DYNAMIC PROGRAMMING APPROACH TO TESTING RESOURCE ALLOCATION PROBLEM FOR MODULAR SOFTWARE
|
|
|
- Shauna Hollie Horn
- 9 years ago
- Views:
Transcription
1 DYAMIC PROGRAMMIG APPROACH TO TESTIG RESOURCE ALLOCATIO PROBLEM FOR MODULAR SOFTWARE P.K. Kpur P.C. Jh A.K. Brdh Astrct Tstg phs of softwr gs wth modul tstg. Durg ths prod moduls r tstd dpdtly to rmov mxmum possl umr of fults wth spcfd tm lmt or tstg rsourc udgt. Ths gvs rs to som trstg optmzto prolms, whch r dscussd ths ppr. Two Optmzto modls r proposd for optml llocto of tstg rsourcs mog th moduls of Softwr. I th frst modl, w mxmz th totl fult rmovl, sujct to udgtry Costrt. I th scod modl, ddtol costrt rprstg sprto lvl for fult rmovls for ch modul of th softwr s ddd. Ths modls r solvd usg dymc progrmmg tchqu. Th mthods hv llustrtd through umrcl xmpls. Ky words: Softwr Rllty, o Homogous Posso Procss, Rsourc Allocto, Dymc Progrmmg. Itroducto Growth softwr grg tchology hs ld to producto of softwr for hghly complx stutos occurrg dustry, sctfc rsrch, dfs d dy to dy lf. Cosqutly, th dpdc of mkd o computrs d computrsd systms s crsg dy y dy. Ay flur ths systms c cost hvly trms of moy d/or hum lvs. Though hgh rllty of hrdwr prt of ths systms c gurtd, th sm cot sd for softwr. Thrfor lot of mportc s ttchd to th tstg phs of th softwr dvlopmt procss, whr roud hlf th dvlopmtl rsourcs r usd [8]. Esstlly tstg s procss of xcutg progrm wth th xplct tto of fdg fults d t s ths phs, whch s mdl to mthmtcl modlg. It s lwys dsrl to rmov susttl umr of fults from th softwr. I fct th rllty of softwr s drctly proportol to th umr of fults rmovd. Hc th prolm of mxmzto of softwr rllty s dtcl to Dprtmt of Oprtol Rsrch, Fculty of Mthmtcl Sccs, Uvrsty of Dlh, Dlh 0007, IDIA 7
2 tht of mxmzto of fult rmovl. At th sm tm tstg rsourc r ot ulmtd, d thy d to judcously usd. I ths ppr w dscuss d solv such mgmt prolm of llocto of tstg rsourcs mog moduls, through Softwr Rllty Growth Modl SRGM. A Softwr Rllty Growth Modl SRGM s rltoshp tw th umr of fults rmovd from softwr d th xcuto tm/cpu tm/cldr tm. Svrl ttmpts hv md to rprst th ctul tstg vromt through SRGMs [,4,5,9]. Ths modls hv usd to prdct th fult cott, rllty d rls tm of softwr. SRGMs hv lso usd to mg th tstg phs. Ag lrg softwr cossts of moduls. Oft ths moduls r dvlopd dpdtly d ch modul my cot dffrt umr of fults d tht of dffrt svrty. Thrfor dstct SRGMs should usd to rprst th tstg procss of ch modul, s tstg for ths moduls r do dpdtly. A SRGM wth tstg ffort [9] hs chos to rprst th fult rmovl procss for th two optmzto prolms dscussd ths ppr. Th frst optmzto modl P mxmzs th totl umr of fults xpctd to rmovd, wh vll tstg rsourc s kow. Th mgmt ormlly sprs for som rllty lvl tht c trsltd trms of umr of fults rmovd. I th scod optmzto modl P w dd costrt P trms of mmum umr of fults sprd to rmovd from ch modul. Dymc progrmmg tchqu s usd to solv ths prolms. Ths s th frst tm tht ths hs do softwr grg, ccordg to our kowldg. Dymc progrmmg pproch, whch s sy to solv d udrstd provds glol optm for ths prolms. Th mthodology dscussd th ppr hs llustrtd through umrcl xmpls. ottos : umr of moduls th Softwr > : Expctd umr of fults th th modul,,, : Proportolty costt for th th modul x t : Currt tstg ffort xpdtur t tstg tm t t d t x w dw for th modul 0, : Th mout of tstg rsourc to lloctd to th th modul d totl tstg rsourc vll. m t : umr of fults rmovd 0,t] th th modul, m vlu fucto of HPP,,, T : Totl tstg tm * : Optml vlu of,,, f : Optml umr of fults rmovd upto th moduls.. corrspodg to th stg Dymc Progrmmg lgorthm 8
3 o : Asprto lvl of th modul.. umr of fults dsrd to rmovd from th modul p : Th mmum proporto of totl fults to rmovd from th modul.. Mthmtcl Modllg. Rsourc Allocto Prolm Cosdr softwr hvg moduls, whch r g tstd dpdtly for rmovg fults lyg dormt thm. Th durto of modul tstg s oft fxd wh schdulg s do for th whol tstg phs. Hc lmtd rsourcs r vll, tht d to lloctd judcously. If m fults r xpctd to rmovd from th th modul wth ffort, th rsultg tstg rsourc llocto prolm c sttd s follows [5,6]. mx m sujct to, 0,,, P Aov optmzto prolm s th smplst o s t cosdrs th rsourc costrt oly. Ltr ths ppr, w corport ddtol costrts to th sc modl. For solvg P fuctol rltoshp tw fult rmovl d rsourc cosumpto s rqurd, whch s dscussd th followg scto.. SRGM For Moduls A Softwr Rllty Growth Modl xpls th tm dpdt hvor of fult rmovl. As moduls r tstd dpdtly dstct SRGMs would rprst thr rllty growth. Th fluc of tstg ffort c lso cludd th SRGMs [9]. I ths ppr w dscuss th rsourc llocto prolm usg such SRGM for th moduls. Modl Assumptos. Softwr cosst of ft umr of moduls d tstg for ch modul s do dpdtly 9
