Measuring the Quality of Credit Scoring Models
|
|
|
- Barbara White
- 9 years ago
- Views:
Transcription
1 Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009
2 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6 4. Idexes ased o dstruto fucto 7 5. Idexes ased o desty fucto 7 6. oe results for orally dstruted scores 4 7. Coclusos 30 /30
3 Itroducto It s possle to use scor odel effectvely wthout kow how ood t s. Usually oe has several scor odels ad eeds to select just oe. The est oe. Before easur the qualty of odels oe should kow (ao other ths): ood/ad defto expected reject rate 3/30
4 Good/ad clet defto Good defto s the asc codto of effectve scor odel. The defto usually depeds o: days past due (DPD) aout past due te horzo Geerally we cosder follow types of clet: Good Bad Ideterate Isuffcet Excluded Rejected. 4/30
5 Good/ad clet defto BAD Custoer Accepted Rejected Default (60 or 90 DPD) Fraud (frst delayed payet, 90 DPD) Early default (-4 delayed payet, 60 DPD) Late default (5 delayed payet, 60 DPD) GOOD Not default Isuffcet INDETERMINATE 5/30
6 Measur the qualty Oce the defto of ood / ad clet ad clet's score s avalale, t s possle to evaluate the qualty of ths score. If the score s a output of a predctve odel (scor fucto), the we evaluate the qualty of ths odel. We ca cosder two asc types of qualty dexes. Frst, dexes ased o cuulatve dstruto fucto lke Koloorov-rov statstcs (K) G dex C-statstcs Lft. The secod, dexes ased o lkelhood desty fucto lke Mea dfferece (Mahalaos dstace) Iforatoal statstcs/value (I Val ). 6/30
7 Idexes ased o dstruto fucto D K, 0, clet s ood otherwse. Nuer of ood clets: Nuer of ad clets: Proportos of ood/ad clets: p G, p B Eprcal dstruto fuctos: F ( a) I ( s a D ). GOOD K Koloorov-rov statstcs (K) K ax F, BAD ( a) F, a [ L, H ] GOOD ( a) F F ( a) I ( s a D 0). BAD K N. ALL ( a) N I N ( s a ) a, [ L H ] I ( A) 0 A s true otherwse 7/30
8 Idexes ased o dstruto Lorez curve (LC) fucto x y G dex F F. BAD. GOOD ( a) ( a), a [ L, H ]. A G A A B G k ( F F ) ( F F ). BAD k. BAD k. GOOD k. GOOD k F. BAD k F. GOOD where ( ) s k-th vector value of eprcal dstruto fucto of ad (ood) clets k 8/30
9 Idexes ased o dstruto fucto C-statstcs: c stat A C G c It represets the lkelhood that radoly selected ood clet has hher score tha radoly selected ad clet,.e. c stat P ( s s D 0) K D K 9/30
10 0/30 Aother possle dcator of the qualty of scor odel ca e cuulatve Lft, whch says, how ay tes, at a ve level of rejecto, s the scor odel etter tha rado selecto (rado odel). More precsely, the rato dcates the proporto of ad clets wth less tha a score a,, to the proporto of ad clets the eeral populato. Forally, t ca e expressed y: [ ] H L a, ( ) ( ) ( ) ( ) ( ) ( ) N a s I Y a s I Y Y I Y I a s I Y a s I BadRate a CuBadRate a Lft ) ( ) ( Idexes ased o dstruto fucto BadRate a BadRate a aslft ) ( ) (
