Some Applications of Dirac's Delta Function in Statistics for More Than One Random Variable



Similar documents
Finite Dimensional Vector Spaces.

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

REVISTA INVESTIGACIÓN OPERACIONAL VOL., 32, NO. 2, , 2011

Credibility Premium Calculation in Motor Third-Party Liability Insurance

ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN


On formula to compute primes and the n th prime

Halloween Costume Ideas for the Wii Game

NEURAL DATA ENVELOPMENT ANALYSIS: A SIMULATION

Problem Set 6 Solutions

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

CSSE463: Image Recognition Day 27

SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN

Annual Report H I G H E R E D U C AT I O N C O M M I S S I O N - PA K I S TA N

Online Insurance Consumer Targeting and Lifetime Value Evaluation - A Mathematics and Data Mining Approach

REFINED CALCULATION AND SIMULATION SYSTEM OF LOCAL LARGE DEFORMATION FOR ACCIDENT VEHICLE

Constrained Cubic Spline Interpolation for Chemical Engineering Applications

The simple linear Regression Model

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Average Price Ratios

New Basis Functions. Section 8. Complex Fourier Series

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Campus Sustainability Assessment and Related Literature

A Note on Approximating. the Normal Distribution Function

DYNAMIC PROGRAMMING APPROACH TO TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE

CHAPTER 4c. ROOTS OF EQUATIONS

Numerical Comparisons of Quality Control Charts for Variables

MDM 4U PRACTICE EXAMINATION

Put the human back in Human Resources.

Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes

Validation and Performance Analysis of Binary Logistic Regression Model

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

JCUT-3030/6090/1212/1218/1325/1530

CREATE SHAPE VISUALIZE

Lecture 7. Norms and Condition Numbers

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

SCO TT G LEA SO N D EM O Z G EB R E-

Measuring the Quality of Credit Scoring Models

QUANTITATIVE METHODS CLASSES WEEK SEVEN

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

PARTICULAR RELIABILITY CHARACTERISTICS OF TWO ELEMENT PARALLEL TECHNICAL (MECHATRONIC) SYSTEMS

Numerical Methods with MS Excel


5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:


Simple Linear Regression

10.5 Future Value and Present Value of a General Annuity Due

How To Value An Annuity


Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation

Key players and activities across the ERP life cycle: A temporal perspective

How do bookmakers (or FdJ 1 ) ALWAYS manage to win?

Chapter 4 Multiple-Degree-of-Freedom (MDOF) Systems. Packing of an instrument

tis, cis cunc - cunc - tis, cis tis, cis cunc - tis, func - def - def - tis, U func - def - func - tis, pa - tri pa - tri pa - tri tu - per - tu -

CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID

THREE DIMENSIONAL GEOMETRY

Statistical Decision Theory: Concepts, Methods and Applications. (Special topics in Probabilistic Graphical Models)

Basic Queueing Theory M/M/* Queues. Introduction

Introduction to Reserving

A Fair Non-repudiation Protocol without TTP on Conic Curve over Ring

Non-Linear and Unbalanced Three-Phase Load Static Compensation with Asymmetrical and Non Sinusoidal Supply

BASIC DEFINITIONS AND TERMINOLOGY OF SOILS

n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.

A Statistical Approach to Classify and Identify DDoS Attacks using UCLA Dataset

SOLUTIONS TO CONCEPTS CHAPTER 19

A Portfolio Risk Management Perspective of Outsourcing

INFLUENCE OF DEBT FINANCING ON THE EFFECTIVENESS OF THE INVESTMENT PROJECT WITHIN THE MODIGLIANIMILLER THEORY


Connector and Cable Diagrams (Pinout Charts)

Coordination, Cooperation, Contagion and Currency Crises 1

BLADE 12th Generation. Rafał Olszewski. Łukasz Matras

Chapter Eight. f : R R

DEVELOPMENT OF MODEL FOR RUNNING DIESEL ENGINE ON RAPESEED OIL FUEL AND ITS BLENDS WITH FOSSIL DIESEL FUEL

Online Department Stores. What are we searching for?


