THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK


 Andra Boyd
 3 years ago
 Views:
Transcription
1 THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E MCCARTHY, SANDRA POTT, AND BRETT D WICK Abstract We provide a ew proof of Volberg s Theorem characterizig thi iterpolatig sequeces as those for which the Gram matrix associated to the ormalized reproducig kerels is a compact perturbatio of the idetity I the same paper, Volberg characterized sequeces for which the Gram matrix is a compact perturbatio of a uitary as well as those for which the Gram matrix is a Schatte class perturbatio of a uitary operator We exted this characterizatio from to p, where p 1 Itroductio Let D deote the ope uit disk ad T the uit circle Give {α j }, a Blaschke sequece of poits i D, we let B deote the correspodig Blaschke product ad B deote the Blaschke product with the zero α removed Further, we let δ j = B j (α j ), k j = 1 1 α j deote the z Szegő kerel (the reproducig kerel for H ) at α j, g j = k j / k j the H ormalized kerel, ad G the Gram matrix with etries G ij = g j, g i I the secod part of [10, Theorem ], Volberg s goal was to develop a coditio esurig that {g } is ear a orthogoal basis; by this, oe meas that there exist U uitary ad K compact such that g = (U + K)e, where {e } is the stadard orthogoal basis for l By [7, Sectio 3] or [4, Propositio 3], this is equivalet to the Gram matrix defiig a bouded operator of the form I + K with K compact Followig Volberg ad aticipatig the coectio to the Schattep classes, we call such bases U + S bases Volberg showed that {g } is a U + S basis if ad oly if lim δ = 1; i other words, if ad oly if {α } is a thi sequece Assumig {g } is a U +S basis, it is ot difficult to show that the sequece {α } must be thi But Volberg s proof of the coverse is more difficult ad depeds o the mai lemma of a paper of Axler, Chag ad Saraso [, Lemma 5], estimatig the orm of a certai product of Hakel operators as well as a factorizatio theorem for Blaschke products The lemma i [] uses maximal fuctios ad a certai distributio fuctio iequality A more direct proof of Volberg s result is desirable, ad we provide a simpler proof of this result i Theorem 35 of this paper I a secod theorem, lettig S deote the class of HilbertSchmidt operators, Volberg showed (see [10, Theorem 3]) that {g } is a U +S basis if ad oly if =1 δ coverges We are iterested i estimates for the ibetwee cases We provide a ew proof of Volberg s theorem for p = ad prove the followig theorem Theorem 11 For p <, the operator G I S p if ad oly if (1 δ ) p/ < Volberg s theorem covered the cases p = ad p =, but our proofs differ i the followig way: Istead of usig the results of [] ad theorems about Hakel operators, we use the PG Partially supported by Simos Foudatio Grat JM Partially supported by Natioal Sciece Foudatio Grat DMS BDW Partially supported by Natioal Sciece Foudatio Grat DMS
2 P GORKIN, JEMCCARTHY, S POTT, AND BDWICK relatioship betwee growth estimates of fuctios that do iterpolatio o thi sequeces (see [5], [6]) ad the orm of the Gram matrix This simplifies previous proofs ad provides the best estimates available Prelimiaries ad otatio Let {α j } be a sequece i D with correspodig Blaschke product B, ad B j be the Blaschke product with zeroes at every poit i the sequece except α j ad δ j = B j (α j ) The separatio costat δ is defied to be δ := if j δ j Carleso s iterpolatio theorem says that the sequece {α j } is iterpolatig if ad oly if δ > 0, [3] The sequece {α j } is said to be thi if lim j δ j = 1 Give a thi sequece we may arrage the δ j i icreasig order ad rearrage the zeros of the Blaschke product accordigly Recall that if