11 Idexes ased o dstruto fucto Usually t s coputed us tale wth uers of all ad ad clets soe ads (decles). asolutely cuulatvely decle # clets # ad clets Bad rate as. Lft # ad clets Bad rate cu. Lft ,0% 3,0 6 6,0% 3,0 00,0%,40 8 4,0%, ,0%,60 36,0%, ,0%,00 4 0,3%, ,0% 0, ,8%, ,0% 0, ,7%, ,0% 0,0 47 6,7%, ,0% 0,0 48 6,0%,0 9 00,0% 0,0 49 5,4%, ,0% 0,0 50 5,0%,00 All ,0% Lft value 0,8 0,6 0,4 3,50 as. Lft 3,00 cu. Lft,50,00,50,00 0, decle G0,55 0, Lorz curve Base le 0 0 0, 0,4 0,6 0,8 /30
12 Idexes ased o dstruto fucto Whe ad rates are ot ootoe: LC looks fe G s slhtly lowered Lft looks strae asolutely cuulatvely decle # clets # ad clets Bad rate as. Lft # ad clets Bad rate cu. Lft ,0%,60 8 8,0%,60 00,0%,40 0 0,0%, ,0% 3,0 36,0%, ,0%,00 4 0,3%, ,0% 0, ,8%, ,0% 0, ,7%, ,0% 0,0 47 6,7%, ,0% 0,0 48 6,0%,0 9 00,0% 0,0 49 5,4%, ,0% 0,0 50 5,0%,00 All ,0% 0,8 G0,48 3,50 3,00,50 as. Lft cu. Lft 0,6 0,4 Lft value,00,50,00 0, Lorz curve Base le 0 0 0, 0,4 0,6 0,8 0, decle /30
13 Idexes ased o dstruto Whe score s reversed, we ota reversed fures. fucto asolutely cuulatvely decle # clets # ad clets Bad rate as. Lft # ad clets Bad rate cu. Lft ,0% 3,0 6 6,0% 3,0 00,0%,40 8 4,0%, ,0%,60 36,0%, ,0%,00 4 0,3%, ,0% 0, ,8%, ,0% 0, ,7%, ,0% 0,0 47 6,7%, ,0% 0,0 48 6,0%,0 9 00,0% 0,0 49 5,4%, ,0% 0,0 50 5,0%,00 All ,0% asolutely cuulatvely decle # clets # ad clets Bad rate as. Lft # ad clets Bad rate cu. Lft 00,0% 0,0,0% 0,0 00,0% 0,0,0% 0,0 3 00,0% 0,0 3,0% 0,0 4 00,0% 0,0 4,0% 0,0 5 00,0% 0,40 6,% 0, ,0% 0,60 9,5% 0, ,0%,00 4,0% 0, ,0%,60,8% 0, ,0%, ,8% 0, ,0% 3,0 50 5,0%,00 All ,0% Lft value 3,50 as. Lft 3,00 cu. Lft,50,00,50,00 0, decle G - 0,55 0,8 0,6 0,4 0, Lorz curve Base le 0 0 0, 0,4 0,6 0,8 3/30
14 Idexes ased o dstruto The G s ot eouh!!! C : C : decle # clets # ad clets Bad rate ,0% ,0% ,0% ,0% ,0% ,0% ,0% ,0% ,0% ,0% All ,0% decle # clets # ad clets Bad rate ,0% ,0% ,0% ,0% 5 00,0% ,0% ,0% ,0% ,0% 0 00,0% All ,0% 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, 0, 0 fucto ood ad 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, 0, 0 ood ad K , 0, 0,3 0,4 0,5 0,6 0,7 0,8 0,9 K , 0, 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,8 0,6 0,4 0, 0 0,8 0,6 0,4 0, 0 G 0.4 G 0,4 0 0, 0,4 0,6 0,8 Lorz curve Base le 0 0, 0,4 0,6 0,8 Lorz curve Base le 4/30
15 Idexes ased o dstruto fucto C : C : 4,00 3,50 3,00 as. Lft cu. Lft,50,00 as. Lft cu. Lft Lft value,50,00,50 Lft value,50,00,00 0,50 0, decle decle Lft 0%.55 > Lft 50%.48 < Lft 0%.90 Lft 50%.64 C s etter f reject rate s expected aroud 50%. C s uch ore etter f reject rate s expected y 0%. 5/30
16 Idexes ased o dstruto fucto Lft ca e expressed ad coputed y forulae: Lft( a) F N. ALL ( a). BAD a [ L, H ] F ( a) Lft q F F F N. ALL ( FN. ALL ( q)) F. BAD N. ( F ( q)) q ( F ( )). BAD q ALL N. ALL N. ALL { a [ L, H], F ( a) q} ( q) N. ALL Lft 0% ( 0 F F (0.)).. BAD N. ALL 6/30
