On formula to compute primes and the n th prime
|
|
|
- Edmund Watkins
- 9 years ago
- Views:
Transcription
1 Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: [email protected] amh Abdul-Nab Lebaese Iteratoal Uversty chool of Egeerg, Lebao Emal: [email protected] Abstract I ths paper, we propose a ew prmalty test, ad the we employ ths test to fd a formula for π that computes the umber of prmes wth ay terval. We fally propose a ew formula that computes the th prme umber as well as the et prme for ay gve umber. Keywords: prme, cogruece, prmalty test, Eucldea algorthm, seve of Eratosthees.. Itroducto ce Eucld [], prmes ad prme geerato were a challege of terest for umber theory researchers. Prmes are used may felds, oe ust eed to meto for eample the mportace of prmes etworg ad certfcate geerato []. ecurg commucato betwee two devces s acheved usg prmes sce prmes are the hardest to decpher [5]. The search for prme umbers s a cotuous tas for researchers. ome le [4] are loog for tw prmes others le [] are loog for large scaled prme umbers. The prme coutg fucto s a fucto that gves the umber of prmes that are less tha or equal to a gve umber. May le [] ad others have preseted the formula to compute the umber of prmes betwee ad a gve teger. Ths paper s dvded as follow: secto we preset the prmalty test. I secto 3, we troduce the prme coutg fucto that we wll use secto 5 to fd the et prme to ay gve umber. I secto 4, we coduct some results
2 ad buld the th prme fucto. I secto, we wll use the prmalty test to compare our results wth some recet results the lterature ad coclude ths paper.. Prmalty test I the paper, we employ the Euclda algorthm, eve of Eratosthees ad the fact that every prme s of the form where a teger. Let be a real umber, the floor of, deoted by s the largest teger that s less or equal to. To test the prmalty of t s eough to test the dvsblty of by all prmes. Let be of the form. mlarly, let be of the form. Theorem : If s ay teger such that g.c.d, = ad, the s prme f ad oly f s composte f ad oly f 0 Proof: s prme gcd, = mod 0, wth the rage of the summato the formulas of ad.
3 mlarly = ad cosequetly = The proof of the secod part of the theorem s obvous. 3. Prme Coutg Fucto The prme coutg fucto, deoted by the Gree letter π, s the umber of prmes less tha or equal to a gve umber. Computg the prmes s oe of the most fudametal problems umber theory. You ca see [0] for the latest wors regardg prme coutg fuctos. Usg the prevous prmalty test, we defe the followg ew form of the prme coutg fucto π. Recall that f s prme 3. 0 f s composte The couts the prmes betwee m ad where m. m Ad we ca wrte a formula for π as follows : 4 3. The sze of ths summato ca be dramatcally reduced by cosderg oly of the form +5 or Thus the followg theorem s already proved. Theorem 5:, gves the umber of prmes. 4. The th Prme Fucto We are ow ready to troduce our ew formula to fd the th prme. The th prme umber s deoted by p wth p =, p =3, p 3 = 5 ad so o. Frst we troduce f as follows
4 f For =,, 3 ad = 0,, Or f For =,, 3 ad = 0,, These fuctos have the property that for for f It s well ow that P ; see [8] ad [] for more detals. Usg the followg formula combed wth the above formula for π f P 4.4 We use f as 4. to obta the followg formula for th prme full: 4 P 4 3 P 4.5 Or usg f as 4. to obta the formula for th prme full: 5 P 4. These formulas are terms of aloe ad we do ot eed to ow ay of the prevous prmes. ee [] for formulas of the same ature.