4 . A modul s sujct to flurs t rdom tm cusd y fults rmg th softwr. 3. O flur, th fult cusg tht flur s mmdtly rmovd d o w fults r troducd. 4. Fult rmovl phomo s modlld y o Homogous Posso Procss HPP. 5. Th xpctd umr of fults rmovd t, t t to th currt tstg rsourc s proportol to th xpctd rmg umr of fults. Udr ssumpto 5, followg dffrtl quto my sly wrtt for th modul d m t dt m t,,,. x t Solvg quto wth th tl codto tht, t t 0, t 0, m t 0 w gt t m t,,, To dscr th hvour of tstg ffort, thr Expotl or Rylgh fucto hs usd [5,9]. Both c drvd form th ssumpto tht, " th tstg ffort rt s proportol to th tstg rsourc vll". d t c t [ α t ],,, 3 dt whr c t s th tm dpdt rt t whch tstg rsourcs r cosumd, wth rspct to th rmg vll rsourcs. Solvg quto 3 udr th tl codto 0 0 w gt t t α xp c k dk,,, 4 0 Wh c t β, costt β t t α,,, 5 If c t β. t, gvs Rylgh typ curv t β t α,,, 6 I ths ppr w hv chos xpotl fucto 5 to rprst tstg ffort th optmzto prolms. 30
5 .3 Estmto Of Prmtrs Th tstg ffort dt r gv th form of tstg ffort x k x < x <... < x cosumd tm 0, t ] ;,,..,. Th tstg ffort modl prmtrs α d β c stmtd y th mthod of lst squrs s follows. Mmz [ ˆ ] sujct to ˆ.. th stmtd vlu of tstg ffort s qul to th ctul vlu. Oc th stmts of α d β r kow, th prmtrs of th SRGMs for th moduls c stmtd through Mxmum Lklhood Estmto mthod usg th udrlyg Stochstc Procss, whch s dscrd y o Homogous Posso Procss. Durg stmto, stmtd vlus of α d β r kpt fxd. If th fult rmovl dt for modul s gv th form of cumultv umr of fults rmovd y j tm 0,t j ]. Th lklhood fucto for tht modul s gv s y y [ m ] t j m t j j j m t j m t j L, / y, W y j j y j! 3. Optml Allocto Of Rsourcs From th stmts of prmtrs of SRGMs for moduls, th totl fult cott th softwr s kow. Moduls tstg ms t rmovg mxmum umr of thm, wth vll rsourcs. Hc P c rsttd s Mxmz m Sujct to, 0,, PA PA c solvd usg Dymc Progrmmg Approch. From Bllm's prcpl of optmlty, w c wrt th followg rcursv quto []. 3
6 { } { f } f mx f mx,,, 7 0 To dx th moduls, thy c rrgd dscdg ordr of thr vlus of Through ths pproch rsourcs r lloctd to th moduls squtlly. But for som vlus of < r o or mor moduls wth hghr dx umr.. hvg lowr dtctlty my ot gt y llocto. W summrz ths rsult th followg smpl thorm. Thorm - If for y,,;, th vlus of,,... r zro d prolm rducs to - stg prolm wth r r r r log, r,,- r r rr 8 whr d / j j j,,, j j j Proof of th thorm s gv ppdx. As rsult of th ov llocto procdur, som moduls my ot tstd t ll. Ths stuto s ot dvsl. Ag mgmt oft sprs to chv crt mmum rllty lvl for th softwr d tht for ch modul of th Softwr.. crt prctgs of th fult cott ch modul of th Softwr s dsrd to rmovd. Hc P ds to sutly modfd to mxmz rmovl of fults th softwr udr rsourc costrt d mmum dsrd lvl of fults to rmovd from ch of th moduls th softwr. Th rsultg tstg rsourc llocto prolm c sttd s follows: mx m sujct to m p,,, 0 3
7 , 0,,, P P c solvd usg Dymc Progrmmg Approch thr y rducg th dmsolty of th prolm through Lgrg multplr or covrtg to P y susttuto. W frst cosdr th dmsolty rducto Dymc Progrmmg Approch [] s follows. [ α { }] 0 mx mφ, α α sujct to, α 0,, P3 Whr α,, s Lgrg multplr for th costrt corrspodg to th th modul. Th ov prolm c solvd y Dymc Progrmmg pproch whch Kuh-Tuckkr optmlty codtos r otd t ch stg []. At y stg α,, c zro or o-zro dpdg upo ffctvss or ffctvss of costrt rspctvly. Hc ch stg hs two posslts d corrspodg to ch posslty of prcdg stg prst stg hs two posslts. So t y stg, totl umr of css s -. Ifct, ov prolm rducs to tht of fdg optml pth y srchg for optml soluto t ch stg whch oly o opto could chos. Ths procdur dos ot provd closd form soluto. Hc wthout furthr lorto of th ov mthod, th susttuto mthod s doptd for covrtg th prolm P to th prolm P s follows: m mpls 0 0 Hc, 0 log sy,,, Thrfor P c rsttd s, Mxmz m sujct to,,, 0,,, P4 33