17 Idexes ased o desty fucto Lkelhood desty fuctos: f GOOD (x) f BAD (x) Kerel estates: ~ f GOOD ( x, h), D K K h ( x s ) ~ f BAD ( x, h) D 0 k K h ( x s ) Optal adwdth (axal sooth): h O, k 3 k ( )! ( 5) k k k k ~ k (k 3)! where: k ~ s the order of kerel fucto (e.. for Epaechkov kerel) s uer of actual cases s a estate of stadard devato 7/30
18 Idexes ased o desty fucto Mea dfferece (Mahalaos dstace): D M M where s pooled stadard devato: M, M are eas of ood (ad) clets, are stadard devatos of ood (ad) clets 8/30
19 Idexes ased o desty fucto Iforato value (I val ) cotuous case (Dverece): f I val dff f ( x) GOOD BAD f BAD x ( ) GOOD ( f ( x) f ( x) ) l dx ( x) f ( x) f ( x) GOOD BAD f LR ( x) l f f GOOD BAD ( x) ( x) 9/30
20 Iforato value (I val ) dscretzed cotuous case: Replace desty fuctos y ther kerel estates ad copute teral uercally (e.. y coposte trapezodal rule). Us Epaechkov kerel, ve y ad optal adwdth we have ~ f ( x) For ve M pots Idexes ased o desty IV h O, k we ota ( x ) I [,] 3 K( x) x 4 ( ) ~ ~ ( ) fgood( x, ho,) fgood ( x, ho,) fbad( x, ho,) l ~ fbad( x, ho,) x 0, K, x M fucto ~ I val M xm x0 ~ ~ ~ fiv ( x0) fiv ( x ) fiv ( xm ) M x0 xm 0/30
21 Idexes ased o desty fucto Iforato statstcs/value (I val ) dscrete case: Create tervals of score typcally decles. Nuer of oods (ads) -th terval s arked y ( ). It ust holds > 0, > 0 The we have I val l score t. # ad clets #ood clets % ad [] % ood [] [3] [] - [] [4] [] / [] [5] l[4] [6] [3] * [5] 0,0%,% -0,0 0,53-0,64 0,0 5 4,0%,6% -0,0 0,39-0,93 0, ,0% 5,5% -0, 0,34 -,07 0, ,0% 9,8% -0,8 0,35 -,05 0, ,0% 5,4% -0,05 0,77-0,6 0, ,0% 6,0% 0,4,7 0,77 0, ,0% 4,4% 0,06,80 0,59 0, ,0%,% 0,05,84 0,6 0, ,0% 0,% 0,08 5,,63 0,3 0 48,0% 5,% 0,03,53 0,93 0,03 All Ifo. Value 0,68 /30
22 Iforato value for our exaple of two scorecards: C : C : Idexes ased o desty fucto decle # clets # ad clets #ood % ad [] % ood [] [3] [] - [] [4] [] / [] [5] l[4] [6] [3] * [5] cu. [6] ,0% 7,% -0,8 0, -,58 0,44 0, ,0% 9,3% -0,07 0,58-0,54 0,04 0, ,0% 0,% 0,0,8 0,5 0,0 0, ,0% 0,% 0,0,8 0,5 0,0 0, ,0% 0,3% 0,03,48 0,39 0,0 0, ,0% 0,4% 0,04,74 0,55 0,0 0, ,0% 0,4% 0,04,74 0,55 0,0 0, ,0% 0,6% 0,06, 0,75 0,04 0, ,0% 0,6% 0,06, 0,75 0,04 0, ,0% 0,7% 0,07,67 0,98 0,07 0,70 All Ifo. Value 0,70 decle # clets # ad clets #ood % ad [] % ood [] [3] [] - [] [4] [] / [] [5] l[4] [6] [3] * [5] cu. [6] ,0% 8,9% -0, 0,44-0,8 0,09 0, ,0% 9,% -0,09 0,5-0,68 0,06 0, ,0% 9,% -0,08 0,54-0,6 0,05 0, ,0% 9,4% -0,06 0,63-0,46 0,03 0, ,0% 9,8% -0,0 0,8-0,0 0,00 0, ,0% 0,4% 0,04,74 0,55 0,0 0, ,0% 0,7% 0,07,67 0,98 0,07 0, ,0% 0,8% 0,08 3,59,8 0,0 0, ,0% 0,8% 0,08 3,59,8 0,0 0, ,0% 0,9% 0,09 5,44,69 0,5 0,67 All Ifo. Value 0,67 /30
23 Idexes ased o desty Us arks C : C : 0,0 0,05 0,00-0,05-0,0-0,5-0,0-0,5-0,30 0,0 0,05 0,00-0,05-0,0-0,5 I_dff I_LR I dff I_dff I_LR ,50,00 0,50 0,00-0,50 -,00 -,50 -,00,00,50,00 0,50 0,00 I -0,50 -,00 LR fucto l we have: 0,50 I_df * I_LR 0,45 cu. I_dff * I_LR 0,40 0,35 0,30 0,5 0,0 0,5 0,0 0,05 0, ,6 I_df * I_LR 0,4 cu. I_dff * I_LR 0, 0,0 0,08 0,06 0,04 0,0 0, ,80 0,70 0,60 0,50 0,40 0,30 0,0 0,0 0,00 0,80 0,70 0,60 0,50 0,40 0,30 0,0 0,0 0,00 K G 0.4 Lft 0%.55 Lft 50%.48 I val 0.70 I val0% 0.47 I val50% 0.50 K G 0.4 Lft 0%.90 Lft 50%.64 I val 0.67 I val0% 0.5 I val50% 0.3 3/30