5 The Wolfram Mathematca mplemetato of P as 4.5 s as follow: A[_] := -/Floor[Floor[qrt[]]/] + * um[floor[floor[/ + ] - / + ], {,, Floor[Floor[qrt[]]/] + }] B[_] := -/Floor[Floor[qrt[]]/] + * um[floor[floor[/ - ] - / - ], {,, Floor[Floor[qrt[]]/] + }] [_] := A[] + B[]/ PN[_] := 4 + um[floor[[ + ]], {,, Floor[ - /]}] + um[floor[[ - ]], {,, Floor[ + /]}] PT[_] := 3 + Floor[*Log[]] - um[floor[/*4 + um[floor[[ + ]], {,, Floor[ - /]}] + um[floor[[ - ]], {,, Floor[ + /]}]], {,, Floor[*Log[]] + }] 5. Net Prme The fucto etp fds the frst prme umber that s greater tha a gve umber. As [9] ad usg as defed secto, t s clear that: ad ow cosder the summato etp etp 0 such that etp etp = 0 etp fally we obta etp etp etp 5. We used the proposed prmalty test to mplemet etp as follow: et m m et 3 If the go to step 8 4 et m 5 5 If m the go to step 8 Go to step 8 Output the value of m
6 The Wolfram Mathematca mplemetato of etp s as follow: A[_] := -/Floor[Floor[qrt[]]/] + * um[floor[floor[/ + ] - / + ], {,, Floor[Floor[qrt[]]/] + }] B[_] := -/Floor[Floor[qrt[]]/] + * um[floor[floor[/ - ] - / - ], {,, Floor[Floor[qrt[]]/] + }] [_] := A[] + B[]/ =Iput["Iput a umber:"]; =Celg[-/]; m=0; Whle[True, m=+; If[[m]==,Brea[]]; m=+5; If[[m]==,Brea[]]; =+;]. Epermetal Results We mplemeted our algorthm usg Wolfram Mathematca verso 8. Table shows the results for the th prme whle table shows the results for the et prme. Those epermetal results show the complety of our prmalty test Refereces th prme P Value 50 4.s s s s 583 Table : th prme Net prme Net to etp Value 0^8 0.04s ^9 0.8s ^0.0s ^.0s ^ 43.8s ^ Table : Net prme [] ANI. ANI X : Dgtal gatures usg Reversble Publc Key Cryptography for the Facal ervces Idustry. Apped A, Amerca Natoal tadards Isttute, 998
7 [] C. P. Wllas, O Formulae for the th Prme Number, The Mathematcal Gazette, Vol. 48, No. 3, December, 94, [3] E.. Rowlad, A Natural Prme-Geeratg Recurrece, Joural of Iteger equeces, Vol., 008, Artcle [4] G. Teebaum, ad M.M. Frace, The prme umbers ad ther dstrbuto. Provdece, Amerca Mathematcal ocety. RI, 000. [5] IEEE. IEEE P33: tadard pecfcatos for Publc Key Cryptography. IEEE P33a D, Amedmet : Addtoal Techques. December, 00. [] M. Deléglse ad J. Rvet. Computg π: The Messel, Lehmer, Lagaras, Mller, Odlyzo Method. Mathematcs of computg. Vol. 5, 99, [] M. Joye, P. Paller ad. Vaudeay. Effcet Geerato of Prme Numbers, vol. 95 of Lecture Notes Computer cece, 000, , prger-verlag. [8]. M. Ruz, Applcatos of maradache Fuctos ad Prme ad Coprme Fuctos, Amerca Research Press, Rehoboth, 00. [9]. M. Ruz, The geeral term of the prme umber sequece ad the maradache Prme Fucto, maradache Notos Joural [0] T. Olvera e lva, Computg π: The combatoral method. Revsta do Detua, vol. 4,, march 00 [] V.. Igumov, Geerato of the large radom prme umbers. Toms tate Uversty Russa. Electro Devces ad Materals. 004, - 8 [] W. Narewcz, The developmet of prme umber theory: from Eucld to Hardy ad Lttlewood, prger Moographs Mathematcs, Berl, New Yor: prger-verlag, 000
On Formula to Compute Primes. and the n th Prime
Applied Mathematical cieces, Vol., 0, o., 35-35 O Formula to Compute Primes ad the th Prime Issam Kaddoura Lebaese Iteratioal Uiversity Faculty of Arts ad cieces, Lebao [email protected] amih Abdul-Nabi
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
The Digital Signature Scheme MQQ-SIG
The Dgtal Sgature Scheme MQQ-SIG Itellectual Property Statemet ad Techcal Descrpto Frst publshed: 10 October 2010, Last update: 20 December 2010 Dalo Glgorosk 1 ad Rue Stesmo Ødegård 2 ad Rue Erled Jese
ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN
Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl
Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation
Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Fractal-Structured Karatsuba`s Algorithm for Binary Field Multiplication: FK
Fractal-Structured Karatsuba`s Algorthm for Bary Feld Multplcato: FK *The authors are worg at the Isttute of Mathematcs The Academy of Sceces of DPR Korea. **Address : U Jog dstrct Kwahadog Number Pyogyag
Credibility Premium Calculation in Motor Third-Party Liability Insurance
Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. [email protected]. evrenziplar@yahoo.
ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs
On Error Detection with Block Codes
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
Approximation Algorithms for Scheduling with Rejection on Two Unrelated Parallel Machines
(ICS) Iteratoal oural of dvaced Comuter Scece ad lcatos Vol 6 No 05 romato lgorthms for Schedulg wth eecto o wo Urelated Parallel aches Feg Xahao Zhag Zega Ca College of Scece y Uversty y Shadog Cha 76005
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
The impact of service-oriented architecture on the scheduling algorithm in cloud computing
Iteratoal Research Joural of Appled ad Basc Sceces 2015 Avalable ole at www.rjabs.com ISSN 2251-838X / Vol, 9 (3): 387-392 Scece Explorer Publcatos The mpact of servce-oreted archtecture o the schedulg
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil
ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
Constrained Cubic Spline Interpolation for Chemical Engineering Applications
Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel
Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree
, pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
A particle swarm optimization to vehicle routing problem with fuzzy demands
A partcle swarm optmzato to vehcle routg problem wth fuzzy demads Yag Peg, Ye-me Qa A partcle swarm optmzato to vehcle routg problem wth fuzzy demads Yag Peg 1,Ye-me Qa 1 School of computer ad formato
Maintenance Scheduling of Distribution System with Optimal Economy and Reliability
Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
A Parallel Transmission Remote Backup System
2012 2d Iteratoal Coferece o Idustral Techology ad Maagemet (ICITM 2012) IPCSIT vol 49 (2012) (2012) IACSIT Press, Sgapore DOI: 107763/IPCSIT2012V495 2 A Parallel Trasmsso Remote Backup System Che Yu College
Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity
Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
Green Master based on MapReduce Cluster
Gree Master based o MapReduce Cluster Mg-Zh Wu, Yu-Chag L, We-Tsog Lee, Yu-Su L, Fog-Hao Lu Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of Electrcal Egeerg Tamkag Uversty, Tawa, ROC Dept of
Sequences and Series
Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
M. Salahi, F. Mehrdoust, F. Piri. CVaR Robust Mean-CVaR Portfolio Optimization
M. Salah, F. Mehrdoust, F. Pr Uversty of Gula, Rasht, Ira CVaR Robust Mea-CVaR Portfolo Optmzato Abstract: Oe of the most mportat problems faced by every vestor s asset allocato. A vestor durg makg vestmet
Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software
J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao
How To Value An Annuity
Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%
Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion
2011 Iteratoal Coferece o Ecoomcs ad Face Research IPEDR vol.4 (2011 (2011 IACSIT Press, Sgapore Forecastg Tred ad Stoc Prce wth Adaptve Exteded alma Flter Data Fuso Betollah Abar Moghaddam Faculty of
IP Network Topology Link Prediction Based on Improved Local Information Similarity Algorithm
Iteratoal Joural of Grd Dstrbuto Computg, pp.141-150 http://dx.do.org/10.14257/jgdc.2015.8.6.14 IP Network Topology Lk Predcto Based o Improved Local Iformato mlarty Algorthm Che Yu* 1, 2 ad Dua Zhem 1
Three Dimensional Interpolation of Video Signals
Three Dmesoal Iterpolato of Vdeo Sgals Elham Shahfard March 0 th 006 Outle A Bref reve of prevous tals Dgtal Iterpolato Bascs Upsamplg D Flter Desg Issues Ifte Impulse Respose Fte Impulse Respose Desged
An Approach to Evaluating the Computer Network Security with Hesitant Fuzzy Information
A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog A Approach to Evaluatg the Computer Network Securty wth Hestat Fuzzy Iformato Jafeg Dog, Frst ad Correspodg Author
Fast, Secure Encryption for Indexing in a Column-Oriented DBMS
Fast, Secure Ecrypto for Idexg a Colum-Oreted DBMS Tgja Ge, Sta Zdok Brow Uversty {tge, sbz}@cs.brow.edu Abstract Networked formato systems requre strog securty guaratees because of the ew threats that
10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof [email protected] http://people.virginia.
