ] =. δγ The momet geeratig fuctio M ( ω ) of the IG distributio ca be expressed as: ω ( ) ω M ω e IG ( ; δ γ) d= e IGd ( ) ( ) M ( ω) = exp ξ ( ω) where the Laplace expoet ξ ( ω ) is give by: ξ ω = δγ δ γ ω. () ( ) Usig the momet geeratig fuctio M ( ω ) with () first four raw momets (i.e. r M ( ω) ω ω= ) of the IG distributio are computed as: r E[ ] = δ / γ 6

7 5 Kauhisa Matsuda All rights reserved. δ ( δγ ) r E[ ] = γ δ ( δγ δ γ ) E[ ] 5 r = γ 4 δ (5 5δγ 6 δ γ δ γ ) 4 E[ ] 7 r =. γ Note that the form of cetered momets of () tells us that the IG probability desity is always positively skewed ad the excess kurtosis is always positive. Figure illustrates the shape of the IG distributio with varyig parameters. I Pael A as γ icreases holdig δ costat all the stadardied momets decrease. I Pael B as δ rises holdig γ costat the mea ad variace rise while the skewess ad excess kurtosis fall. Probability Desit y γ=. γ=.5 γ= γ= γ=4 γ=6 γ=8 A) δ = ad varyig γ

8 5 Kauhisa Matsuda All rights reserved. Probability Desit y δ=. δ=.5 δ= δ= δ=4 δ=6 δ=8 B) Varyig δ ad γ = Figure Plot of IG probability desity Probably the most importat property of the IG distributio is its ifiite divisibility. Let be a IG radom variable with µ R ad λ R. The there exist pieces of iid... radom variable... each from the IG distributio with µ / R ad λ / R such that: d... which is the defiitio. of Matsuda (5). This idicates that the IG distributio geerates a class of icreasig Lévy processes (subordiators). 8

9 5 Kauhisa Matsuda All rights reserved. Refereces Bardorff-Nielse O. E. 998 Processes of Normal Iverse Gaussia Type Fiace ad Stochastics Johso N. L. Kot S. ad Balakrisha N. 994 Cotiuous Uivariate Distributios Volume Secod Editio Joh Wiley & Sos. Matsuda K. 4 Itroductio to Optio Pricig with Fourier Trasform: Optio Pricig with Expoetial Lévy Models Workig Paper Graduate School ad Uiversity Ceter of the City Uiversity of New York. Matsuda K. 5 Itroductio to the Mathematics of Lévy Processes Vol. of Ph.D. thesis expected to be filed o May 6 Graduate School ad Uiversity Ceter of the City Uiversity of New York. 9

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Data Analysis and Statistical Behaviors of Stock Market Fluctuations

Data Analysis and Statistical Behaviors of Stock Market Fluctuations 44 JOURNAL OF COMPUTERS, VOL. 3, NO. 0, OCTOBER 2008 Data Aalysis ad Statistical Behaviors of Stock Market Fluctuatios Ju Wag Departmet of Mathematics, Beijig Jiaotog Uiversity, Beijig 00044, Chia Email:

More information

A Test of Normality. 1 n S 2 3. n 1. Now introduce two new statistics. The sample skewness is defined as:

A Test of Normality. 1 n S 2 3. n 1. Now introduce two new statistics. The sample skewness is defined as: A Test of Normality Textbook Referece: Chapter. (eighth editio, pages 59 ; seveth editio, pages 6 6). The calculatio of p values for hypothesis testig typically is based o the assumptio that the populatio

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

An Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function

An Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function A Efficiet Polyomial Approximatio of the Normal Distributio Fuctio & Its Iverse Fuctio Wisto A. Richards, 1 Robi Atoie, * 1 Asho Sahai, ad 3 M. Raghuadh Acharya 1 Departmet of Mathematics & Computer Sciece;

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

How To Calculate The Risk-Eutral Probability Of A Log-Retur For A Time (For A Time)