24 4/30 Assue that the scores of ood ad ad clets are orally dstruted,.e. we ca wrte ther destes as Estates of paraeters ad : Pooled stadard devato: Estates of ea ad stadard dev. of scores for all clets : oe results for orally dstruted scores ( ) ) ( x GOOD e x f µ π ( ) ) ( x BAD e x f µ π µ µ,,,. M M, are stadard devatos of ood (ad) clets, are eas of ood (ad) clets M M M M ALL ( ) ALL ALL ALL µ,
25 µ µ D D D K Φ Φ D G Φ Lft q I val D oe results for orally Φ q ALL dstruted scores Assue that stadard devatos are equal to a coo value : ( ) Φ D Φ ( q) p D G Where Φ s the stadardzed oral dstruto fucto, Φ the oral dstruto fucto wth paraeters, ad Φ µ ( ), ( ) s the stadard quatle fucto. µ Lft q D M Φ q ALL Φ M ( q) p D G 5/30
26 6/30 Geerally (.e. wthout assupto of equalty of stadard devatos): Φ Φ c D a D a c D a D a K * * * * oe results for orally dstruted scores, a * D µ µ * M M D where c l, ( ) ( ) ( ) ( ) Φ Φ D D D D K l l * * * *
27 7/30 Geerally (.e. wthout assupto of equalty of stadard devatos): ( ) * Φ D G oe results for orally dstruted scores ( ) ( ) ( ) Φ Φ Φ Φ ALL ALL ALL ALL q q q q q Lft µ µ µ µ, *, ) ( val A A D A I *, ) ( val A A D A I ( ) Φ Φ ALL q M M q q Lft
28 oe results for orally dstruted scores K: µ 0, G µ 0, K ad the G react uch ore to chae of µ ad are alost uchaed the drecto of. G > K 8/30
29 oe results for orally dstruted scores Lft 0% : µ 0, I val : µ 0, I case of Lft 0% t s evdet stro depedece o µ ad sfcatly hher depedece o tha case of K ad G. Aa stro depedece o µ. Furtherore value of I val rses very quckly to fty whe teds to zero. 9/30
30 Coclusos It s possle to use scor odel effectvely wthout kow how ood t s. It s ecessary to jude scor odels accord to ther streth score rae where cutoff s expected. The G s ot eouh! Results cocer Lft ad Iforato value ca e used to ota the est avalale scor odel. Results for orally dstruted scores ca help wth coputato of referred dexes. Furtherore they ca help to uderstad how those dexes ehave. 30/30
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering
Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
Numerical Comparisons of Quality Control Charts for Variables
Global Vrtual Coferece Aprl, 8. - 2. 203 Nuercal Coparsos of Qualty Cotrol Charts for Varables J.F. Muñoz-Rosas, M.N. Pérez-Aróstegu Uversty of Graada Facultad de Cecas Ecoócas y Epresarales Graada, pa
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
CHAPTER 4: NET PRESENT VALUE
EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks
Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]
How do bookmakers (or FdJ 1 ) ALWAYS manage to win?