8 Lt Y,,, th P4 c wrtt s th prolm P gv low Y mx m mx sujct to Y sy Y 0,,,,,, P5 0 Th Prolm P5 s smlr to th prolm P d hc usg thorm- th prolm P5 c lso solvd. If for y,,,th Y, Y,..., Y r zros, th prolm P5 rducs to stg prolm d ts soluto s gv s Y log,,,- 9 f 0 Through quto 9 optml llocto of rsourcs to th moduls c clcultd. I th followg scto w umrclly llustrt ths rsults. 4. umrcl Exmpl It s ssumd tht prmtrs d for th th modul,... r lrdy stmtd usg th softwr flur dt. Cosdr softwr hvg 0 moduls whos prmtr stmts r s gv Tl-. Suppos th totl rsourc vll for tstg s Frst th prolm P s solvd d from th rcurso quto 7 optml llocto of rsourcs * for th moduls r computd. Ths r lstd Tl- log wth th corrspodg xpctd umr of fult rmovd, prctgs of fults rmovd d fults rmg for ch modul. Th totl umr of fults tht c rmovd through ths llocto s % of th fult cott s rmovd from th Softwr. It s osrvd 34
9 tht som moduls modul-9,0 th rmg fults ftr llocto s hgh. Ths c ld to frqut flur durg oprtol phs. Ovously ths wll ot stsfy th dvlopr d h my dsr tht t lst 50% of fult cott from ch of th moduls of th Softwr s rmovd.. p 0.5 for ch 0. Sc fults ch modul r tgrl vlus, rst tgr lrgr th 50% of th fult cott ch modul s tk s lowr lmt tht hs to rmovd. Th w llocto of rsourc log wth xpctd umr of fult rmovd, prctgs of fults rmovd d fults rmg for ch modul ftr solvg th prolm P through th prolm P5 s summrzd Tl-. Th totl umr of fults tht c rmovd through ths llocto s % of th fult cott s rmovd from th Softwr. I ddto to th ov f t s dsrd tht crt prctg of th totl fults r to rmovd th ddtol tstg rsourcs would rqurd. It s trstg to study ths trdoff d Tl-3 summrzs rsults, whr th rqurd prctg of fults rmovd s 60%. To chv ths, 3000 uts of ddtol tstg ffort s rqurd. Th totl umr of fults tht c rmovd through ths llocto s % of th fult cott s rmovd from th Softwr. Alyss gv Tls-, d 3 hlp provdg th dvlopr sght to th rsourc llocto d th corrspodg fult rmovl phomo d th ojctv c st ccordgly. Modul * m * % of fults rmovd Tl - % of fults rmg E E E E E E Totl
10 Modul o * Y * m Y m * % of fults rmovd Tl- % of fults rmg Totl Tl-3 Modul o * Y * m Y * m * % of fults rmovd % of fults rmg Totl
11 5. Cocluso I ths ppr w hv dscussd coupl of optmzto prolms occurrg durg modul tstg phs of softwr dvlopmt lf cycl. A dymc progrmmg pproch for fdg th optml soluto hs proposd. Usg smpl rcurso qutos t s show how fult rmovl for ch modul d tht of th softwr c mxmzd, y judcous llocto of rsourcs. It s osrvd tht ftr crt durto of tstg, fult rmovl coms dffcult th ss tht grtr ffort wll rqurd to rmov ch ddtol fult. As th rllty of softwr s of utmost mportc sctfc dcso mkg s rqurd whl dcdg th rsourc udgt. Th trdoff s show scto-4 c usful ths rgrd. Altrtvly f th dvlopr s ot too k o optml soluto ut s stsfd wth ffct soluto, Gol Progrmmg pproch my dsrl tht cs. W r furthr lookg to ths spct. Appdx: Proof of th thorm- W hv followg rcurso qutos gv 7: mx { f } f mx { f },,, 0 Th ov prolm c solvd through forwrd rcurso stgs s follows. Stg-: Lt th w hv mx { f } Stg-: Lt th w hv { } f f mx 0 Susttutg f ov w hv f mx 0 { } 37
12 38 ow lt, { } F th { } mx 0 F f Th mxm c foud through clculus. d Th suffccy codto c chckd through th scod drvtv codto: 0 d F d Th followg thr stutos c occur. 0 < d 0 d 0 > d If 0 < d, th 0. At 0 0 < d.. < Whch mpls >, othr words th dtctlty modul - s hghr th modul. Smlrly 0 > d mpls d w hv > Hc >, th tstg rsourcs would lloctd to modul - frst s th dtctlty s hghr thr. Flly f 0 d log,.. log,
13 39 d f.. f Whr,, ow procdg y ducto t c show for th stg, log d f for Th proof s complt. Rfrcs. Gol A.L., Softwr Rllty Modls: Assumptos, lmttos d pplclty, IEEE Trs. O softwr grg, SE-, pp. 4-43, Hdly, G., olr d Dymc Progrmmg, Addso-Wsly, Rdg Mss, Ichmor, T, Ymd, S. Ad shwk M., Optml llocto polcs for tstg-rsourc sd o Softwr Rllty Growth Modl, Procdgs of th Austrl Jp workshop o stochstc modls grg, tchology d mgmt, pp. 8-89, Kpur P.K. d Grg R.B.; Cost rllty optmum rls polcs for softwr systm wth tstg ffort, OPSEARCH, vol. 7, o., pp. 09-8, Kpur P.K., Grg R.B. d Kumr, S.; Cotrutos to Hrdwr d Softwr Rllty, World Sctfc, Sgpor, 999.