ELECTRICAL CAPACITY SYMBOL EQUIPMENT TYPE LOCATION / SERVING MFR MODEL (GALLONS) VOLTS PH AMPS WATTS

Authenticated Encryption. Jeremy, Paul, Ken, and Mike


The effect on the Asian option price times between the averaging. Mark Ioffe


Project 3 Weight analysis

Curve Fitting and Solution of Equation

Virtual Sensors

The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev


Transcription:

Avalabl at htt://vaudu/aa Al Al Ma ISSN: 9-9466 Vol Issu Ju 8 4 54 Prvousl Vol No Alcatos ad Ald Maatcs: A Itratoal Joural AAM So Alcatos o Drac's Dlta Fucto Statstcs or Mor Tha O Rado Varabl Satau Charabort Dartt o Maatcs Uvrst o Tas Pa Arca Wst Uvrst Drv Edburg Tas 7854 USA scharabort@utadu Rcvd Jul 4 6; acctd Dcbr 7 7 Abstract I s ar w dscuss so trstg alcatos o Drac's dlta ucto Statstcs W hav trd to td so o stg rsults to or a o varabl cas Whl dog at w artcularl coctrat o bvarat cas Kwords: Drac's Dlta ucto Rado Varabls Dstrbutos Dsts Talor's Srs Easos Mot gratg uctos Itroducto Cauch 86 was rst ad ddtl Posso 85 gav a drvato o Fourr tgral or b as o a argut volvg what w would ow rcogz as a salg orato o t assocatd w dlta ucto Ad r ar slar als o us o what ar sstall dlta uctos b Krcho Hlholtz ad Havsd But Drac was rst to us otato Th Drac dlta ucto -ucto was troducd b Paul Drac at d o 9s a ort to crat aatcal tools or dvlot o quatu ld or H rrrd to t as a ror ucto Drac 9 Latr 947 Laurt Schwartz gav t a or rgorous aatcal dto as a lar uctoal o sac o tst uctos D st o all ral-valud tl drtabl uctos w coact suort such at or a gv ucto D valu o uctoal s gv b rort b blow Ths s calld stg or salg rort o dlta ucto Sc dlta ucto s ot rall a ucto classcal ss o should ot cosdr valu o dlta ucto at Hc doa o dlta ucto s D ad ts valu or D ad a gv s Khur 4 studd so trstg alcatos o dlta ucto statstcs H al studd uvarat cass v ough h dd gv so trstg als or ultvarat cas W shall stud so or alcatos ultvarat scaro s wor Ths ght hl utur rsarchrs 4

AAM: Itr J Vol Issu Ju 8 [Prvousl Vol No ] 4 statstcs to dvlo or das I sctos ad w dscuss drvatvs o dlta ucto bo uvarat ad ultvarat cas Th scto 4 w dscuss so alcatos o dlta ucto robablt ad statstcs I scto 5 w dscuss calculatos o dsts bo uvarat ad ultvarat cas usg trasoratos o varabls I scto 6 w us vctor otatos or dlta uctos ultdsoal cas I scto 7 w dscuss vr brl trasoratos o varabls dscrt cas Th scto 8 w dscuss ot gratg ucto ultvarat st u W coclud w w rars scto 9 Drvatvs o -ucto Uvarat Cas I uvarat cas so basc rorts satsd b Drac's dlta ucto ar: a d b b d or all a < < b a whr s a ucto cotuous a ghborhood o ot I artcular w hav d Ths s stg rort at w tod rvous scto I s a ucto w cotuous drvatvs u to ordr so ghborhood o b a d or all a < < b I artcular w hav d or a gv Hr s gralzd ordr drvatv o Ths drvatv ds a lar uctoal whch assgs valu to Now lt us cosdr Havsd ucto H ut st ucto dd b

44 Satau Charabort H or < or dh Th gralzd drvatv o H s As a rsult w gt a scal d cas o orula or ordr drvatv tod abov: d! Drvatvs o dlta ucto bvarat cas Followg Sachv ad Woczs 997 Khur 4 rovdd tdd dto o dlta ucto to -dsoal Euclda sac But w shall al coctrat o bvarat cas As uvarat cas w ca wrt dow slar rorts or bvarat cas as wll I bvarat cas So w assu to b a cotuous ucto so ghborhood o w ca wrt R R dd whr R s ral l Now or s ucto all ts artal drvatvs u to ordr ar cotuous abovtod ghborhood o dd C R R whr C s ubr o cobatos o out o obcts s gralzd ordr drvatv o I gral -dsoal cas b usg ducto o t ca b show at d d!!!