How do bookakers (or FdJ ALWAYS aage to w? Itroducto otatos & varables Bookaker's beeft eected value 4 4 Bookaker's strateges5 4 The hoest bookaker 6 4 "real lfe" bookaker 6 4 La FdJ 8 5 How ca we estate
AP Statistics 2006 Free-Response Questions Form B
AP Statstcs 006 Free-Respose Questos Form B The College Board: Coectg Studets to College Success The College Board s a ot-for-proft membershp assocato whose msso s to coect studets to college success ad
n. We know that the sum of squares of p independent standard normal variables has a chi square distribution with p degrees of freedom.
UMEÅ UNIVERSITET Matematsk-statstska sttutoe Multvarat dataaalys för tekologer MSTB0 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multvarat dataaalys för tekologer B, 5 poäg.
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity
Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute
Fuzzy Task Assignment Model of Web Services Supplier in Collaborative Development Environment
, pp.199-210 http://dx.do.org/10.14257/uesst.2015.8.6.19 Fuzzy Task Assget Model of Web Servces Suppler Collaboratve Developet Evroet Su Ja 1,2, Peg Xu-ya 1, *, Xu Yg 1,3, Wag Pe-e 2 ad Ma Na- 4,2 1. College
Maintenance Scheduling of Distribution System with Optimal Economy and Reliability
Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,
Chapter 14 Nonparametric Statistics
Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they
Aggregation Functions and Personal Utility Functions in General Insurance
Acta Polytechca Huarca Vol. 7, No. 4, 00 Areato Fuctos ad Persoal Utlty Fuctos Geeral Isurace Jaa Šprková Departmet of Quattatve Methods ad Iformato Systems, Faculty of Ecoomcs, Matej Bel Uversty Tajovského
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
Small-Signal Analysis of BJT Differential Pairs
5/11/011 Dfferental Moe Sall Sgnal Analyss of BJT Dff Par 1/1 SallSgnal Analyss of BJT Dfferental Pars Now lets conser the case where each nput of the fferental par conssts of an entcal D bas ter B, an
CIS603 - Artificial Intelligence. Logistic regression. (some material adopted from notes by M. Hauskrecht) CIS603 - AI. Supervised learning
CIS63 - Artfcal Itellgece Logstc regresso Vasleos Megalookoomou some materal adopted from otes b M. Hauskrecht Supervsed learg Data: D { d d.. d} a set of eamples d < > s put vector ad s desred output
A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining
A Fast Clusterg Algorth to Cluster Very Large Categorcal Data Sets Data Mg Zhexue Huag * Cooperatve Research Cetre for Advaced Coputatoal Systes CSIRO Matheatcal ad Iforato Sceces GPO Box 664, Caberra
Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK
Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
Developing a Fuzzy Search Engine Based on Fuzzy Ontology and Semantic Search
0 IEEE Iteratoal Coferece o Fuzzy Systes Jue 7-30, 0, Tape, Tawa Developg a Fuzzy Search Ege Based o Fuzzy Otology ad Seatc Search Le-Fu La Chao-Ch Wu Pe-Yg L Dept. of Coputer Scece ad Iforato Egeerg Natoal
ANNEX 77 FINANCE MANAGEMENT. (Working material) Chief Actuary Prof. Gaida Pettere BTA INSURANCE COMPANY SE
ANNEX 77 FINANCE MANAGEMENT (Workg materal) Chef Actuary Prof. Gada Pettere BTA INSURANCE COMPANY SE 1 FUNDAMENTALS of INVESTMENT I THEORY OF INTEREST RATES 1.1 ACCUMULATION Iterest may be regarded as
A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree
, pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal
Polyphase Filters. Section 12.4 Porat 1/39
Polyphase Flters Secto.4 Porat /39 .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
Finite Difference Method
Fte Dfferece Method MEL 87 Computatoa Heat rasfer --4) Dr. Praba audar Assstat Professor Departmet of Mechaca Egeerg II Deh Dscretzato Methods Requred to covert the geera trasport equato to set of agebrac
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
An IG-RS-SVM classifier for analyzing reviews of E-commerce product
Iteratoal Coferece o Iformato Techology ad Maagemet Iovato (ICITMI 205) A IG-RS-SVM classfer for aalyzg revews of E-commerce product Jaju Ye a, Hua Re b ad Hagxa Zhou c * College of Iformato Egeerg, Cha
Lecture 7. Norms and Condition Numbers
Lecture 7 Norms ad Codto Numbers To dscuss the errors umerca probems vovg vectors, t s usefu to empo orms. Vector Norm O a vector space V, a orm s a fucto from V to the set of o-egatve reas that obes three
Performance Attribution. Methodology Overview
erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
LECTURE 13: Cross-validation
LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M
Center, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes
Covero of No-Lear Stregth Evelope to Geeralzed Hoek-Brow Evelope Itroducto The power curve crtero commoly ued lmt-equlbrum lope tablty aaly to defe a o-lear tregth evelope (relatohp betwee hear tre, τ,
Basic statistics formulas
Wth complmet of tattcmetor.com, the te for ole tattc help Set De Morga Law Bac tattc formula Meaure of Locato Sample mea (AUB) c A c B c Commutatvty & (A B) c A c U B c A U B B U A ad A B B A Aocatvty
Constrained Cubic Spline Interpolation for Chemical Engineering Applications
Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel
ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil
ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable
hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN
Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl
ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. [email protected]. evrenziplar@yahoo.
ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs
Speeding up k-means Clustering by Bootstrap Averaging
Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg
Report 52 Fixed Maturity EUR Industrial Bond Funds
Rep52, Computed & Prted: 17/06/2015 11:53 Report 52 Fxed Maturty EUR Idustral Bod Fuds From Dec 2008 to Dec 2014 31/12/2008 31 December 1999 31/12/2014 Bechmark Noe Defto of the frm ad geeral formato:
Multi-Channel Pricing for Financial Services
0-7695-435-9/0 $7.00 (c) 00 IEEE Proceedgs of the 35th Aual Hawa Iteratoal Coferece o yste ceces (HIC-35 0) 0-7695-435-9/0 $7.00 00 IEEE Proceedgs of the 35th Hawa Iteratoal Coferece o yste ceces - 00
GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all
Properties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
Near Neighbor Distribution in Sets of Fractal Nature
Iteratoal Joural of Computer Iformato Systems ad Idustral Maagemet Applcatos. ISS 250-7988 Volume 5 (202) 3 pp. 59-66 MIR Labs, www.mrlabs.et/jcsm/dex.html ear eghbor Dstrbuto Sets of Fractal ature Marcel
Load and Resistance Factor Design (LRFD)
53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo
Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.