Math 40 Lecture 24 Autes Facal Mathematcs How ready do you feel for the quz o Frday: A) Brg t o B) I wll be by Frday C) I eed aother week D) I eed aother moth Aa NoraEvas 403 Kerchof [email protected] http://people.vrga.edu/~as5k/
A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS
L et al.: A Dstrbuted Reputato Broker Framework for Web Servce Applcatos A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS Kwe-Jay L Departmet of Electrcal Egeerg ad Computer Scece
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES. MATRİS KODLAR İLE McELIECE ŞİFRELEME SİSTEMİ
SAÜ e Blmler Dergs, 5 Clt, 2 Sayı, THE McELIECE CRYPTOSYSTEM WITH ARRAY CODES Vedat ŞİAP* *Departmet of Mathematcs, aculty of Scece ad Art, Sakarya Uversty, 5487, Serdva, Sakarya-TURKEY vedatsap@gmalcom
Using Phase Swapping to Solve Load Phase Balancing by ADSCHNN in LV Distribution Network
Iteratoal Joural of Cotrol ad Automato Vol.7, No.7 (204), pp.-4 http://dx.do.org/0.4257/jca.204.7.7.0 Usg Phase Swappg to Solve Load Phase Balacg by ADSCHNN LV Dstrbuto Network Chu-guo Fe ad Ru Wag College
Projection model for Computer Network Security Evaluation with interval-valued intuitionistic fuzzy information. Qingxiang Li
Iteratoal Joural of Scece Vol No7 05 ISSN: 83-4890 Proecto model for Computer Network Securty Evaluato wth terval-valued tutostc fuzzy formato Qgxag L School of Software Egeerg Chogqg Uversty of rts ad
Polyphase Filters. Section 12.4 Porat 1/39
Polyphase Flters Secto.4 Porat /39 .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful
Software Reliability Index Reasonable Allocation Based on UML
Sotware Relablty Idex Reasoable Allocato Based o UML esheg Hu, M.Zhao, Jaeg Yag, Guorog Ja Sotware Relablty Idex Reasoable Allocato Based o UML 1 esheg Hu, 2 M.Zhao, 3 Jaeg Yag, 4 Guorog Ja 1, Frst Author
Curve Fitting and Solution of Equation
UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed
Numerical Comparisons of Quality Control Charts for Variables
Global Vrtual Coferece Aprl, 8. - 2. 203 Nuercal Coparsos of Qualty Cotrol Charts for Varables J.F. Muñoz-Rosas, M.N. Pérez-Aróstegu Uversty of Graada Facultad de Cecas Ecoócas y Epresarales Graada, pa
Load and Resistance Factor Design (LRFD)
53:134 Structural Desg II Load ad Resstace Factor Desg (LRFD) Specfcatos ad Buldg Codes: Structural steel desg of buldgs the US s prcpally based o the specfcatos of the Amerca Isttute of Steel Costructo
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
where p is the centroid of the neighbors of p. Consider the eigenvector problem
Vrtual avgato of teror structures by ldar Yogja X a, Xaolg L a, Ye Dua a, Norbert Maerz b a Uversty of Mssour at Columba b Mssour Uversty of Scece ad Techology ABSTRACT I ths project, we propose to develop
Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes
Covero of No-Lear Stregth Evelope to Geeralzed Hoek-Brow Evelope Itroducto The power curve crtero commoly ued lmt-equlbrum lope tablty aaly to defe a o-lear tregth evelope (relatohp betwee hear tre, τ,
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
Common p-belief: The General Case