How To Calculate The Risk-Eutral Probability Of A Log-Retur For A Time (For A Time) A Geeral Closed Form Optio Pricig Formula Cipria NECULA, Gabriel DRIMUS Walter FARKAS,3 Departmet of Bakig ad Fiace, Uiversity of Zurich, Plattestrasse 4, CH-83, Zurich, Switzerlad Email: [email protected],

More information

Institute of Actuaries of India Subject CT1 Financial Mathematics

Institute of Actuaries of India Subject CT1 Financial Mathematics Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

PSYCHOLOGICAL STATISTICS

PSYCHOLOGICAL STATISTICS UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Economic Surplus and Derived Demand Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich [email protected] [email protected] Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

BASIC STATISTICS. f(x 1,x 2,..., x n )=f(x 1 )f(x 2 ) f(x n )= f(x i ) (1)

BASIC STATISTICS. f(x 1,x 2,..., x n )=f(x 1 )f(x 2 ) f(x n )= f(x i ) (1) BASIC STATISTICS. SAMPLES, RANDOM SAMPLING AND SAMPLE STATISTICS.. Radom Sample. The radom variables X,X 2,..., X are called a radom sample of size from the populatio f(x if X,X 2,..., X are mutually idepedet

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

Degree of Approximation of Continuous Functions by (E, q) (C, δ) Means

Degree of Approximation of Continuous Functions by (E, q) (C, δ) Means Ge. Math. Notes, Vol. 11, No. 2, August 2012, pp. 12-19 ISSN 2219-7184; Copyright ICSRS Publicatio, 2012 www.i-csrs.org Available free olie at http://www.gema.i Degree of Approximatio of Cotiuous Fuctios

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Decomposition of Gini and the generalized entropy inequality measures. Abstract

Decomposition of Gini and the generalized entropy inequality measures. Abstract Decompositio of Gii ad the geeralized etropy iequality measures Stéphae Mussard LAMETA Uiversity of Motpellier I Fraçoise Seyte LAMETA Uiversity of Motpellier I Michel Terraza LAMETA Uiversity of Motpellier

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Parametric (theoretical) probability distributions. (Wilks, Ch. 4) Discrete distributions: (e.g., yes/no; above normal, normal, below normal)

Parametric (theoretical) probability distributions. (Wilks, Ch. 4) Discrete distributions: (e.g., yes/no; above normal, normal, below normal) 6 Parametric (theoretical) probability distributios. (Wilks, Ch. 4) Note: parametric: assume a theoretical distributio (e.g., Gauss) No-parametric: o assumptio made about the distributio Advatages of assumig

More information

1 The Gaussian channel

1 The Gaussian channel ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

1 Review of Probability

1 Review of Probability Copyright c 27 by Karl Sigma 1 Review of Probability Radom variables are deoted by X, Y, Z, etc. The cumulative distributio fuctio (c.d.f.) of a radom variable X is deoted by F (x) = P (X x), < x

More information

TIGHT BOUNDS ON EXPECTED ORDER STATISTICS

TIGHT BOUNDS ON EXPECTED ORDER STATISTICS Probability i the Egieerig ad Iformatioal Scieces, 20, 2006, 667 686+ Prited i the U+S+A+ TIGHT BOUNDS ON EXPECTED ORDER STATISTICS DIMITRIS BERTSIMAS Sloa School of Maagemet ad Operatios Research Ceter

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Moments of a Binomial Distribution A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

THE HEIGHT OF q-binary SEARCH TREES

THE HEIGHT OF q-binary SEARCH TREES THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Virtile Reguli And Radiational Optaprints

Virtile Reguli And Radiational Optaprints RANDOM GRAPHS WITH FORBIDDEN VERTEX DEGREES GEOFFREY GRIMMETT AND SVANTE JANSON Abstract. We study the radom graph G,λ/ coditioed o the evet that all vertex degrees lie i some give subset S of the oegative

More information

NOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016

NOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016 NOTES ON PROBBILITY Greg Lawler Last Updated: March 21, 2016 Overview This is a itroductio to the mathematical foudatios of probability theory. It is iteded as a supplemet or follow-up to a graduate course