Proceedgs of the 21 Wter Smulato Coferece B. Johasso, S. Ja, J. Motoya-Torres, J. Huga, ad E. Yücesa, eds. EMPIRICAL METHODS OR TWO-ECHELON INVENTORY MANAGEMENT WITH SERVICE LEVEL CONSTRAINTS BASED ON
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about
Green Master based on MapReduce Cluster
Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of
Load Balancing via Random Local Search in Closed and Open systems
Load Balacg va Rado Local Search Closed ad Ope systes A. Gaesh Dept. of Matheatcs Uversty of Brstol, UK [email protected] A. Proutere Mcrosoft Research Cabrdge, UK [email protected] S. Llethal Stats
Credibility Premium Calculation in Motor Third-Party Liability Insurance
Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53
Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines
(ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
Regression Analysis. 1. Introduction
. Itroducto Regresso aalyss s a statstcal methodology that utlzes the relato betwee two or more quattatve varables so that oe varable ca be predcted from the other, or others. Ths methodology s wdely used
Borehole breakout and drilling-induced fracture analysis from image logs
Borehole breakout ad drllg-duced fracture aalyss from mage logs M. Tgay, J. Reecker, ad B. Müller Itroducto Borehole breakouts ad drllg-duced fractures (DIFs) are mportat dcators of horzotal stress oretato,
Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation
Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh
Determining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
The paper presents Constant Rebalanced Portfolio first introduced by Thomas
Itroducto The paper presets Costat Rebalaced Portfolo frst troduced by Thomas Cover. There are several weakesses of ths approach. Oe s that t s extremely hard to fd the optmal weghts ad the secod weakess
Generalized solutions for the joint replenishment problem with correction factor
Geerzed soutos for the ot repeshet proe wth correcto fctor Astrct Erc Porrs, Roert Deer Ecooetrc Isttute, erge Isttute, Ersus Uversty Rotterd, P.O. Box 73, 3 DR Rotterd, he etherds Ecooetrc Isttute Report
MODELLING OF STOCK PRICES BY THE MARKOV CHAIN MONTE CARLO METHOD
ISSN 8-80 (prt) ISSN 8-8038 (ole) INTELEKTINĖ EKONOMIKA INTELLECTUAL ECONOMICS 0, Vol. 5, No. (0), p. 44 56 MODELLING OF STOCK PRICES BY THE MARKOV CHAIN MONTE CARLO METHOD Matas LANDAUSKAS Kauas Uversty
10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof [email protected] http://people.virginia.
Math 40 Lecture 24 Autes Facal Mathematcs How ready do you feel for the quz o Frday: A) Brg t o B) I wll be by Frday C) I eed aother week D) I eed aother moth Aa NoraEvas 403 Kerchof [email protected] http://people.vrga.edu/~as5k/
Section 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
Mixed Distributions for Loss Severity Modelling with zeros in the Operational Risk losses
Iteratoal Joural of Appled Mathematcs & Statstcs, It. J. Appl. Math. Stat.; Vol. 21; Issue No. J11; Year 2011, ISSN 0973-1377 (Prt), ISSN 0973-7545 (Ole) Copyrght 2010-11 by IJAMAS, CESER Publcatos Mxed
Chapter 6: Variance, the law of large numbers and the Monte-Carlo method
Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
Sequences and Series
Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.
Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond
What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixed-icome security that typically pays periodic coupo paymets, ad a pricipal
How To Value An Annuity
Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%
Confidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
ISyE 512 Chapter 7. Control Charts for Attributes. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison
ISyE 512 Chapter 7 Cotrol Charts for Attrbutes Istructor: Prof. Kabo Lu Departmet of Idustral ad Systems Egeerg UW-Madso Emal: [email protected] Offce: Room 3017 (Mechacal Egeerg Buldg) 1 Lst of Topcs Chapter
Report 05 Global Fixed Income
Report 05 Global Fxed Icome From Dec 1999 to Dec 2014 31/12/1999 31 December 1999 31/12/2014 Rep05, Computed & Prted: 17/06/2015 11:24 New Performace Idcator (01/01/12) 100% Barclays Aggregate Global Credt
A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS
L et al.: A Dstrbuted Reputato Broker Framework for Web Servce Applcatos A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS Kwe-Jay L Departmet of Electrcal Egeerg ad Computer Scece
Reinsurance and the distribution of term insurance claims
Resurace ad the dstrbuto of term surace clams By Rchard Bruyel FIAA, FNZSA Preseted to the NZ Socety of Actuares Coferece Queestow - November 006 1 1 Itroducto Ths paper vestgates the effect of resurace
1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
