Punching of flat slabs: Design example



Similar documents

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

CHAPTER 4c. ROOTS OF EQUATIONS

ME 612 Metal Forming and Theory of Plasticity. 6. Strain

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 6 Ductility and Deflections

Transistor is a semiconductor device with fast respond and accuracy. There are two types

A122 MARION COUNTY HEALTH BUILDING HVAC, GLAZING AND LIGHTING RENOVATION 75% DOCUMENTS 08/31/2015

Section 7.4: Exponential Growth and Decay

Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram. Module 2 - GEARS. Lecture 17 DESIGN OF GEARBOX

Core Maths C3. Revision Notes

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

Complex Numbers. w = f(z) z. Examples

Data Sheet. HSMP-382x, 482x. Surface Mount RF PIN Switch and Limiter Diodes. Features. Description/Applications

Traffic Flow Analysis (2)

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

Math Placement Test Practice Problems

Homework 9. Problems: 12.31, 12.32, 14.4, 14.21

New Basis Functions. Section 8. Complex Fourier Series

THE FLEXURE AND SHEAR DESIGN OF CORBEL (BRACKET)


Version hij. General Certificate of Education. Mathematics MPC3 Pure Core 3. Mark Scheme examination - January series

AP Calculus AB 2008 Scoring Guidelines

- ASSEMBLY AND INSTALLATION -

Triple Integrals in Cylindrical or Spherical Coordinates

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012

SLOPE STABILITY SLOPE STABILITY. Types of Slope Failure. Types of Slope Failure. Assistant Professor Berrak Teymur

Link-Disjoint Paths for Reliable QoS Routing

Finite Dimensional Vector Spaces.

LIMITS AND CONTINUITY

Question 3: How do you find the relative extrema of a function?

CE 3500 Fluid Mechanics / Fall 2014 / City College of New York

Chapter 2: Privatization, Diffusion of Share Ownership, and Politics

DITCH BOTTOM INLET TYPES C, D, E & H

Internal Geographic, Labor Mobility, and the Distributional Impacts of Trade Online Appendix (Not for Publication)

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Hybrid Rocket Fuel Regression Rate Data and Modeling

>

Incline and Friction Examples

A N Beal EARTH RETAINING STRUCTURES - worked examples 1

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6


11 CHAPTER 11: FOOTINGS

GE Inventory Finance. Unlock your cash potential.

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Adverse Selection and Moral Hazard in a Model With 2 States of the World

D.3. Angles and Degree Measure. Review of Trigonometric Functions

Chapter 15, example problems:

Page 1 of Sven Alexander Last revised SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

Double Integrals in Polar Coordinates

Fluid Mechanics: Static s Kinematics Dynamics Fluid

x a x 2 (1 + x 2 ) n.

Limit Switches/ Receptacle Assembly... For Nuclear Environments

First Cut Stock Study Report

Lecture 3: Diffusion: Fick s first law

R e t r o f i t o f t C i r u n i s g e C o n t r o l

2D Geometrical Transformations. Foley & Van Dam, Chapter 5

PHYSICS 151 Notes for Online Lecture #11

E S T A D O D O C E A R Á P R E F E I T U R A M U N I C I P A L D E C R U Z C Â M A R A M U N I C I P A L D E C R U Z

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

HYPOTHESIS TESTING: POWER OF THE TEST

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

Description. Rc NPT G 1/8 1/4 3/8 1/2 3/4. With drain cock Drain guide 1/8 Drain guide 1/4 Drain cock with barb fitting: For ø6 x ø4 nylon tube

Exponential and Logarithmic Functions

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

C + + a G iriş 2. K o n tro l y a p ıla rı if/e ls e b re a k co n tin u e g o to sw itc h D ö n g ü le r w h ile d o -w h ile fo r

Concrete Design to Eurocode 2

6.2 Permutations continued

Kinetic Molecular Theory of Matter

( 1 ) Obtain the equation of the circle passing through the points ( 5, - 8 ), ( - 2, 9 ) and ( 2, 1 ).

SOLUTION OF BOUNDARY LAYER

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

Module 2- GEARS. Lecture 9 - SPUR GEAR DESIGN

by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

CAFA DIVERSITY JURISDICTION

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

Business rules FATCA V. 02/11/2015

Homework 2 Solutions

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

Mannheim curves in the three-dimensional sphere

Make up Epoxy adhesive

The value of the wastewater flow used for sewer design is the daily peak flow. This can be estimated as follows:

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

A Note on Approximating. the Normal Distribution Function


Section V.2: Magnitudes, Directions, and Components of Vectors

V e r d e s I s t v á n a l e z r e d e s V Á L T O Z Á S O K. F E L A D A T O K. GONDOK A S O R K A TO N A I