14 6. Kpur, P.K. d Brdh, A.K., Modllg, llocto d cotrol of rsourcs: trdscplry pproch softwr rllty d mrktg, Oprtos Rsrch, Eds. M. Agrwl d K. S, ros Pulshg Hous, w Dlh Kut P. d Koch H.S., Mgg tst procdurs to chv rll softwr, IEEE Trs. O Rllty, ol. R-3, pp , Mus J.D., Io A. Ad Okumoto K, Softwr Rllty- Msurmt, Prdcto d Applcto, Mc Grw Hll, Ymd S. Ad Ohtr H. Ad rhs H., Softwr Rllty Growth Modl wth tstg ffort, IEEE Trs. O Rllty, vol. R-35, pp. 9-3,
Constrained Renewable Resource Allocation in Fuzzy Metagraphs via Min- Slack
Intrntonl Journl of ppld Oprtonl Rsrch Vol 1, No 1, pp 7-17, Summr 011 Journl hompg: wwworlur Constrnd Rnwl Rsourc llocton n Fuzzy Mtgrphs v Mn- Slck S S Hshmn* Rcvd: Jnury 31, 011 ; ccptd: My 1, 011 strct
Finite Dimensional Vector Spaces.
Lctur 5. Ft Dmsoal Vctor Spacs. To b rad to th musc of th group Spac by D.Maruay DEFINITION OF A LINEAR SPACE Dfto: a vctor spac s a st R togthr wth a oprato calld vctor addto ad aothr oprato calld scalar
DEVELOPMENT OF MODEL FOR RUNNING DIESEL ENGINE ON RAPESEED OIL FUEL AND ITS BLENDS WITH FOSSIL DIESEL FUEL
ENGINEERING FOR RURAL DEVELOPMENT Jlgava, 3.-4.5.3. DEVELOPMENT OF MODEL FOR RUNNING DIESEL ENGINE ON RAPESEED OIL FUEL AND ITS BLENDS WITH FOSSIL DIESEL FUEL Ilmars Dukuls, Avars Brkavs Latva Uvrsty of
REVISTA INVESTIGACIÓN OPERACIONAL VOL., 32, NO. 2, 93-106, 2011
REVISA IVESIGACIÓ OPERACIOAL VOL., 3, O., 93-6, A IEGRAED IVEORY POLICY WIH DEERIORAIO FOR A SIGLE VEDOR AD MULIPLE BUYERS I SUPPLY CHAI WHE DEMAD IS QUADRAIC ta H. Shah,Ajay S. Gor ad Chta Jhavr Dpartmt
Sequences and Series
Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.
CCD CHARGE TRANSFER EFFICIENCY (CTE) DERIVED FROM SIGNAL VARIANCE IN FLAT FIELD IMAGES The CVF method
CCD CHARGE TRANSFER EFFICIENCY (CTE) DERIVED FROM SIGNAL VARIANCE IN FLAT FIELD IMAGES Th CVF mthod Fbrc Chrstn 1, Konrd Kujkn 1,, Dtrch Bd 3, Cyrl Cvdor 4, Sbstn Drs 3, Olf Iwrt 3. 1 Kptyn Astronomcl
THE EFFECT OF GROUND SETTLEMENTS ON THE AXIAL RESPONSE OF PILES: SOME CLOSED FORM SOLUTIONS CUED/D-SOILS/TR 341 (Aug 2005) By A. Klar and K.
THE EFFECT OF GROUND SETTEMENTS ON THE AXIA RESPONSE OF PIES: SOME COSED FORM SOUTIONS CUED/D-SOIS/TR 4 Aug 5 By A. Klr d K. Sog Klr d Sog "Th Effct of Groud Displcmt o Axil Rspos of Pils: Som Closd Form
16. Mean Square Estimation
6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble
Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6
Rin Stion 9.6 Minimum Spnnin Trs Outlin Minimum Spnnin Trs Prim s Alorithm Kruskl s Alorithm Extr:Distriut Shortst-Pth Alorithms A Fil Shrin Prolm Sy unh o usrs wnt to istriut il monst thmslvs. Btwn h
Important result on the first passage time and its integral functional for a certain diffusion process
Lcturs Mtmátics Volumn 22 (21), págins 5 9 Importnt rsult on th first pssg tim nd its intgrl functionl for crtin diffusion procss Yousf AL-Zlzlh nd Bsl M. AL-Eidh Kuwit Univrsity, Kuwit Abstrct. In this
Network Analyzer Error Models and Calibration Methods
Ntwork Anlyzr Error Modls nd Clirtion Mthods y Doug Rytting Pg This ppr is n ovrviw of rror modls nd clirtion mthods for vctor ntwork nlyzrs. Prsnttion Outlin Ntwork Anlyzr Block Digrm nd Error Modl ystm
Power Means Calculus Product Calculus, Harmonic Mean Calculus, and Quadratic Mean Calculus
Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Powr Ms Clculus Product Clculus, Hrmoic M Clculus, d Qudrtic M Clculus H. Vic Do [email protected] Mrch, 008 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008
Chapter 3 Chemical Equations and Stoichiometry
Chptr Chmicl Equtions nd Stoichiomtry Homwork (This is VERY importnt chptr) Chptr 27, 29, 1, 9, 5, 7, 9, 55, 57, 65, 71, 75, 77, 81, 87, 91, 95, 99, 101, 111, 117, 121 1 2 Introduction Up until now w hv
Higher. Exponentials and Logarithms 160
hsn uknt Highr Mthmtics UNIT UTCME Eponntils nd Logrithms Contnts Eponntils nd Logrithms 6 Eponntils 6 Logrithms 6 Lws of Logrithms 6 Eponntils nd Logrithms to th Bs 65 5 Eponntil nd Logrithmic Equtions
Evaluating Microsoft Hyper-V Live Migration Performance Using IBM System x3650 M3 and IBM N series N5600
Lv Mgrato of Workloads o 10GbE vs. 1GbE Ntworks Ju 2011 Evaluatg Mcrosoft Hypr-V Lv Mgrato Prformac Usg IBM Systm x3650 M3 ad IBM N srs N5600 Kt R. Swal IBM Systms ad Tchology Group W Lu NtApp Bra Johso
Initial inventory levels for a book publishing firm
Mőhlytaulmáy Vállalatgazdaságta Itézt 93 Budapst, Fıvám tér 8. (+36 ) 482-5566, Fax: 482-5567 www.u-crvus.hu/vallgazd Ital vtry lvls fr a b publshg frm Imr Dbs Ágs Wmmr 23. sz. Mőhlytaulmáy HU ISSN 786-33
Matching Execution Histories of Program Versions
Mt Exuto Hstors o Prorm Vrsos Xyu Z Rv Gupt Dprtmt o Computr S T Uvrsty o Arzo Tuso, Arzo 85721 {xyz,upt}@s.rzo.u ABSTRACT W vlop mto or mt ym stors o prorm xutos o two prorm vrsos. T mts prou usul my