T is a operator o a Hilbert space H ad λ is the th sigular value of T, the give p with 1 p < the Schattep class, S p, is defied to be the space of all compact operators with correspodig sigular sequece i l p, the space of psummable sequeces The S p is a Baach space with orm T p = ( λ p ) 1/p For p =, we let S deote the space of compact operators Recall that k j deotes the Szegő kerel, g j = k j / k j, ad G the Gram matrix with etries G ij = g j, g i (The Gram matrix depeds of course o the sequece {α j }, but we suppress this i the otatio) For {α j } iterpolatig, we let D be the diagoal matrix with etries 1/B j (α j ) It is kow (see, for example, formula (6) of [8]) that (1) G 1 = D G t D For a give sequece {α j }, the iterpolatio costat is the ifimum of those M such that for ay sequece {a j } i l, oe ca fid a fuctio f i H with f(α j ) = a j ad f M a l We shall let M(δ) deote the supremum of the iterpolatio costats over all sequeces {α j } with separatio costat δ The followig result is due essetially to A Shields ad H Shapiro [9] See [1, Propositio 95] for a proof of this versio Propositio 1 Let {α j } be a iterpolatig sequece i D (i) If the iterpolatio costat is M, the both G ad G 1 are bouded by M (ii) If G = C 1 ad G 1 = C, the the iterpolatio costat is bouded by C 1 C We shall use the followig estimate of JP Earl (see [5] or [6]) to obtai our results Theorem (Earl s Theorem) The iterpolatio costat M(δ) satisfies ( ) δ M(δ) δ 3 Schattep classes I this sectio we provide estimates o the Schattep orm of G I We will eed the theorem ad lemma below
3 THIN SEQUENCES AND THE GRAM MATRIX 3 Theorem 31 (see eg [11, Theorem 133]) Let T be a operator o a separable Hilbert space, H If 0 < p the { } T p S p = if T e p : {e } is ay orthoormal basis i H ad if p < { } T p S p = sup T e p : {e } is ay orthoormal basis i H We say that two sequeces {x } ad {y } of positive umbers are equivalet if there exist costats c ad C, idepedet of, such that cy x Cy for all We write x y We will also write A B to idicate that there exists a costat C such that A CB Lemma 3 Let {e } deote the stadard orthoormal basis for l ad {α j } be a iterpolatig sequece i D with correspodig δ j The Proof We have (G I)e 1 δ (G I)e = (G I)(G I)e, e g, g 1 g, g 1 g =, g 1 g,, g g, g +1 = g, g j g, g j g, g +1 = 1 αj 1 α 1 α α j = 1 α j α 1 α α j But log x 1 x for x > 0 ad log x < c(1 x) for x < 1 bouded away from 0 ad some costat c idepedet of x, so log x 1 x for x bouded away from 0 Cosequetly, (G I)e log α j α 1 α α j = log α j α 1 α α j = log δ 1 δ
4 4 P GORKIN, JEMCCARTHY, S POTT, AND BDWICK Note that the costats ivolved do ot deped o Combiig the lemma with Theorem 31, we obtai the followig theorem Theorem 33 The followig estimates hold: If p < the If 0 < p the If p = the (1 δ ) p G I p G I p S p S p ; (1 δ ) p ; (1 δ ) G I S Lemma 34 Let {α j } be a iterpolatig sequece ad G the correspodig Gram matrix Let C = G 1 The G I C 1 Proof By (1), we have G CI, ad as G is a positive operator, we have G (1/C)I Therefore ( ) 1 C 1 I G I (C 1)I, ad as C > 1, we get G I C 1 I what follows, for a positive iteger N, we let G N deote the lower righthad corer of the Gram matrix obtaied by deletig the first N rows ad colums of G Thus, G N = 1 g N+1, g N g N+j, g N g N, g N+1 1 g N+j, g N+1 ad λ 0 deotes the th sigular value of G I, where the sigular values are arraged i decreasig order We are ow ready to provide our simpler proof of Volberg s result [10, Theorem, p 15] Theorem 35 The sequece {α } is a thi sequece if ad oly if the Gram matrix G is the idetity plus a compact operator Proof ( ) Suppose {α } is thi By discardig fiitely may poits i the sequece (α ), we ca assume that the sequece has a positive separatio costat, ad hece is iterpolatig Let G N be the Gram matrix of {g j } for j N We shall let δ N,j deote the δ j defied for G N (that is, correspodig to the Blaschke sequece {α j } j N ) Note that δ N,j δ N+j for j = 0, 1,,, ad so we have that δ(n) := if j δ N,j if j δ N+j = δ N By Theorem ad Propositio 1, G 1 N (M(δ(N)) ( 1 + ) 4 1 δ(n) δ(n) 4 ( 1 + ) 4 1 δn δ 4 N
