Lecture II: Precision quantum metrology

Similar documents
Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide

Nuclear Magnetic Resonance (NMR) Spectroscopy

Quantum control of individual electron and nuclear spins in diamond lattice

Darrick Chang ICFO The Institute of Photonic Sciences Barcelona, Spain. April 2, 2014

Outline: Yb optical frequency standard The fiber link Applications and fundamental physics

Atomic Structure: Chapter Problems

Quantum Computing for Beginners: Building Qubits

The Hydrogen Atom Is a Magnet.

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

Magnetic dynamics driven by spin current

Section 6 Raman Scattering (lecture 10)

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

Quantum Information Science (NIST trapped ion group) Dilbert confronts Schrödinger s cat, 4/17/12

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

2, 8, 20, 28, 50, 82, 126.

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE

Free Electron Fermi Gas (Kittel Ch. 6)

Electric Dipole moments as probes of physics beyond the Standard Model

Spatial and temporal coherence of polariton condensates

How To Understand The Measurement Process

ASACUSA: Measuring the Antiproton Mass and Magnetic Moment

Group Theory and Chemistry

- thus, the total number of atoms per second that absorb a photon is

Precession of spin and Precession of a top

How To Understand Light And Color

Measurement of the gravitational constant G by atom interferometry

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

A More Efficient Way to De-shelve 137 Ba +

High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.

Time out states and transitions

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

La référence de fréquence délivrée par le SYRTE. Paul-Eric Pottie LNE-SYRTE

Cold atom interferometers and their applications in precision measurements

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

1. Basics of LASER Physics

NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents

Syllabus for Chem 359: Atomic and Molecular Spectroscopy

Introduction to Nuclear Magnetic Resonance Spectroscopy

Raman Spectroscopy Basics

NMR Nuclear Magnetic Resonance

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading:

Perfect Fluidity in Cold Atomic Gases?

The Experiment Some nuclei have nuclear magnetic moments; just as importantly, some do not

Signal Manipulation. time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

arxiv:cond-mat/ v1 [cond-mat.soft] 25 Aug 2003

5.33 Lecture Notes: Introduction to Spectroscopy

NMR and IR spectra & vibrational analysis

2. Spin Chemistry and the Vector Model

Acousto-optic modulator

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

Arrangement of Electrons in Atoms

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Nuclear Magnetic Resonance

Blackbody radiation derivation of Planck s radiation low

Rate Equations and Detailed Balance

Nuclear Magnetic Resonance Spectroscopy

Numerical analysis of Bose Einstein condensation in a three-dimensional harmonic oscillator potential

Heating & Cooling in Molecular Clouds

Theory of EIT in an Ideal Three-Level System

Electron Paramagnetic (Spin) Resonance

Infrared Spectroscopy: Theory

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

College of Arts and Sciences

0.1 Phase Estimation Technique

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

Nuclear Physics and Radioactivity

Interferometric Measurement of Dispersion in Optical Components

The Role of Electric Polarization in Nonlinear optics

Section 5 Molecular Electronic Spectroscopy (lecture 9 ish)

DOCTOR OF PHILOSOPHY IN PHYSICS

Four Wave Mixing in Closely Spaced DWDM Optical Channels

Nuclear Magnetic Resonance

Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases

Lecture #7 (2D NMR) Utility of Resonance Assignments

Quantum Computation with Bose-Einstein Condensation and. Capable of Solving NP-Complete and #P Problems. Abstract

Molecular Spectroscopy

AS COMPETITION PAPER 2008

Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy. Abstract

Widths of spectral lines

Transcription:

Lecture II: Precision quantum metrology Jun Ye JILA, NIST & Univ. of Colorado http://jila.colorado.edu/yelabs ICAP Summer School, Paris, July 20, 202 $ Funding $ NIST, NSF, AFOSR, DARPA DOE, ONR

Clocks are everywhere Space exploration, Defense & Homeland security ESA satellite to satellite comm Fiber-Laser Comb Telecommunications Transmit Fiber Standards for Industry Length Metrology Fundamental and Applied Science

Optical atomic clocks Oscillator Ultrastable laser Sr atoms Counter optical comb optical frequency counter

Ultracold Matter Precise control of a quantum system The most precise measurements, e.g., clocks Quantum information Quantum sensors Control: A tool for understanding complexity Strongly correlated many-body quantum systems Superfluidity & Superconductivity Quantum magnetism (Fully-)Quantum chemistry

Quantum metrology in optical lattice P 0 S 0 ω trap Atomic confinement << l (e ikx ~, k = 2p/l probe ) Trap potential identical for S 0 and P 0 Precision improvement by N /2 Long coherence time; Zero Doppler shift, Zero recoil shift No light shift from the trap; but, Interaction effects? Accuracy?