AAM: Itr J Vol Issu Ju 8 [Prvousl Vol No ] 45 whr ad s a ucto o varabls al 4 Us o Dlta Fucto to Obta Dscrt Probablt Dstrbutos I s a dscrt rado varabl at assus valus a a w robablts rsctvl such at robablt ass ucto o ca b rrstd as a Now lt us cosdr two dscrt rado varabls ad Y whch assu valus a a ad b b rsctvl ad ot robablt P a Y b s gv b or ad so at ot robablt ass ucto s gv b a b Slarl o ca wrt dow ot robablt dstrbuto o a t ubr o rado varabls trs dlta uctos as ollows: Suos w hav rado varabls w tag valus a or w robablt Th ot robablt ass ucto s P a a As a al w a cosdr stuato o ultoal dstrbutos Lt ollow ultoal dstrbuto w aratrs Th!!! P whr add u to ad add u to I trs o dlta ucto ot robablt ass ucto s P!!!!

46 Satau Charabort W ca also cosdr codtoal robablts ad o rssg trs o - ucto Lt us go bac to al o two dscrt rado varabls ad Y whr tas valus a a a ad Y tas valus b b b Th codtoal robablt o Y gv s gv b PY PY P a b a 5 Dsts o Trasoratos o Rado Varabls Usg -ucto I s a cotuous rado varabl w a dst ucto ad Y g s a ucto o dst ucto o Y al h s gv b h g d W ca td s to two-dsoal cas I ad Y ar two cotuous rado varabls w ot dst ucto ad Z φ Y ad W φ Y ar two rado varabls obtad as trasoratos ro Y bvarat dst ucto or Z ad W s gv b z w z φ w φ h dd whr z ad w ar varabls corrsodg to trasoratos φ Y ad φ Y Ths has obvous tso to gral -dsoal cas Khur 4 gav a al o two ddt Gaa rado varabls ad Y so at ad Y ar gaa rado varabls w dstrbutos Γ λ ad Γ λ rsctvl I w dot dsts as ad rsctvl w hav λ λ or > Γ or

AAM: Itr J Vol Issu Ju 8 [Prvousl Vol No ] 47 λ λ or > Γ or I at cas w d Z ad W Y Z s dstrbutd as Bta w Y aratrs ad W s dstrbutd as Gaa w aratr valus ad Fro ow o w shall us β a b to dcat a Bta rado varabl w ostv aratrs a b ad Γ c to dcat a Gaa dstrbuto w ostv aratrs c ad Now lt us cosdr rado varabls dstrbutd ddtl so at s dstrbutd as gaa Γ or ad w d Y Y Y Th w hav Y dstrbutd as β Y dstrbutd as β Y dstrbutd as Γ Ths ca b show ollowg actl sa tchqu usd Khur 4 whch s a o st gralzato o rsult rovd b h So w d Th ot dst o Y Y ad Y s gv b Γ Γ Γ g d d d d d d Usg rorts o dlta ucto

48 Satau Charabort rost tgral tgral w rsct to d d Nt w us dlta ucto rorts to dal w scod tgral tgral w rsct to as d d Th w us dlta ucto rorts or outrost tgral wout costat trs s d Fall uttg costat trs togr w gt g Γ Γ Γ Ths colts roo 6 Vctor otatos or dlta uctos ultdsoal cas

AAM: Itr J Vol Issu Ju 8 [Prvousl Vol No ] 49 I ultdsoal cas trasorato s lar Y A whr Y ad ar ad vctors rsctvl ad A s a atr w ca rss g dst o Y vctor otato trs o dst o as ollows whr So g A d T T A a a T T a whr a ar rows o atr A Now o-dsoal st u a s a scalar a s gv b a Slarl ultdsoal st u a Y A as abov ad A s a osgular atr so at w ust hav A A A Ths s bcaus o ollowg: sc trasorato s osgular w hav g A A ad ror ro A A A d But w ow at A d A Thror ollows Slarl vctor w hav Y A b whr A s a osgular atr ad b s a