Paper Technics Orientation Course in Papermaking 2009:
P P Otto Cou Pmkg 2009: g to mk u tt you ol o tgt P Wo ould ttd? Otto Cou Pmkg wll b of vlu to t followg gou of ol:- 1. P mll mloy, wo dl dtly wt t o of mkg d w to mov t udtdg of t o d t mll oto t bod
Problem Set 6 Solutions
6.04/18.06J Mathmatics for Computr Scic March 15, 005 Srii Dvadas ad Eric Lhma Problm St 6 Solutios Du: Moday, March 8 at 9 PM Problm 1. Sammy th Shar is a fiacial srvic providr who offrs loas o th followig
Comparing plans is now simple with metal plans. What Does it Mean to Have a 6-Tier Pharmacy Plan? Tie. Individual Health Insurance
Compg p ow mp wth mt p Iu p py 0% 0% Iu p py T T T T T T 0% t to M G - No G B No B Iu p py 0% Iu p py Iu Hth Iu Mt p po you wth ho. Th m wth mt p th ptg you p w gy py o. 0% A Hth O tm. Cot. Cg o you. Wh
Quality and Pricing for Outsourcing Service: Optimal Contract Design
Qulity nd Pricing for Outsourcing Srvic: Optiml Contrct Dsign Smr K. Mukhopdhyy Univrsity of Wisconsin-Milwuk Co-uthor: Xiowi Zhu, Wst Chstr Univrsity of PA Third nnul confrnc, POMS Collg of Srvic Oprtions
Modern Portfolio Theory (MPT) Statistics
Modrn Portfolo Thory (MPT) Statstcs Mornngstar Mthodology Papr Novmr 30, 007 007 Mornngstar, Inc. All rghts rsrvd. Th nformaton n ths documnt s th proprty of Mornngstar, Inc. Rproducton or transcrpton
Applying the actuarial control cycle in private health insurance
Applyng th cturl control cycl n prvt hlth nsurnc Bn Oo FIAA Prsntd to th Insttut o Acturs o Austrl 2005 Bnnl Convnton 8 My 11 My 2005 Ths ppr hs bn prprd or th Insttut o Acturs o Austrl s (Insttut) Bnnl
Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years
Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957
Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis
Flow-Insnsitiv Pointr Anlysis Lst tim Intrprocurl nlysis Dimnsions of prcision (flow- n contxt-snsitivity) Flow-Snsitiv Pointr Anlysis Toy Flow-Insnsitiv Pointr Anlysis CIS 570 Lctur 12 Flow-Insnsitiv
tis, cis cunc - cunc - tis, cis tis, cis cunc - tis, func - def - def - tis, U func - def - func - tis, pa - tri pa - tri pa - tri tu - per - tu -
1 B Ihsu dulcs cuncts [Supr 1] [Supr 2] Tnr B B B B - B - B - Ih - Ih - Ih - su su su cs cs cs cunc - cunc - cunc - Amns, Bblthèqu Cntl L Agn, ms 162 D, ff 2v-10 ts, ts, ts, E-tr - E-tr - E-tr - n p n
Distributed Systems Principles and Paradigms. Chapter 11: Distributed File Systems. Distributed File Systems. Example: NFS Architecture
Distriut Systms Prinipls n Prigms Mrtn vn Stn VU mstrm, Dpt. Computr Sin [email protected] Chptr 11: Vrsion: Dmr 10, 2012 1 / 14 Gnrl gol Try to mk fil systm trnsprntly vill to rmot lints. 1. Fil mov to lint
Online Insurance Consumer Targeting and Lifetime Value Evaluation - A Mathematics and Data Mining Approach
Ol Isurac Cosumr Targtg ad Lftm Valu Evaluato - A Mathmatcs ad Data Mg Approach Yuaya L,2, Gal Cook 3 ad Olvr Wrford 3 Rvr ad Harbor Dpartmt, Najg Hydraulc Rsarch Isttut, Najg, 224, 2 Ky Laboratory of
AC Circuits Three-Phase Circuits
AC Circuits Thr-Phs Circuits Contnts Wht is Thr-Phs Circuit? Blnc Thr-Phs oltgs Blnc Thr-Phs Connction Powr in Blncd Systm Unblncd Thr-Phs Systms Aliction Rsidntil Wiring Sinusoidl voltg sourcs A siml
Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993
(Rul 5(10)) Shul C Noti in trms o Rul 5(10) o th Cpitl Gins Ruls, 1993 Sttmnt to sumitt y trnsror o shrs whr thr is trnsr o ontrolling intrst Prt 1 - Dtils o Trnsror Nm Arss ROC No (ompnis only) Inom Tx
Managing Multiple Outsourcing: Service Quality and Volume Issues
Prodngs of th 4 Intrntonl Confrn on Industrl Engnrng nd Oprtons Mngmnt l Indons Jnury 7 9 4 Mngng Multpl Outsourng: Srv ulty nd Volum Issus Smr K Mukhopdhyy SungKyunKwn Unvrsty GS Jongnogu Soul Kor -745
Neural Networks for Process Monitoring, Control and Fault Detection: Application to Tennessee Eastman Plant
Mls Scc d cholog ogrss, Mlk, 2 Nurl Nworks for Procss Moorg, orol d ul Dco: pplco o ss sm Pl rshd hmd, Mohd Kmrudd bd Hmd * r for Procss Smulo, Dprm of hmcl grg, cul of hmcl & Nurl sourcs grg, Uvrs kolog
Uses for Binary Trees -- Binary Search Trees
CS122 Algorithms n Dt Struturs MW 11:00 m 12:15 pm, MSEC 101 Instrutor: Xio Qin Ltur 10: Binry Srh Trs n Binry Exprssion Trs Uss or Binry Trs Binry Srh Trs n Us or storing n rtriving inormtion n Insrt,
Consistency Test on Mass Calibration of Set of Weights in Class E 2 and Lowers
Prodgs of th 17 th Itrtol Cofr o For, Mss, Torq d Prssr Msrts, IMEKO TC3, 17-1 St. 001, Istbl, Trky Cossty Tst o Mss Clbrto of St of Wghts Clss E d Lowrs Ls Or Brr, Igo Hrádz, Jorg Nv, Fél Pzt Ntol Ctr
The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.