GAMES AND ECONOMIC BEHAVIOR 8, 738 997 ARTICLE NO. GA97053 Commo p-belef: The Geeral Case Atsush Kaj* ad Stephe Morrs Departmet of Ecoomcs, Uersty of Pesylaa Receved February, 995 We develop belef operators
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
A particle Swarm Optimization-based Framework for Agile Software Effort Estimation
The Iteratoal Joural Of Egeerg Ad Scece (IJES) olume 3 Issue 6 Pages 30-36 204 ISSN (e): 239 83 ISSN (p): 239 805 A partcle Swarm Optmzato-based Framework for Agle Software Effort Estmato Maga I, & 2 Blamah
In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
The paper presents Constant Rebalanced Portfolio first introduced by Thomas
Itroducto The paper presets Costat Rebalaced Portfolo frst troduced by Thomas Cover. There are several weakesses of ths approach. Oe s that t s extremely hard to fd the optmal weghts ad the secod weakess
Automated Event Registration System in Corporation
teratoal Joural of Advaces Computer Scece ad Techology JACST), Vol., No., Pages : 0-0 0) Specal ssue of CACST 0 - Held durg 09-0 May, 0 Malaysa Automated Evet Regstrato System Corporato Zafer Al-Makhadmee
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks
Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]
On Cheeger-type inequalities for weighted graphs
O Cheeger-type equaltes for weghted graphs Shmuel Fredlad Uversty of Illos at Chcago Departmet of Mathematcs 851 S. Morga St., Chcago, Illos 60607-7045 USA Rehard Nabbe Fakultät für Mathematk Uverstät
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
How To Balance Load On A Weght-Based Metadata Server Cluster
WLBS: A Weght-based Metadata Server Cluster Load Balacg Strategy J-L Zhag, We Qa, Xag-Hua Xu *, Ja Wa, Yu-Yu Y, Yog-Ja Re School of Computer Scece ad Techology Hagzhou Daz Uversty, Cha * Correspodg author:[email protected]
Suspicious Transaction Detection for Anti-Money Laundering
Vol.8, No. (014), pp.157-166 http://dx.do.org/10.1457/jsa.014.8..16 Suspcous Trasacto Detecto for At-Moey Lauderg Xgrog Luo Vocatoal ad techcal college Esh Esh, Hube, Cha [email protected] Abstract Moey lauderg
Settlement Prediction by Spatial-temporal Random Process
Safety, Relablty ad Rs of Structures, Ifrastructures ad Egeerg Systems Furuta, Fragopol & Shozua (eds Taylor & Fracs Group, Lodo, ISBN 978---77- Settlemet Predcto by Spatal-temporal Radom Process P. Rugbaapha
Statistical Intrusion Detector with Instance-Based Learning
Iformatca 5 (00) xxx yyy Statstcal Itruso Detector wth Istace-Based Learg Iva Verdo, Boja Nova Faulteta za eletroteho raualštvo Uverza v Marboru Smetaova 7, 000 Marbor, Sloveja [email protected] eywords:
3. Greatest Common Divisor - Least Common Multiple
3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
Efficient Traceback of DoS Attacks using Small Worlds in MANET
Effcet Traceback of DoS Attacks usg Small Worlds MANET Yog Km, Vshal Sakhla, Ahmed Helmy Departmet. of Electrcal Egeerg, Uversty of Souther Calfora, U.S.A {yogkm, sakhla, helmy}@ceg.usc.edu Abstract Moble
CH. V ME256 STATICS Center of Gravity, Centroid, and Moment of Inertia CENTER OF GRAVITY AND CENTROID