5 Satau Charabort A b A b A Usg s o ca coclud at s ultvarat oral w μ as a vctor ad as covarac atr or a osgular trasorato A ad a costat vctor b trasord vctor Y A b ollows ultvarat oral w Aμ b as a vctor T ad A A as varac-covarac atr 7 Trasorato o Varabls Dscrt Cas Trasorato o varabls ca b ald to dscrt cas as wll I s a dscrt rado varabl tag valus a a w robablts ad Y g s a trasord varabl corrsodg robablt ass ucto or Y s gv b q g d g a I two-dsoal cas s ot robablt ass ucto or two varabls ad Y q z w ot robablt ass ucto or trasord ar Z φ ad W φ s gv b Y Y z w z φ w φ q dd z φ a b w φ a b Whr ar Y s dscrt havg valus a b w robablts or ad 8 Mots ad Mot Gratg Fuctos I uvarat st u d o-ctral ot o s wrtt as a d a d a I bvarat st u o-ctral ot o ordr l or Y s gv b l l dd a b dd

AAM: Itr J Vol Issu Ju 8 [Prvousl Vol No ] 5 l a b dd For al Y ollow troal dstrbuto! l! l! l! l a b l l As a rsult corrsodg o-ctral ot o ordr r s s gv b r s l l l! r s dd a bl! l! l! Th ost trstg art Khur's artcl s rrstato o dst ucto o a cotuous rado varabl trs o ts o-ctral ots Thus s dst ucto or s rrstd as l <! µ whr s gralzd drvatv o ad µ s ordr o-ctral ot or rado varabl O ca s a roo o s rsult Kawal 998 Lt us brl to tchqu usd b h to drv abov rsso H showd at or a ral ucto dd ad drtabl o all ordrs a ghborhood o zro < µ! whr r roduct btw uctos ad s dd as d Ths lads us to coclud 4! µ < Th crucal st roo was to us Talor's aso o-dso or ucto Thus w hav <!

5 Satau Charabort Th d Ths two sts gv us rlato 4 Wh w ov to two-dsoal scaro w shall hav to us Talor's srs aso or a two-dsoal aaltc ucto about ot whch s gv b < ] [! C! 5 Now hr also w ollow sa tchqu ad so w cout whch s dd as dd Now usg Talor s srs aso o about ro 5 ad assug at trchag o tgrals w suatos rssbl w gt < dd C ]! [ < dd!! <!! Now w d rs ordr o-ctral ot or ar Y as s r s r s r dd µ Th ro abov <!! µ < µ!!

AAM: Itr J Vol Issu Ju 8 [Prvousl Vol No ] 5 Th last qualt ollows bcaus o ollowg rlato Thror w hav < < µ!! Now o-ctral ot o ordr r s s gv b But w also hav r s r s dd < r s dd r or s rs r! s! r ad s Thror o-ctral ot o ordr r s rducs to µ r s µ dd!! Wh w tal about ot gratg ucto o varabl cas w hav t t φ t E µ <! t µ < d d t < µ!! µ t <! d d I two-varabl cas ot gratg ucto s gv b φ s t s ty s t E dd s t < µ <!! s t < µ <!! dd dd

54 Satau Charabort µ!! < < < < s s t µ!! t I gral -dsoal cas ot gratg ucto could b obtad actl slar asho so at t s gv b t t t φ t t t µ < < <!!! 9 Cocludg Rars Th stud o gralzd uctos s ow wdl usd ald aatcs ad grg sccs Th -ucto aroach rovds us w a ud aroach tratg dscrt ad cotuous dstrbutos Ths aroach has ottal to acltat w was o ag so classcal cocts aatcal statstcs Howvr so trstg alcatos ca b oud ar b Paza ad Prozato 996 I s ar auors us dlta ucto aroach or dsts o olar statstcs ad or argal dsts olar rgrsso W ar also loog orward to obta so trstg alcatos o dlta ucto statstcs Acowldgt: I a scrl aul to Prossor Loa Dba Uvrst o Tas-Pa Arca or brgg s robl to otc REFERENCES Drac PAM 9 Th Prcls o Quatu Mchacs Oord Uvrst Prss Hoss RF 998 Gralzd Fuctos Ells Horwood Ltd Chchstr Suss Eglad Kawal RP 998 Fucto Thor ad Tchqu d Edto Bosto MA Brhausr Khur AI 4 Alcatos o Drac's dlta ucto statstcs Itratoal Joural o Maatcal Educato Scc ad Tcholog 5 o 85-95 Paza A ad Prozato L 996 A Drac-ucto od or dsts o olar statstcs ad or argal dsts olar rgrsso Statstcs & Probablt Lttrs 6 59-67 Sachv AI ad Woczs WA 997 Dstrbutos Phscal ad Egrg Sccs Bosto MA Brhausr