Rsourc Allocation Abstract This is a small toy xampl which is wll-suitd as a first introduction to Cnts. Th CN modl is dscribd in grat dtail, xplaining th basic concpts of C-nts. Hnc, it can b rad by popl
Online Load Balancing and Correlated Randomness
Onln Load Balancng and Corrlatd Randomnss Sharayu Moharr, Sujay Sanghav Wrlss Ntworng and Communcatons Group (WNCG) Dpartmnt of Elctrcal & Computr Engnrng Th Unvrsty of Txas at Austn Austn, TX 787, USA
A simple algorithm to generate the minimal separators and the maximal cliques of a chordal graph
A smpl lgortm to gnrt t mnml sprtors nd t mxml lqus o ordl grp Ann Brry 1 Romn Pogorlnk 1 Rsr Rport LMOS/RR-10-04 Fbrury 11, 20 1 LMOS UMR CNRS 6158, Ensmbl Sntqu ds Cézux, F-63 173 Aubèr, Frn, [email protected]
Architecture of the proposed standard
Architctur of th proposd standard Introduction Th goal of th nw standardisation projct is th dvlopmnt of a standard dscribing building srvics (.g.hvac) product catalogus basd on th xprincs mad with th
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
Masters Mens Physique 45+
C G x By, F, hysq, Bk Chpshps Ap, Cv Cy, Cf Mss Ms hysq + Fs Ls Css Ov Css s G MC Chpk M+ W M+/MC y Bs 9 8 9 9 8 B O'H 8 9 8 S Rs 8 8 9 h K 9 D Szwsk 8 9 8 9 9 G M+ h D Ly Iz M+ 8 M R : : C G x By, F,
Auburn University Style Guide & Identification Standards Manual
y E k H PM 28 C 9 C MY M y K v B 10 k 0% : 60 64 % % x 11 C M MY Y K v 6 97 1% : % P PM 17 C 2 M MY Y K v 6 88 6% : % P PM 15 8 PM 17 2 B R G ID E & PM ID P E 15 8 T IC IF T IO PM 17 2 D T R D M L 0 0
Evaluating Direct Marketing Practices On the Internet via the Fuzzy Cognitive Mapping Method
Itratoal Joural of Busss ad Maagmt Dcmbr, 28 Evaluatg Drct Marktg Practcs O th Itrt va th Fuzzy Cogtv Mappg Mthod Slcuk Burak Hasloglu (Corrspodg author) Dpartmt of Marktg, Faculty of Ecoomc ad Admstratv
THE well established 80/20 rule for client-server versus
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION 1 Optml Fuctolty Plcemet for Multply Servce Provder Archtectures Ios Pppgotou, Studet Member, IEEE, Mtths Fler, Member, IEEE,
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions
CPS 22 Thory of Computation REGULAR LANGUAGES Rgular xprssions Lik mathmatical xprssion (5+3) * 4. Rgular xprssion ar built using rgular oprations. (By th way, rgular xprssions show up in various languags:
How To Get A Pension In Chile
Bc Accou fo A cocul m bw lo d d l h h v h h l h h h o o u u cfc oy, owd by by h h lo, fo fo cfd od m m u fo fo uld, d d lly odc, ch ch ym ().. Ch 21 Coc m m Rl Rl ym Excuoy Co Co Rco cclbl Ely Ely mo Dful
QUANTITATIVE METHODS CLASSES WEEK SEVEN
QUANTITATIVE METHODS CLASSES WEEK SEVEN Th rgrssion modls studid in prvious classs assum that th rspons variabl is quantitativ. Oftn, howvr, w wish to study social procsss that lad to two diffrnt outcoms.