5 Applyig Lemma 34 THIN SEQUENCES AND THE GRAM MATRIX 5 G N I N ( 1 + ) 4 1 δn δ 4 N 1 C 1 δ N, where C is a costat idepedet of N Sice 1 δ N 0 as N, we coclude that G I is compact ( ) From (1), we have (31) G 1 I = D (G t I)D + [D D I] If G I is compact, the so are G t I ad G 1 I = G 1 (I G) Therefore from (31), we have D D I is compact, which meas lim j δj = 1 Cosequetly, the sequece is thi Theorem 36 For p <, the operator G I S p if ad oly if (1 δ ) p/ < Proof By Theorem 33, if G I S p, the the sum is fiite Now suppose the sum is fiite Usig Lemma 34 as i Theorem 35, we have where C is idepedet of N By [11, Theorem 1411], G N I N C 1 δ N, λ N+1 if{ (G I) F : F F N }, where F N is the set of all operators of rak less tha or equal to N Therefore, takig F to be the matrix with the same first N rows ad colums as G I, which is of rak at most N, we have λ N+1 G N+1 I N+1 C 1 δ N+1, by our computatio above Therefore λ N+1 p C p (1 δ N+1 ) p/ Sice the sigular values are arraged i decreasig order, λ +1 > λ for each Thus, if N (1 δ N) p/ <, the λ p λ +1 p < ad we coclude that G I S p We coclude by remarkig that it is possible to trace through the proofs above to determie costats c ad C, which deped oly o δ = if δ, such that for p, (3) c 1 δ l p G I Sp C 1 δ l p I particular, by choosig δ close eough to 1, oe ca choose c ad C i (3) arbitrarily close to ad 4 ( 1/p ), respectively Questio 37 Is Theorem 36 true for p <? Ackowledgemet We thak the referee for his or her careful readig of this mauscript as well as helpful commets
6 6 P GORKIN, JEMCCARTHY, S POTT, AND BDWICK Refereces [1] J Agler ad JE McCarthy, Pick Iterpolatio ad Hilbert Fuctio Spaces, America Mathematical Society, Providece, 00 [] Sheldo Axler, SuYug A Chag, ad Doald Saraso, Products of Toeplitz operators, Itegral Equatios Operator Theory 1 (1978), o 3, , [3] L Carleso, A iterpolatio problem for bouded aalytic fuctios, America J Math 80 (1958), [4] I Chaledar, E Fricai, ad D Timoti, Fuctioal models ad asymptotically orthoormal sequeces, A Ist Fourier (Greoble) 53 (003), o 5, [5] J P Earl, O the iterpolatio of bouded sequeces by bouded fuctios, J Lodo Math Soc (1970), [6] J P Earl, A ote o bouded iterpolatio i the uit disc, J Lodo Math Soc () 13 (1976), o 3, [7] Emmauel Fricai, Bases of reproducig kerels i model spaces, J Operator Theory 46 (001), o 3, suppl, [8] Paul Koosis, Carleso s iterpolatio theorem deduced from a result of Pick, Complex aalysis, operators, ad related topics, Oper Theory Adv Appl, 113, Birkhäuser, Basel, 000, pp [9] HS Shapiro ad AL Shields, O some iterpolatio problems for aalytic fuctios, America J Math 83 (1961), [10] A L Vol berg, Two remarks cocerig the theorem of S Axler, SY A Chag ad D Saraso, J Operator Theory 7 (198), o, , 4 [11] Kehe Zhu, Operator theory i fuctio spaces, Secod, Mathematical Surveys ad Moographs, vol 138, America Mathematical Society, Providece, RI, 007 3, 5 Pamela Gorki, Departmet of Mathematics, Buckell Uiversity, Lewisburg, PA USA address: Joh E McCarthy, Dept of Mathematics, Washigto Uiversity i St Louis, St Louis, MO address: Sadra Pott, Faculty of Sciece, Cetre for Mathematical Scieces, Lud Uiversity, 100 Lud, Swede address: Brett D Wick, School of Mathematics, Georgia Istitute of Techology, 686 Cherry Street, Atlata, GA USA address:
Department of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationIrreducible polynomials with consecutive zero coefficients
Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem
More informationOur aim is to show that under reasonable assumptions a given 2πperiodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationTHE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
More informationA Note on Sums of Greatest (Least) Prime Factors
It. J. Cotemp. Math. Scieces, Vol. 8, 203, o. 9, 423432 HIKARI Ltd, www.mhikari.com A Note o Sums of Greatest (Least Prime Factors Rafael Jakimczuk Divisio Matemática, Uiversidad Nacioal de Luá Bueos
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More information3. Greatest Common Divisor  Least Common Multiple
3 Greatest Commo Divisor  Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More information4.3. The Integral and Comparison Tests
4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More informationLecture 5: Span, linear independence, bases, and dimension
Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;
More informationCooleyTukey. Tukey FFT Algorithms. FFT Algorithms. Cooley
Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Cosider a legth sequece x[ with a poit DFT X[ where Represet the idices ad as +, +, Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Usig these
More informationCME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationA note on the boundary behavior for a modiﬁed Green function in the upperhalf space
Zhag ad Pisarev Boudary Value Problems (015) 015:114 DOI 10.1186/s136610150363z RESEARCH Ope Access A ote o the boudary behavior for a modiﬁed Gree fuctio i the upperhalf space Yulia Zhag1 ad Valery
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationClass Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES  CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
More informationOn Formula to Compute Primes. and the n th Prime
Applied Mathematical cieces, Vol., 0, o., 3535 O Formula to Compute Primes ad the th Prime Issam Kaddoura Lebaese Iteratioal Uiversity Faculty of Arts ad cieces, Lebao issam.kaddoura@liu.edu.lb amih AbdulNabi
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationTHE HEIGHT OF qbinary SEARCH TREES
THE HEIGHT OF qbinary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
More informationLecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a dregular
More informationON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE
Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau
More informationOn the L p conjecture for locally compact groups
Arch. Math. 89 (2007), 237 242 c 2007 Birkhäuser Verlag Basel/Switzerlad 0003/889X/0302376, ublished olie 2007080 DOI 0.007/s0003007993x Archiv der Mathematik O the L cojecture for locally comact
More informationConvex Bodies of Minimal Volume, Surface Area and Mean Width with Respect to Thin Shells
Caad. J. Math. Vol. 60 (1), 2008 pp. 3 32 Covex Bodies of Miimal Volume, Surface Area ad Mea Width with Respect to Thi Shells Károly Böröczky, Károly J. Böröczky, Carste Schütt, ad Gergely Witsche Abstract.
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationA sharp TrudingerMoser type inequality for unbounded domains in R n
A sharp TrudigerMoser type iequality for ubouded domais i R Yuxiag Li ad Berhard Ruf Abstract The TrudigerMoser iequality states that for fuctios u H, 0 (Ω) (Ω R a bouded domai) with Ω u dx oe has Ω
More informationFactors of sums of powers of binomial coefficients
ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More informationLecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.