EQUILIBRIUM STRESS SYSTEMS

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

Transcription:

i Mol Co 00 Pnhing o lat la: Dign ampl Stan Lip, Arlio Mttoni, Migl Frnánz Riz Eol Polthniq Fééral Laann, Switzrlan, 6..0 Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan

Bai ata. Gomtr (imnion in [m]) Plan viw Stion trogh la an olmn Span: L 6.00 m an L 5.60 m Sla thin h: Covr onrt : 5 m m. Matrial Th matrial proprti an on in haptr 5 o mol o 00. Conrt C0 Stl B500S (lral an tranvr rinormnt) 0 MPa 5 MPa E 00 GPa g mm Dtilit la B. Loa Sl-wight o onrt la: 6.5 N/m Sprimpo a loa: N/m Liv loa: N/m g + q.5(6.5 + ) + 5.6N/m Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan

Lvl I o approimation (prliminar ign) Th goal o th prliminar ign i to h i th imnion o th trtr ar raonal with rpt to th pnhing har trngth an i pnhing har rinormnt i n. Th ration or in th olmn ar timat ing ontritiv ara. Ration or Innr (C5): 69 N Cornr (C, C): 9 N Eg (C): 65 N (C an C6 ar not govrning N) Th tiv pth v i am to 00 mm. Entriit oiint ( ) ar aopt rom th ommntar o 7..5. Control primtr Innr: ( π) ( π) + 0.90 60 + 00 50mm 0 v π v 00 π Cornr: 0.65 60 0mm 0 + + π v 00 π Eg: 0.70 60 766 mm 0 + + Innr olmn Cornr Colmn Eg Colmn (C5) (C, C) (C, C, C6) 0.9 0.65 0.7 Aoring to th ommntar, th itan to th point whr th raial momnt i zro r an timat a on th pan. B ing th Lvl I approah, on an timat th rotation. Th maimm aggrgat iz o mm la to a ator g o g 0.67 < 0.75 g 0.75 6 + 6 + g Rotation r 0.L 0. 6.0. m r 0.L 0. 5.6.m,,,. 5 r 0.05 E 0.00 00000 govrning,. 5 r 0.000 E 0.00 00000 + 0.9 g 0.7 0.6 + 0.9 0.05 00 0.75 Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan

Shar trngth withot har rinormnt Innr: Cornr: R R 0 0.7 50 00 0 9 N, 0 0.7 0 00 0 7 N, 69 N 9N Eg: R 0 0.7 766 00 0 7 N, 65N Th thin o th la ha to inra or th la ha to har rinor. To h i har rinormnt an whih tm an, on an allat th minimal n val o ator. R,ma R, pn on th prorman o th har rinormnt tm. Th mol o propo a val o.0 or tm ompliant with mol o tailing rl ( 7..5.). Highr val (p to.8) an i mor rtritiv tailing rl ar aopt an i th plaing o th tranvr rinormnt i h at th ontrtion it. Shar rinormnt 69 Innr:. 78 9 R, 9 Cornr:. 7 7 R, 65 Eg:. 09 7 Conlion R, Innr olmn: Shar rinormnt i nar an iint (aonting or th val o ) to nr pnhing har trngth Cornr olmn: Shar rinormnt might proal not nar. Thi ha to onirm a highr lvl o approimation. Eg olmn: Shar rinormnt might proal nar. Th thin o th la i iint i har rinormnt i. Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan

Lvl II o approimation (tpial ign) Th momnt an th ration or hav n allat with a init lmnt otwar. For th anali, a linar-lati mol ha n. Th momnt M i th vtor aition o th momnt in - an -irtion. M M + M,, For a lvl II approimation, on ha to now th lral rinormnt. It wa ign on th ai o th prvio init lmnt anali.. Strtral anali an lral ign Smmar o th olmn ration Colmn R [N] M,, [Nm] M, [Nm] M [Nm] C 5 C 66 0 C 5 C 5 6 6 C5 66 8 8 C6 6 5 Rinormnt th Th lral trngth an allat aoring to th Mol Co. In thi ampl, howvr, th lral trngth ha n allat aming a rigiplati havior o onrt an tl: ρ ρ m R Flral trngth ø0 @00 mm m R 5 Nm/m 0 mm ø0 @00 mm m R 69 Nm/m 0 mm ø0 @00 mm / ø6 @00 mm m R 5 Nm/m 0 mm Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan 5