CH. ME56 STTICS Ceter of Gravt, Cetrod, ad Momet of Ierta CENTE OF GITY ND CENTOID 5. CENTE OF GITY ND CENTE OF MSS FO SYSTEM OF PTICES Ceter of Gravt. The ceter of gravt G s a pot whch locates the resultat
Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems
Fto: A Faster, Permutable Icremetal Gradet Method for Bg Data Problems Aaro J Defazo Tbéro S Caetao Just Domke NICTA ad Australa Natoal Uversty AARONDEFAZIO@ANUEDUAU TIBERIOCAETANO@NICTACOMAU JUSTINDOMKE@NICTACOMAU
AN ALGORITHM ABOUT PARTNER SELECTION PROBLEM ON CLOUD SERVICE PROVIDER BASED ON GENETIC
Joural of Theoretcal ad Appled Iformato Techology 0 th Aprl 204. Vol. 62 No. 2005-204 JATIT & LLS. All rghts reserved. ISSN: 992-8645 www.jatt.org E-ISSN: 87-395 AN ALGORITHM ABOUT PARTNER SELECTION PROBLEM
A Fair Non-repudiation Protocol without TTP on Conic Curve over Ring
Far No-reudato Protocol wthout TTP o Coc Curve over Rg Z L Zhahu, Fa Ka, 3L Hu, Zheg Ya Far No-reudato Protocol wthout TTP o Coc Curve over Rg Z 1 L Zhahu, Fa Ka, 3 L Hu, 4 Zheg Ya 1State Key Laboratory
ANALYTICAL MODEL FOR TCP FILE TRANSFERS OVER UMTS. Janne Peisa Ericsson Research 02420 Jorvas, Finland. Michael Meyer Ericsson Research, Germany
ANALYTICAL MODEL FOR TCP FILE TRANSFERS OVER UMTS Jae Pesa Erco Research 4 Jorvas, Flad Mchael Meyer Erco Research, Germay Abstract Ths paper proposes a farly complex model to aalyze the performace of
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
DIGITAL AUDIO WATERMARKING: SURVEY
DIGITAL AUDIO WATERMARKING: SURVEY MIKDAM A. T. ALSALAMI * MARWAN M. AL-AKAIDI ** * Computer Scece Dept. Zara Prvate Uversty / Jorda ** School of Egeerg ad Techology - De Motfort Uversty / UK Abstract:
Real-Time Scheduling Models: an Experimental Approach
Real-Tme Schedulg Models: a Expermetal Approach (Techcal Report - Nov. 2000) Atóo J. Pessoa de Magalhães [email protected] Fax: 22 207 4247 SAI DEMEGI Faculdade de Egehara da Uversdade do Porto -
Load Balancing Control for Parallel Systems
Proc IEEE Med Symposum o New drectos Cotrol ad Automato, Chaa (Grèce),994, pp66-73 Load Balacg Cotrol for Parallel Systems Jea-Claude Heet LAAS-CNRS, 7 aveue du Coloel Roche, 3077 Toulouse, Frace E-mal
Discrete-Event Simulation of Network Systems Using Distributed Object Computing
Dscrete-Evet Smulato of Network Systems Usg Dstrbuted Object Computg Welog Hu Arzoa Ceter for Itegratve M&S Computer Scece & Egeerg Dept. Fulto School of Egeerg Arzoa State Uversty, Tempe, Arzoa, 85281-8809
A probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
Integrating Production Scheduling and Maintenance: Practical Implications
Proceedgs of the 2012 Iteratoal Coferece o Idustral Egeerg ad Operatos Maagemet Istabul, Turkey, uly 3 6, 2012 Itegratg Producto Schedulg ad Mateace: Practcal Implcatos Lath A. Hadd ad Umar M. Al-Turk
Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011
Cyber Jourals: Multdscplary Jourals cece ad Techology, Joural of elected Areas Telecommucatos (JAT), Jauary dto, 2011 A ovel rtual etwork Mappg Algorthm for Cost Mmzg ZHAG hu-l, QIU Xue-sog tate Key Laboratory
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