An interacting many-body quantum system U U U ~ Hz ~ 50 x 0-2 K

Strontium Quality factor > 0 7 Once set, it swings during the entire age of the universe

Alkali Polarization Gradient Stimulated Raman VSCPT Limited to Low Densities Alkaline Earth versus Alkali All-Optical Cooling to Ultra-Low Temperatures Cold / Ultra-Cold Collisions Alkaline Earth High Density Intercombination line sub-recoil Sideband Cooling in Dipole Traps Low Transfer Efficiency High Collision Rates Feshbach Resonances Hyperfine structure BEC / FDG Quantitative Studies Diverse polar molecules Low Collision Rates Ground-State Magnetic Traps Tunable Interactions Only two Fermions: 40 K, 6 Li Time / Frequency Metrology Diversity of Bose, Fermi Isotopes Optical Feshbach resonance Structure Free Ground State Microwave Clocks Small Optical Line Q High Optical Line Q Second-Stage Cooling Required

Strontium: first stage cooling 5s6s 5s6s large dipole moment mostly closed transition J=0 to J= diode laser with frequency doubling 5s5p 5s4d 5s5p 5s4d 5s 2 S 0 P D S 2 P J D J 2 0 2 0

Strontium: Narrow Line Laser Cooling 5s6s 5s6s smaller dipole moment closed transition J=0 to J= 5s5p 5s4d 5s5p 2 0 5s4d 2 0 diode laser accessible 5s 2 S 0 P D S 2 P J D J

Bad things about motion Short observations; Relativity (Doppler) shifts

The Doppler Problem Frequency landscape

Cooling atoms using lasers Always pushing atoms against their motions

Force (x0-2 N) Stop the moving atom Detuning Dependent Mechanical Dynamics P billionth (0-9 ) of room temperature 2 0 v X ( or v Y ) (m/s) -2 0 2 d (khz) -20-800 -800-2800 = -20 khz T ~ 0.5 photon recoil ~ 220 nk.2 mm = -800 khz g 46nm (2 MHz) -2 s = 248 689 nm (7.4 khz) P - 0 x (or y) Position (mm) = -800 khz 2 S 0 2 0 = -2800 khz 0-2 0 2-5.6 mm

Strontium: Clock Transition 5s6s 5s6s HFI provides S 0 - P 0 clock ( ~ mhz) field insensitive states 5s5p 5s4d 5s4d 2 0 diode laser accessible Starkfree confinement wavelength 5s5p 2 0 clock states J=0 5s 2 S 0 P D S 2 P J D J

Alkaline earth A tale of Twin Electrons JILA, Tokyo, Paris, NIST, PTB, Florence, NICT, NPL, NIM, NRC Science 4, 40 (2006). PRL 98, 08002 (2007). Science 9, 805 (2008). P 46 nm (~ 5 ns) P 0 Metastable state quality factor 698 nm (~ 50 s) Q > 0 7 S 0

Trapping atom with light l l 2 Ye, Kimble, & Katori, Science 20, 74 (2008). 2> > P 0 698 nm S 0 l magic

Sr energy levels 5snd D,2, 5snp P 5snp S 5s6s S 2 5p P0,,2 ~ 490 nm 5s5d D,2, 5s5p P ~ 680 nm λ trap ~ 480 nm 5s4d D,2, ~ 460 nm ~ 2.7μm 5s5p P0,,2 2 5s S0 λ trap Porsev, Ludlow, Boyd, Ye, Phys. Rev. A 78, 02508 (2008).