.5 Shar ign innr olmn C5 Th ign har or i qal to th olmn ration or N min th appli loa within th ontrol primtr (g + q ) A. In a o innr olmn, th ntroi o th olmn orrpon to th ntroi o th ontrol primtr. Thror, Δ 0 Dign har or 0.0 A m v + + π 0.6 + 0.6 0.0 + π 0. v ( ) 66 5.6 0. 66 N N g + q A Control primtr 6 M 80 Δ 0 mm 66 0 0.98 + + 5 ( ) ( ) 06 0 A 5mm π π + π 0.98 60 + 0 π 6mm 0 v Rotation Th itan r, an r, ar th am a or th Lvl I approimation. r.m r.m,, r r...9m,, m m M Δ 66 8, + +, 8 8.9 M Δ 66, + +, 8 8.9 85 Nm/m 8Nm/m r, m. 5 85 0.0 E m 0.0 00000 5 R, govrning g i allat at Lvl I. r, m. 5 8 0.0 E m 0.0 00000 5 R, + 0.9 g 0.00 0.6 + 0.9 0.0 0 0.75 Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan 6

Th pnhing har trngth o th onrt i not iint. Conqntl, har rinormnt i nar. Firtl, on ha to h i th ign har or i mallr than th maimm pnhing trngth R,ma. Thi i on aming. Th ign har or i low th maimm pnhing trngth R,ma. Thror, th la an rinor with har rinormnt ompling with tailing rl in in la 7..5.. Th on trngth i tan a MPa (aoring to MC 00 or orrgat ar). To avoi a ailr oti th har rinor ara, th otr primtr n to hav a minimal lngth. Th ign har or an r to aont or th loa appli ini th otr primtr. Thi t i nglt a a a timat. In thi ampl, th allating val o th tiv pth v i qal to th tiv pth min th onrt ovr on th ottom ra o th la: 0 0 7 mm vot, Aming a irlar ontrol primtr or th timation o th ntriit, ator an timat a tail in th right han i olmn. Poil har rinormnt laot: Pnhing trngth withot har rinormnt R 0 0.00 6 0 0 67 N, Pnhing trngth with har rinormnt σ σ 67 7 N N, 0 R,ma R v R,ma A w w w 7 N 66N E 00000 0.0 + + 6 φ 6 w w 5 MPa > 5 MPa w σ w R, inα 0.98 σ w ( 66 67) 5 in( 90 ) ( 90 ) 690 mm 5 0 8 0.5 0.5 66 A, 779 mm govrning w min inα 0.98 5 in v, ot 66 0 0 0.00 7 0 r ot ot 68 π π 0 68 0.99 0 55 mm 505mm ρ 8@00@00 0.50% w 68 mm + r ot ( ) + A ρ + π 0.5 0.5 π w w v v v v ( 55) ( ) 66N 0.99 A 0.005 60 0 + 0 π 60 0.5 0 0.5 0 π w A 6mm > 77mm w ot 800 + 7 π 76 mm > 505 mm Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan 7

.6 Shar ign ornr olmn C an C Th ign har or i qal to th olmn ration or N min th appli loa within th ontrol primtr (g + q ) A. Dign har or 0.0 A m 6 6 v v + + π 0.6 + 0.6 0.0 + π 0. ( ) 5.6 0. 0 N N g + q A Control primtr v Δ Δ v + + Δ Δ 60 0 mm v + + Δ Δ 0mm 6 M 0 Δ 0 97 mm 0 0 0 A 08mm π π 0.8 + + 97 08 π v π 0.8 60 0 55 mm 0 + + Th itan r, an r, ar th am a or th Lvl I approimation. In a o ornr olmn, th with o th pport trip ma limit th itan r. Rotation r. m r.m,, r r...9m,, r m 0.6 0.5m govrning M Δ 0 5 0 0. 0 N, + + <, 8 8 0.5 55 N m M Δ 0 0 0. 0 5N 8 8 0.5, + + <, r, m,. 5 55 0.06 E m 0. 00000 69 R, 55N govrning Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan 8

g i allat at Lvl I. Th pnhing har trngth o th onrt i iint. Th, no har rinormnt will nar Sin no har rinormnt ha n an m < m R, intgrit rinormnt n to provi. For th ign o th intgrit rinormnt, th aintal loa a an. Th, th ign loa an r. ( g + q ).0(6.5 + ) + 0.6 0.N/m a ( g + q ) a 0. a, 0 7N g + q 5.6 Th matrial proprti an on in haptr 5 o mol o 00. Dtilit la B : ( t / ).08 It i am that onl traight ar will, th α lt 0. With rpt to intgrit rinormnt, two rtrition hol lill: -th intgrit rinormnt hol at lat ompo o or ar -th iamtr o th intgrit ar ø int ha to hon h that ø int 0. r r m,,. 5 55 0.06 E m 0. 00000 69 R, + 0.9 g 0.80 0.6 + 0.9 0.06 0 0.75 Pnhing trngth withot har rinormnt 0 0.80 55 0 0 9 N > 0 N R, Intgrit rinormnt A 7 0, a ( ) inα 5.08 in( 0 ) t lt mm 0 6 68 85N, a int r ø A 5 mm ( in ah irtion with a paing o 00 mm) h φ φ 50 0 0 68mm r top ottom π π int int + r 00 + 68 6 mm φ int mm 0. r 0. 68 0 mm Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan 9