18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: CouratFischer formula ad Rayleigh quotiets The
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationA RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY
J. Appl. Prob. 45, 060 070 2008 Prited i Eglad Applied Probability Trust 2008 A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY MARK BROWN, The City College of New York EROL A. PEKÖZ, Bosto Uiversity SHELDON
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationA Faster ClauseShortening Algorithm for SAT with No Restriction on Clause Length
Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 4960 A Faster ClauseShorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More information. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2
4. Basic feasible solutios ad vertices of polyhedra Due to the fudametal theorem of Liear Programmig, to solve ay LP it suffices to cosider the vertices (fiitely may) of the polyhedro P of the feasible
More informationAn Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function
A Efficiet Polyomial Approximatio of the Normal Distributio Fuctio & Its Iverse Fuctio Wisto A. Richards, 1 Robi Atoie, * 1 Asho Sahai, ad 3 M. Raghuadh Acharya 1 Departmet of Mathematics & Computer Sciece;
More informationEkkehart Schlicht: Economic Surplus and Derived Demand
Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 200617 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät LudwigMaximiliasUiversität Müche Olie at http://epub.ub.uimueche.de/940/
More informationTHE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE
THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE JAVIER CILLERUELO Abstract. We obtai, for ay irreducible quadratic olyomial f(x = ax 2 + bx + c, the asymtotic estimate log l.c.m. {f(1,..., f(} log. Whe
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationarxiv:1506.03481v1 [stat.me] 10 Jun 2015
BEHAVIOUR OF ABC FOR BIG DATA By Wetao Li ad Paul Fearhead Lacaster Uiversity arxiv:1506.03481v1 [stat.me] 10 Ju 2015 May statistical applicatios ivolve models that it is difficult to evaluate the likelihood,
More information3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
More informationChapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationPermutations, the Parity Theorem, and Determinants
1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits
More informationActa Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) 77 87. ALMOST SURE FUNCTIONAL LIMIT THEOREMS IN L p( ]0, 1[ ), WHERE 1 p <
Acta Acad. Paed. Agriesis, Sectio Mathematicae 29 22) 77 87 ALMOST SUR FUNCTIONAL LIMIT THORMS IN L ], [ ), WHR < József Túri Nyíregyháza, Hugary) Dedicated to the memory of Professor Péter Kiss Abstract.
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationARTICLE IN PRESS. Statistics & Probability Letters ( ) A Kolmogorovtype test for monotonicity of regression. Cecile Durot
STAPRO 66 pp:  col.fig.: il ED: MG PROD. TYPE: COM PAGN: Usha.N  SCAN: il Statistics & Probability Letters 2 2 2 2 Abstract A Kolmogorovtype test for mootoicity of regressio Cecile Durot Laboratoire
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationHeat (or Diffusion) equation in 1D*
Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire
More informationBINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients
652 (1226) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationRunning Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis
Ruig Time ( 3.) Aalysis of Algorithms Iput Algorithm Output A algorithm is a stepbystep procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.
More informationAnalysis Notes (only a draft, and the first one!)
Aalysis Notes (oly a draft, ad the first oe!) Ali Nesi Mathematics Departmet Istabul Bilgi Uiversity Kuştepe Şişli Istabul Turkey aesi@bilgi.edu.tr Jue 22, 2004 2 Cotets 1 Prelimiaries 9 1.1 Biary Operatio...........................
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More informationYour organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationLECTURE 13: Crossvalidation
LECTURE 3: Crossvalidatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Threeway data partitioi Itroductio to Patter Aalysis Ricardo GutierrezOsua Texas A&M
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationA Mathematical Perspective on Gambling
A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationDegree of Approximation of Continuous Functions by (E, q) (C, δ) Means
Ge. Math. Notes, Vol. 11, No. 2, August 2012, pp. 1219 ISSN 22197184; Copyright ICSRS Publicatio, 2012 www.icsrs.org Available free olie at http://www.gema.i Degree of Approximatio of Cotiuous Fuctios
More informationNOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016
NOTES ON PROBBILITY Greg Lawler Last Updated: March 21, 2016 Overview This is a itroductio to the mathematical foudatios of probability theory. It is iteded as a supplemet or followup to a graduate course
More informationSystems Design Project: Indoor Location of Wireless Devices
Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 6985295 Email: bcm1@cec.wustl.edu Supervised
More informationS. Tanny MAT 344 Spring 1999. be the minimum number of moves required.
S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,
More informationPractice Problems for Test 3
Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all
More informationTO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC
TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies
More informationExploratory Data Analysis
1 Exploratory Data Aalysis Exploratory data aalysis is ofte the rst step i a statistical aalysis, for it helps uderstadig the mai features of the particular sample that a aalyst is usig. Itelliget descriptios
More informationThe analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
More information