2000 000 4p 0 a 0 (a. u.) Crossing of polarizabilities 0-000 -2000 P 0 S 0 0.2 0.4 0.6 0.8 2 4 Optical trap wavelength ( m)

Stark Shift @ I 0 (khz) It s a mess if J 0 0-50 -00-50 -200 S 0, pol. = p, +, - P 0, pol. = p, +, - P (m = 0), pol. = p P (m = +/- ), pol. = p; (m=0), pol. = + P (m = +/- ), pol. = +/- P (m = +/- ), pol. = -/+ -250 0.7 0.8 0.9.0..2 Optical trap wavelength ( m)

Important Regimes for Spectroscopy trap well-resolved sideband Lamb-Dicke trap recoil uniform confinement

Atomic recoil P 0 No recoils S 0 photon

Spectroscopy at the magic wavelength Ludlow et al., Phys. Rev. Lett. 96, 000 (2006). Photon counts Clock probe S/N ~ N /2 S 0 P 0 ω trap N atoms 500 000 tr a p tr a p r e c o il No Doppler, No Recoil No Stark shift 2500 2000 500 000 500 Red sideband Carrier Blue sideband -60-40 -20 0 20 40 60 Optical frequency (khz)

Photon Counts Zoom into the carrier of 87 Sr S 0 P 0 200 000 2800 2600 2400 2200 2000 800 600 400 Q ~ x 0 4 FWHM: 4.6 Hz 200-20 -0 0 0 20 0 Clock Laser Detuning (Hz) Single trace without averaging S0 - P 0 Linewidth (Hz) 80 Magnetic Broadening 70 60 50 40 0 20 0-40 -0-20 -0 0 0 20 0 40 Magnetic Field (mg)

Differential Landé g-factor ' P0 P0 c P c2 P P P HFI P 0 P 0 S 0 I = 9/2 S 0-9/2 m f +9/2 P 0 g-factor different from S 0 due to hyperfine Zeeman-shift; vector & tensor light shifts All are determined with high-resolution measurement

P0 Signal (Norm.) Optical Measurement of Nuclear g-factor Boyd, Zelevinsky, Ludlow, Foreman, Blatt, Ido, & Ye, Science 4, 40 (2006). P0 S0 S 0 0.0 +9/2-9/2 9 2 7 2 +7/2 5 2-7/2 0.08 2 +5/2 2 2-5/2 0.06 0.04 9 2 0.02 0.00 7 2 P 0 5 2 2 NMR-like No net electronic experiment angular in the momentum optical domain Resolved Dg = -08.4(4) transitions Hz/(G with < m F ) Gauss Small P 0 lifetime B-field does 40(40) not perturb s hyperfine mixing 2 π 2 2 +/2 2 5 2 5 2 +/2 7 2 7 2 -/2 -/2-400 -200 0 200 400 9 2 9 2 Laser Detuning (Hz)

Scalar, vector, tensor polarizabilities Boyd et al., PRA 76, 02250 (2007). Westergaard et al. PRL 06, 2080 (20). P0 S0 p mf 9 2 9 2 7 2 7 2 5 2 5 2 2 2 2 2 2 2 π 0 Dg mf 0 S 2 2 B 5 2 5 2 T 7 2 7 2 9 2 9 2 F Itrap ( D D F ) ( D V F T 2 F m D m ) Hyperpolarizability ~ (I trap ) 2 : <E-7 P. Lemonde, SYRTE D : differential polarizability : polarization ellipticity I trap Clock frequency st order Zeeman Scalar + Tensor polarizability Vector +Tensor polarizability

S0 Coherent optical manipulation of nuclear spins P0 9 2 9 2 7 2 7 2 5 2 - p 5 2 2 0 2 2 2 2 2 Quantum computing Quantum register Quantum simulations 2 2 Spectral resolution 5 2 5 2 7 2 7 2 9 2 9 2 P0 Populatin (arb).0 0.8 0.6 0.4 0.2 0.0 m F = -9/2 m F = +9/2-00 0 00 Detuning (Hz) Two stable spin systems, separately manipulated or entangled. Nuclear spins for information storage & accessed via electronic qubits. Electronic states for state-dependent lattice & control. SU(N) symmetry; spin orbital coupling dynamics. Deutsch et al., PRL 98 (2007); PRL 99, (2007). Daley et al., PRL 0 (2008). Gorshkov et al., PRL. 02 (2009); Nature Phys. 6, 289 (200).