More information

CONDITIONAL TAIL VARIANCE AND CONDITIONAL TAIL SKEWNESS IN FINANCE AND INSURANCE. Liang Hong *, Assistant Professor Bradley University

CONDITIONAL TAIL VARIANCE AND CONDITIONAL TAIL SKEWNESS IN FINANCE AND INSURANCE. Liang Hong *, Assistant Professor Bradley University CONDTONAL TAL VARANCE AND CONDTONAL TAL SKEWNESS N FNANCE AND NSURANCE Liag Hog *, Assistat Professor Bradley Uiversity Ahmed Elshahat, Assistat Professor Bradley Uiversity ABSTRACT Two risk measures Value

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies

More information

The Stable Marriage Problem

The Stable Marriage Problem The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV [email protected] 1 Itroductio Imagie you are a matchmaker,

More information

COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS

COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat

More information

ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE

ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau

More information

Entropy of bi-capacities

Entropy of bi-capacities Etropy of bi-capacities Iva Kojadiovic LINA CNRS FRE 2729 Site école polytechique de l uiv. de Nates Rue Christia Pauc 44306 Nates, Frace [email protected] Jea-Luc Marichal Applied Mathematics

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

Research Article Sign Data Derivative Recovery

Research Article Sign Data Derivative Recovery Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

Integrated approach to the assessment of long range correlation in time series data

Integrated approach to the assessment of long range correlation in time series data PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000 Itegrated approach to the assessmet of log rage correlatio i time series data Govida Ragaraja* Departmet of Mathematics ad Cetre for Theoretical Studies,

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis Ruig Time ( 3.) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Subject CT5 Contingencies Core Technical Syllabus

Subject CT5 Contingencies Core Technical Syllabus Subject CT5 Cotigecies Core Techical Syllabus for the 2015 exams 1 Jue 2014 Aim The aim of the Cotigecies subject is to provide a groudig i the mathematical techiques which ca be used to model ad value

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while

More information

How To Solve The Homewor Problem Beautifully

How To Solve The Homewor Problem Beautifully Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

CONTROL CHART BASED ON A MULTIPLICATIVE-BINOMIAL DISTRIBUTION

CONTROL CHART BASED ON A MULTIPLICATIVE-BINOMIAL DISTRIBUTION www.arpapress.com/volumes/vol8issue2/ijrras_8_2_04.pdf CONTROL CHART BASED ON A MULTIPLICATIVE-BINOMIAL DISTRIBUTION Elsayed A. E. Habib Departmet of Statistics ad Mathematics, Faculty of Commerce, Beha

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

LECTURE 13: Cross-validation

LECTURE 13: Cross-validation LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

More information

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E MCCARTHY, SANDRA POTT, AND BRETT D WICK Abstract We provide a ew proof of Volberg s Theorem characterizig thi iterpolatig sequeces as those for

More information

A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length

A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 49-60 A Faster Clause-Shorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece

More information

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

More information

, a Wishart distribution with n -1 degrees of freedom and scale matrix.

, a Wishart distribution with n -1 degrees of freedom and scale matrix. UMEÅ UNIVERSITET Matematisk-statistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that

More information

Probabilistic Engineering Mechanics. Do Rosenblatt and Nataf isoprobabilistic transformations really differ?

Probabilistic Engineering Mechanics. Do Rosenblatt and Nataf isoprobabilistic transformations really differ? Probabilistic Egieerig Mechaics 4 (009) 577 584 Cotets lists available at ScieceDirect Probabilistic Egieerig Mechaics joural homepage: wwwelseviercom/locate/probegmech Do Roseblatt ad Nataf isoprobabilistic

More information

Estimating Probability Distributions by Observing Betting Practices

Estimating Probability Distributions by Observing Betting Practices 5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,

More information

How To Calculate A Radom Umber From A Probability Fuctio

How To Calculate A Radom Umber From A Probability Fuctio Iteral Report SUF PFY/96 Stockholm, December 996 st revisio, 3 October 998 last modificatio September 7 Had-book o STATISTICAL DISTRIBUTIONS for experimetalists by Christia Walck Particle Physics Group