SAN JOSE UNIFIED RETURNING VOLUNTEER DRIVER PACKET
SAN JOSE UNIFIED ETUNING VOLUNTEE DIVE PACKET VOLUNTEE DIVE S NAME: STUDENT NAME /ID# SCHOOL: SPOT/ACTIVITY: STUDENT NAME /ID# SCHOOL: SPOT/ACTIVITY: STUDENT NAME /ID# SCHOOL: SPOT/ACTIVITY: STUDENT NAME
ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS WITH COMPOUND POISSON DEMAND
8 th Intrnatonal Confrnc of Modlng and Smulaton - MOSIM - May -2, 2 - Hammamt - Tunsa Evaluaton and optmzaton of nnovatv producton systms of goods and srvcs ANALYSIS OF ORDER-UP-TO-LEVEL INVENTORY SYSTEMS
Batteries in general: Batteries. Anode/cathode in rechargeable batteries. Rechargeable batteries
Bttris i grl: Bttris How -bsd bttris work A rducig (gtiv) lctrod A oxidizig (positiv) lctrod A - th ioic coductor Rchrgbl bttris Rctios ust b rvrsibl Not too y irrvrsibl sid rctios Aod/cthod i rchrgbl
Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review
Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 [email protected] December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
Improved PKC Provably Secure against Chosen Cipher text Attack
Intrntonl Journl on Computtonl Scncs & Applctons (IJCSA) Vo3, No, Frury 203 Improv PKC Provly Scur gnst Chosn Cphr txt Attck Sushm Prhn Brnr Kumr Shrm 2 School of Stus n Mthmtcs, Pt Rv Shnkr Shukl Unvrsty,
Question 3: How do you find the relative extrema of a function?
ustion 3: How do you find th rlativ trma of a function? Th stratgy for tracking th sign of th drivativ is usful for mor than dtrmining whr a function is incrasing or dcrasing. It is also usful for locating
(Analytic Formula for the European Normal Black Scholes Formula)
(Analytic Formula for th Europan Normal Black Schols Formula) by Kazuhiro Iwasawa Dcmbr 2, 2001 In this short summary papr, a brif summary of Black Schols typ formula for Normal modl will b givn. Usually
Authenticated Encryption. Jeremy, Paul, Ken, and Mike
uthntcatd Encrypton Jrmy Paul Kn and M Objctvs Examn thr mthods of authntcatd ncrypton and dtrmn th bst soluton consdrng prformanc and scurty Basc Componnts Mssag uthntcaton Cod + Symmtrc Encrypton Both
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
english parliament of finland
gh f fd 213 P cvd f h f y f h g 4 Fby 213. E H (Sc Dcc Py) w -cd S, P Rv (N C Py) F Dy S d A Jh (Th F Py) Scd Dy S. Th g c c 5 Fby, wh Pd f h Rbc S Nö d P f h f fwg h c 212. P g dc c 12 Fby h b f P M c.
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
Venture Capital Financing : A Theoretical Model
Joural of Appld Busss ad Eoos Vtur Captal Fag : A Thortal odl odhr Chrf Uvrsty of Rs O-LAE Saa Elouar SG Souss Ths papr vstgats vtur aptal fag a vrot whr a aagr fas a prft aptal arkt ad a vtur aptalst
REFINED CALCULATION AND SIMULATION SYSTEM OF LOCAL LARGE DEFORMATION FOR ACCIDENT VEHICLE
2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 20 2 22 23 24 25 26 27 28 29 30 3 32 33 34 35 36 37 38 39 40 4 42 43 44 REFINED CALCULATION AND SIMULATION SYSTEM OF LOCAL LARGE DEFORMATION FOR ACCIDENT VEHICLE WagFag
ANALYSIS APPROACHES OF SSO BASED ON LDAE MODEL
ANAYI APPROAE OF O AED ON DAE MODE hg Yu, Yx N, or Mbr, IEEE Th Uvrsty o og Kog og Kog, h [email protected] Abstrct A lrz rtl lgbrc qutos DAE) ol or both g-lyss colx torqu coct T) clculto o owr syst subsychroous
Change Your History How Can Soccer Knowledge Improve Your Business Processes?
Symposium Inuurl Lctur o Hjo Rijrs, VU, 26-6-2015 Chn Your History How Cn Soccr Knowl Improv Your Businss Procsss? Wil vn r Alst TU/ n DSC/ 1970 born Oostrbk 1988-1992 CS TU/ 1992-1994 TS TU/ 1994-1996
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
Adverse Selection and Moral Hazard in a Model With 2 States of the World
Advrs Slction and Moral Hazard in a Modl With 2 Stats of th World A modl of a risky situation with two discrt stats of th world has th advantag that it can b natly rprsntd using indiffrnc curv diagrams,
Assessing Software Reliability Using SPC An Order Statistics Approach
Ittiol Joul of Comput Scic, Egiig d Applictios (IJCSEA Vol., No.4, August Assssig Softw Rliility Usig SPC A Od Sttistics Appoch.Rmchd H Ro D. R.Sty Psd D. R.R..thm Dptmt of Comput Scic, A.S.N. Dg Collg,
Exponential Generating Functions
Epotl Grtg Fuctos COS 3 Dscrt Mthmtcs Epotl Grtg Fuctos (,,, ) : squc of rl umbrs Epotl Grtg fucto of ths squc s th powr srs ( )! 3 Ordry Grtg Fuctos (,,, ) : squc of rl umbrs Ordry Grtg Fucto of ths squc
Measuring the Quality of Credit Scoring Models
Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6
Whole Systems Approach to CO 2 Capture, Transport and Storage
Whol Systms Approach to CO 2 Captur, Transport and Storag N. Mac Dowll, A. Alhajaj, N. Elahi, Y. Zhao, N. Samsatli and N. Shah UKCCS Mting, July 14th 2011, Nottingham, UK Ovrviw 1 Introduction 2 3 4 Powr