Coherent spectroscopy Q ~ x 0 5 Boyd et al., Science 4, 40 (2006); PRL 98, 08002 (2007). June, 202 Sr linewidth: 0.5 Hz Instability ~ 2 x 0-6 / Near the quantum projection noise

total deviation JILA Sr atomic clock Science 4, 40 (2006); Science 9, 805 (2008); Science 20, 74 (2008); Science 24, 60 (2009); Science, 04 (20). 0, 000, 000, 000, 000, 000 ± (0-6 ) 0-5 Sr Yb standards Definition of SI SECOND 0-6 0-7 Ludlow / Time & Freq. 0 00 000 0000 time (s)

Collision is a big deal for Sr Systematics

Measurement of frequency shift (0-6 ) for spin-polarized fermions G. Campbell et al, Science 24, 60 (2009). 2.0.5 K K.0 0.5 0.0-0.5 0. 0.2 0. 0.4 0.5 0.6 0.7 0.8 Fraction of atoms de-excited

Interactions between identical Fermions () Particles behave like waves (T -> 0) (2) Angular momentum is quantized s p d 0 ħ 2ħ () Quantum statistics matter 0 0 Fermions c L =, p-wave collisions

Lattice clock: an interacting quantum system e g n 2 n Triplet Singlet state s-wave interaction shift. Triplet states can also have p-wave interactions. Rey et al PRL (2009), Gibble PRL (2009), Yu & Pethick, PRL (200). Swallows et al., Science, 04 (20). 2W 2W Shifted singlet u eg DW

p-wave interactions Two-particle: Many-particle: J=N/2 Lemke et al. PRL 07 (20); Bishof et al. PRA 84, 05276 (20). 2W J= J=0 Triplet p-wave v ee Singlet s-wave u eg In a strongly interacting system: s-wave suppressed (contributing as sidebands) p-wave dominant (acting on the carrier) s-wave 2W v eg DW p-wave

Spin model (Ana Maria Rey et al.) Pseudo-spin S and W: laser detuning and Rabi freq. Micheli, A., Jaksch, D., Cirac, J., & Zoller, P. (200). Physical Review A, 67() (200)

Competition between W and V V Interaction energy: Elastic & Inelastic mapping to bosons GPE (mean field + loss) Rabi frequency ee

zˆ W Competition between W and V yˆ V xˆ U () W >> V mean-field shift W Rabi frequency V (2) W < V Correlated spin spectrum Interaction energy

2-s optical/atomic coherence D lattice spectroscopy P 0 2 s S 0 Fourier Limit

Linear response regime (Rabi spectroscopy) 2 uk sample temperature High density Low density Experiences shift (N -) DE µ v eg V e g

Rabi spectroscopy with strong interactions D Non-trivial eigenvalue spectrum of correlated states. etc. g Structure due to interactions (both elastic & inelastic). excitation blockade at increasing density or probe time.

Excitation Ramsey spectroscopy under interactions p / 2 p / 2 Interaction dominates over optical dephasing 0 ms 200 ms Laser detuning (Hz)

Density shift in Ramsey Collisional shift has a linear dependence on the tipping angle. CS z

Shift Beyond mean field Interaction & Poissonian distribution Ramsey fringe decay 5p 6 D p 2 p 6 Tipping angle dependence Ramsey fringe decay vs. the spin tipping angle Excitation fraction

Fractional shift Cavity-Enhanced Lattice System Retroreflected Lattice: Cavity Lattice: k axial radial N Retro-Refl. 80 khz 450 Hz 0 Pierre Lemonde SYRTE Cavity 90 khz 00 Hz 0 5 0-6 0-7 Density shift: 0-7 Uncertainty: 5 x 0-9 0-8 0-9 s 0 s 00 s 000 s

Special thanks M. Swallows M. Martin M. Bishof T. Nicholson B. Bloom J. Williams M. Swallows (JPL/Caltech) S. Blatt (Harvard) A. Ludlow (NIST) Y. Lin (NIM, Beijing) G. Campbell (U. Maryland) M. Boyd (AO Sense) J. Thomsen (U. Copenhagen) T. Zelevinsky (Columbia U.) T. Zanon (Univ. Paris ) S. Foreman (Stanford U.) X. Huang (WIPM) T. Ido (Tokyo NICT) T. Loftus (AO Sense) X. Xu (ECNU) Ana M. Rey (theory)