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

Log-Logistic Software Reliability Growth Model

Log-Logistic Software Reliability Growth Model Log-Logistic Software Reliability Growth Model Swapa S. Gokhale ad Kishor S. Trivedi 2y Bours College of Egg. CACC, Dept. of ECE Uiversity of Califoria Duke Uiversity Riverside, CA 9252 Durham, NC 2778-29

More information

A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING

A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING MATTHEW ACTIPES Abstract. This paper begis by defiig a probability space ad establishig probability fuctios i this space over discrete radom variables.

More information

A modified Kolmogorov-Smirnov test for normality

A modified Kolmogorov-Smirnov test for normality MPRA Muich Persoal RePEc Archive A modified Kolmogorov-Smirov test for ormality Zvi Drezer ad Ofir Turel ad Dawit Zerom Califoria State Uiversity-Fullerto 22. October 2008 Olie at http://mpra.ub.ui-mueche.de/14385/

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

A Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets

A Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets A Review ad Compariso of Methods for Detectig Outliers i Uivariate Data Sets by Sogwo Seo BS, Kyughee Uiversity, Submitted to the Graduate Faculty of Graduate School of Public Health i partial fulfillmet

More information

Present Values, Investment Returns and Discount Rates

Present Values, Investment Returns and Discount Rates Preset Values, Ivestmet Returs ad Discout Rates Dimitry Midli, ASA, MAAA, PhD Presidet CDI Advisors LLC [email protected] May 2, 203 Copyright 20, CDI Advisors LLC The cocept of preset value lies

More information

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixed-icome security that typically pays periodic coupo paymets, ad a pricipal

More information

Stock Market Trading via Stochastic Network Optimization

Stock Market Trading via Stochastic Network Optimization PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 1 Stock Market Tradig via Stochastic Network Optimizatio Michael J. Neely Uiversity of Souther Califoria http://www-rcf.usc.edu/

More information

Unbiased Estimation. Topic 14. 14.1 Introduction

Unbiased Estimation. Topic 14. 14.1 Introduction Topic 4 Ubiased Estimatio 4. Itroductio I creatig a parameter estimator, a fudametal questio is whether or ot the estimator differs from the parameter i a systematic maer. Let s examie this by lookig a

More information

A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design

A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 [email protected] Abstract:

More information

Central Limit Theorem and Its Applications to Baseball

Central Limit Theorem and Its Applications to Baseball Cetral Limit Theorem ad Its Applicatios to Baseball by Nicole Aderso A project submitted to the Departmet of Mathematical Scieces i coformity with the requiremets for Math 4301 (Hoours Semiar) Lakehead

More information

THE TWO-VARIABLE LINEAR REGRESSION MODEL

THE TWO-VARIABLE LINEAR REGRESSION MODEL THE TWO-VARIABLE LINEAR REGRESSION MODEL Herma J. Bieres Pesylvaia State Uiversity April 30, 202. Itroductio Suppose you are a ecoomics or busiess maor i a college close to the beach i the souther part

More information

W. Sandmann, O. Bober University of Bamberg, Germany

W. Sandmann, O. Bober University of Bamberg, Germany STOCHASTIC MODELS FOR INTERMITTENT DEMANDS FORECASTING AND STOCK CONTROL W. Sadma, O. Bober Uiversity of Bamberg, Germay Correspodig author: W. Sadma Uiversity of Bamberg, Dep. Iformatio Systems ad Applied

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

Exploratory Data Analysis

Exploratory Data Analysis 1 Exploratory Data Aalysis Exploratory data aalysis is ofte the rst step i a statistical aalysis, for it helps uderstadig the mai features of the particular sample that a aalyst is usig. Itelliget descriptios

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

Escola Federal de Engenharia de Itajubá

Escola Federal de Engenharia de Itajubá Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica Pós-Graduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information