Integrated inventory model with controllable lead time involving investment for quality improvement in supply chain system
Itratioal Joural of upply ad Opratios Maagmt IJOM May 15 Volum Issu 1 pp. 617-69 IN-Prit: 8-159 IN-Oli: 8-55 www.ijsom.com Itgratd ivtory modl with cotrollal lad tim ivolvig ivstmt for quality improvmt
Algorithmic Aspects of Access Networks Design in B3G/4G Cellular Networks
Algorithmi Aspts o Ass Ntworks Dsign in BG/G Cllulr Ntworks Dvi Amzllg, Josph (Si) Nor,DnnyRz Computr Sin Dprtmnt Thnion, Hi 000, Isrl {mzllg,nny}@s.thnion..il Mirosot Rsrh On Mirosot Wy, Rmon, WA 980
Approximate Counters for Flash Memory
Approximat Coutrs for Flash Mmory Jack Cichoń ad Wojcich Macya Istitut of Mathmatics ad Computr Scic Wrocław Uivrsity of Tchology, Polad Abstract Flash mmory bcoms th a vry popular storag dvic Du to its
Curve Fitting and Solution of Equation
UNIT V Curve Fttg ad Soluto of Equato 5. CURVE FITTING I ma braches of appled mathematcs ad egeerg sceces we come across epermets ad problems, whch volve two varables. For eample, t s kow that the speed
NEURAL DATA ENVELOPMENT ANALYSIS: A SIMULATION
Itratoal Joural f Idustral grg v... 4-4 4 NURAL ATA NVLPMNT ANALYSIS: A SIMULATIN Luz Bod Nto Marcos Prra stllta Ls la Goçalvs Goms João Carlos Corra Batsta Soars d Mllo 3 Fabao S. lvra. d g. ltrôca Tlcomucaçõs
MODULE 3. 0, y = 0 for all y
Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)
Term Structure of Interest Rates: The Theories
Handou 03 Econ 333 Abdul Munasb Trm Srucur of Inrs Ras: Th Thors Trm Srucur Facs Lookng a Fgur, w obsrv wo rm srucur facs Fac : Inrs ras for dffrn maurs nd o mov oghr ovr m Fac : Ylds on shor-rm bond mor
TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS
MPRA Muich Prsoal RPEc Archiv TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS Mahbub Parvz Daffodil Itratioal Uivrsy 6. Dcmbr 26 Oli at
A122 MARION COUNTY HEALTH BUILDING HVAC, GLAZING AND LIGHTING RENOVATION 75% DOCUMENTS 08/31/2015
7 ' 7 /" ' " ' /" ' 9 /" ' 0" ' 0" ' 0" ' 0" ' " ' /" 0 NRL SHT NOTS IL VRIY XISTIN PRIOR TO WORK N NOTIY RHITT/NINR O ISRPNIS TWN RWINS N XISTIN ONITIONS. 0 0 0 PTH LOTIONS N IR PROOIN WHR XISTIN WLLS
G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).
Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,
A Quick Guide to Colleges. Offering Engineering Degrees
Qk gs ffg gg Dgs Fby 2007 www.dgs.g Qk gs ffg gg Dgs Ts qk f g ps sy sg (by s) f U.S. gs ss ffg b s (4-y) gs gg 363 ss, spg 50 ss ps Ds f b R. Ts sy s s gg g pgs by f gg Tgy (T, gz f g sy pgs pp s, pg,
Operation Transform Formulae for the Generalized. Half Canonical Sine Transform
Appl Mhmcl Scnc Vol 7 3 no 33-4 HIKARI L wwwm-hrcom Opron rnorm ormul or h nrl Hl Cnoncl Sn rnorm A S uh # n A V Joh * # ov Vrh Inu o Scnc n Humn Amrv M S In * Shnrll Khnlwl Coll Aol - 444 M S In luh@mlcom
On Error Detection with Block Codes
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 3 Sofa 2009 O Error Detecto wth Block Codes Rostza Doduekova Chalmers Uversty of Techology ad the Uversty of Gotheburg,
Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000
hsn uknt Highr Mathmatics UNIT Mathmatics HSN000 This documnt was producd spcially for th HSNuknt wbsit, and w rquir that any copis or drivativ works attribut th work to Highr Still Nots For mor dtails
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
WORKERS' COMPENSATION ANALYST, 1774 SENIOR WORKERS' COMPENSATION ANALYST, 1769
08-16-85 WORKERS' COMPENSATION ANALYST, 1774 SENIOR WORKERS' COMPENSATION ANALYST, 1769 Summary of Dutis : Dtrmins City accptanc of workrs' compnsation cass for injurd mploys; authorizs appropriat tratmnt
Numerical and Experimental Study on Nugget Formation in Resistance Spot Welding for High Strength Steel Sheets in Automobile Bodies
rasactios of JWRI, ol.38 (9), No. rasactios of JWRI, ol.38 (9), No. Numrical ad Exprimtal Study o Nuggt Formatio i Rsistac Spot Wldig for High Strgth Stl Shts i Automobil Bodis MA Nishu* ad MURAKAWA Hidkazu**
STATEMENT OF INSOLVENCY PRACTICE 3.2
STATEMENT OF INSOLVENCY PRACTICE 3.2 COMPANY VOLUNTARY ARRANGEMENTS INTRODUCTION 1 A Company Voluntary Arrangmnt (CVA) is a statutory contract twn a company and its crditors undr which an insolvncy practitionr
Knowledge as a Service
Kwdg v Bg dym kwdg y m mx WD, A Xx Cmpy pvd m-h kwdg mgm, m d y hp bd dv m ffv m v xp. WD Kwdg v dp y m h p wh zd, dym d p f kwdg pvd ffv d pp f y m h mx. Why gd m kwdg mp? A gz f g m, mvg mh ff pb w-
Tax Collection, Transfers, and Corruption: the Russian Federation at the Crossroads 1)
ÝÊÎÍÎÌÈ ÅÑÊÈÉ ÆÓÐÍÀË ÂØÝ ¹ 1 2003 3 ÂÎÏÐÎÑÛ ÒÅÎÐÈÈ Tax Collcton, Transfrs, and Corrupton: th Russan Fdraton at th Crossroads 1) M. Mokhtar, I. Grafova Abstract Aftr thortcally consdrng th problms of tax
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