.7 Shar ign g olmn C Th ign har or i qal to th olmn ration or N min th appli loa within th ontrol primtr (g + q ) A. v v v ( + ) v + + + + Δ v ( + ) + v + + 6 + v v Δ + v Dign har or 0. A π π 8 8 v v + + 0.6 + 0.6 0.+ 0.7 m ( ) 66 5.6 0.7 6 N N g + q A Control primtr + 6 + v v 60 + 6600 + 0 Δ mm + 60 + 0 Δ 0mm Δ Δ mm 6 M 0 Δ 5mm 6 0 0.9 + + 5 6 v 67 0 A 6mm π π π v π 0.9 60 0 0mm 0 + + Th itan r, an r, ar th am a or th Lvl I approimation. In a o g olmn, th with o th pport trip ma limit th itan r. Rotation r. m r.m,, r r...9m,, 0.6 0.78m govrning, r 0.60.9 + + r,.09m govrning m m M Δ 6 6 0. 8 8 0.78, + +, 5N M Δ 6 0 6 8 8.09, + + N <, 66N Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan 0

r, m,. 5 5 0.0 E m 0. 00000 69 R, g i allat at Lvl I. Th pnhing har trngth o th onrt i not iint. Sin th trngth m to rathr lo to th ign loa, a lvl III approimation will prorm. r m,,. 5 66 0.08 E m 0. 00000 69 R, + 0.9 g 0.7 0.6 + 0.9 0.08 0 0.75 Pnhing trngth withot har rinormnt govrning 0 0.7 0 0 0 95 N < 6N R, Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan

Th Lvl III allation ar a on th rlt o th linar-lati init lmnt anali. From th rlt o th lral anali, on an otain th itan twn th ntr o th olmn an th point, at whih th ning momnt ar zro. Th avrag momnt in th pport trip an otain th intgration o th momnt at th trip tion. Sin th lral momnt m, an m, at th pport rgion ar ngativ, th aolt val o th twiting momnt m, n to trat o that th aolt val o m, an m, will maimiz. m m m,,, m m m,,, Th pnhing har trngth o th onrt i iint. Th, no har rinormnt will nar Sin no har rinormnt ha n an m < m R, intgrit rinormnt n to provi to prvnt a progriv ollap o th trtr. For th ign o th intgrit rinormnt, th aintal loa a an. Th th ign loa an r. ( g + q ).0(6.5 + ) + 0.6 0.N/m a ( g + q ) a, a 0. 6 7N g + q 5.6 r, -r, m0 r0.6 m -7. -.0-5. -0.7 -.8 -.0-7. -5.7 -. -9.6 m, [Nm/m] m0 r.8 m m, [Nm/m] -56.0-5.7-5.8-8.9 -.9-5.9 -.0-6.8-0. 0, Lvl III o approimation (tail ign or amnt o iting trtr) r 0.6m r.8 m,, r r 0.6.8.0 m,, 0.6 0.78m, r 0.6.0 + + 0.78m r, m Nm/m m Nm/m (avrag val on pport trip),, r 0.6m > 0.5m r.8m > 0.5m, r,, r, r, m 0.6 5.. 0.006 E m 0. 00000 69 R, r, m.8 5.. 0.007 E m 0. 00000 69 R, + 0.9 g 0.95 0.6 + 0.9 0.007 0 0.75 0 0.95 0 0 0 N > 6N R, Intgrit rinormnt A 7 0, a ( ) inα 5.08 in( 0 ) t lt 06 mm govrning 0 86 66 5 N, a int r ø A 85 mm ( in ah irtion with a paing o 00 mm) h φ φ 50 0 0 66 mm r top ottom Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan

Th matrial proprti an on in haptr 5 o mol o 00. Dtilit la B : ( t / ).08 It i am that onl traight ar will, th α lt 0. With rpt to intgrit rinormnt, two rtrition hol lill: -th intgrit rinormnt hol at lat ompo o or ar -th iamtr o th intgrit ar ø int ha to hon h that ø int 0. r π π + 00 + 66 86mm int int r φ int mm 0. r 0. 66 0 mm Cornr o wall hol h ollowing th am mthoolog. Anowlgmnt: Th athor ar vr appriativ o th ontrition o Dr. Jan Sagata Alajar an Dr. La Tainari Th athor wol alo li to than Cartn Sirg (RWTH Aahn, Grman) or th inpnnt h o th ampl h prorm. Lip / Mttoni / Frnánz Riz / Eol Polthniq Fééral Laann, Switzrlan