Clulus Chet Sheet Limits Deiitios Preise Deiitio : We sy lim L i or every ε > 0 there is δ > 0 suh tht wheever 0 δ L < ε. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig suiietly lose to (o either sie o ) without lettig. Right h limit : lim + L. This hs the sme eiitio s the limit eept it requires >. Let h limit : lim L. This hs the Limit t Iiity : We sy lim sme eiitio s the limit eept it requires egtive. <. Reltioship etwee the limit oe-sie limits lim L lim lim L lim lim L + + lim lim lim + Assume lim lim g. lim lim. lim ± g lim ± lim g. lim g lim lim g Note : sg( ) i > 0. lim e & lim e 0. liml & lim l 0 L i we mke ( ) s lose to L s we wt y tkig lrge eough positive. There is similr eiitio or lim eept we require lrge egtive. Iiite Limit : We sy lim L i we mke ( ) ritrrily lrge ( positive) y tkig suiietly lose to (o either sie o ) without lettig. There is similr eiitio or lim eept we mke ( ) ritrrily lrge lim Does Not Eist Properties oth eist is y umer the, 4. lim lim g lim g. lim lim 6. lim lim Bsi Limit Evlutios t ± sg i < 0.. I r > 0 the lim r 0 r 4. I r > 0 is rel or egtive the lim r 0. eve : lim ± L provie g 6. o : lim & lim lim 0 7. eve : lim sg ± + + + 8. o : lim sg + + + 9. o : lim sg + + + Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis
Clulus Chet Sheet Cotiuous Futios I is otiuous t the Cotiuous Futios Compositio ( ) is otiuous t lim g the ( ) lim lim g g Ftor Cel + 4 + 6 lim lim + 6 8 lim 4 Rtiolize Numertor/Deomitor + lim lim 9 9 8 8 + 9 lim lim 9 9 8 + + 9 + 8 6 08 Comie Rtiol Epressios ( + h) lim lim h 0 h h h 0 + h ( h) + h lim lim h 0 h ( h) h 0 + ( + h) Evlutio Tehiques L Hospitl s Rule lim 0 I lim or lim g 0 g lim lim g g ± ± the, is umer, or Polyomils t Iiity q re polyomils. To ompute p( ) p lim ± q p( ) tor lrgest power o out o oth q the ompute limit. ( ) 4 4 4 lim lim lim ( ) Pieewise Futio + i < lim g where g i Compute two oe sie limits, lim g lim + 9 lim g lim 7 + + Oe sie limits re ieret so lim g oes t eist. I the two oe sie limits h lim g woul hve eiste ee equl the h the sme vlue. Some Cotiuous Futios Prtil list o otiuous utios the vlues o or whih they re otiuous.. Polyomils or ll. 7. os( ) si ( ) or ll.. Rtiol utio, eept or s tht give ivisio y zero. 8. t ( ) se( ) provie. ( o) or ll. π π π π,,,,, 4. ( eve) or ll 0. 9. ot. e or ll. ( ) s( ) provie 6. l or > 0., π, π,0, π, π, Itermeite Vlue Theorem Suppose tht ( ) is otiuous o [, ] let M e y umer etwee ( ) The there eists umer suh tht < < ( ) M.. Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis
Clulus Chet Sheet Derivtives Deiitio Nottio I y the the erivtive is eie to e ( + ). h h 0 lim h I y the ll o the ollowig re equivlet ottios or the erivtive. y y D I y ll o the ollowig re equivlet ottios or erivtive evlute t. y y D I y the,. m is the slope o the tget lie to y t the equtio o the tget lie t is y +. give y I ( ). ( ) Iterprettio o the Derivtive is the istteous rte o. hge o ( ) t.. I ( ) is the positio o ojet t time the is the veloity o the ojet t. Bsi Properties Formuls g re ieretile utios (the erivtive eists), re y rel umers,. ( ± g) ± g. g g+ g Prout Rule g g 4. Quotiet Rule g g Power Rule ( ( g )) g g This is the Chi Rule. ( ) 0 6. 7. ( ) ( si) ( os) os si ( t) se se set Commo Derivtives ( s) sot ( ot) s ( si ) ( os ) ( t ) + ( ) l ( ) ( e ) e ( l ), > 0 ( l ), 0 ( log ), > 0 l Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis
Clulus Chet Sheet Chi Rule Vrits The hi rule pplie to some speii utios.. ( ). ( os ) si. ( e ) e 6. ( t ) se. ( l ) 7. se [ ] se t 4. ( si ) os 8. ( t ) + ( ) [ ] [ ] Higher Orer Derivtives The Seo Derivtive is eote s The th Derivtive is eote s ( ) ( is eie s ) is eie s ( ), i.e. the erivtive o the, i.e. the erivtive o. irst erivtive, ( ( ) ) the (-) st erivtive, ( ) Impliit Dieretitio + y si y + y y here, so prouts/quotiets o y 9y Fi y i e. Rememer will use the prout/quotiet rule erivtives o y will use the hi rule. The trik is to ieretite s orml every time you ieretite y you tk o y (rom the hi rule). Ater ieretitig solve or y. e ( y ) y yy ( y) y e e y e y 9y 9 + + os + y + y + yy y y + y 9y 9y e 9 os y 9 os y y y 9 9 Critil Poits is ritil poit o. ( ) 0 or. ( ) Iresig/Deresig Cove Up/Cove Dow oes t eist. provie either Iresig/Deresig. I > 0 or ll i itervl I the ( ) is iresig o the itervl I. < or ll i itervl I the. I 0 ( ) is eresig o the itervl I. or ll i itervl I the. I 0 ( ) is ostt o the itervl I.. 9y e y 9y y9e os ( y) Cove Up/Cove Dow. I > 0 or ll i itervl I the ( ) is ove up o the itervl I. < or ll i itervl I the. I 0 ( ) is ove ow o the itervl I. Iletio Poits is iletio poit o ovity hges t. i the Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis
Asolute Etrem. is solute mimum o ( ) i ( ) or ll i the omi. is solute miimum o ( ). i ( ) or ll i the omi. Fermt s Theorem hs reltive (or lol) etrem t I, the is ritil poit o Clulus Chet Sheet. Etreme Vlue Theorem is otiuous o the lose itervl I [, ] the there eist umers so tht,.,,. ( ) is the s. m. i [, ],. is the s. mi. i [, ]. Fiig Asolute Etrem To i the solute etrem o the otiuous, use the utio ( ) o the itervl [ ] ollowig proess.. Fi ll ritil poits o ( ) i [, ].. Evlute ( ) t ll poits ou i Step.. Evlute ( ) ( ). 4. Ietiy the s. m. (lrgest utio vlue) the s. mi.(smllest utio vlue) rom the evlutios i Steps &. Etrem Reltive (lol) Etrem. is reltive (or lol) mimum o or ll er. ( ) i. is reltive (or lol) miimum o or ll er. ( ) i st Derivtive Test I is ritil poit o. rel. m. o ( ) i 0 the is > to the let o < 0 to the right o.. rel. mi. o ( ) i 0 < to the let o > 0to the right o. is. ot reltive etrem o ( ) i the sme sig o oth sies o Derivtive Test I Me Vlue Theorem,. is ritil poit o ( ) suh tht ( ) 0 the. is reltive mimum o ( ) i ( ) 0. is reltive miimum o ( ) i ( ) 0. my e reltive mimum, reltive miimum, or either i ( ) 0. Fiig Reltive Etrem /or Clssiy Critil Poits. Fi ll ritil poits o ( ).. Use the st erivtive test or the erivtive test o eh ritil poit. <. >. I ( ) is otiuous o the lose itervl [ ] ieretile o the ope itervl (, ) the there is umer < < suh tht ( ). Newto s Metho I is the th guess or the root/solutio o ( ) 0 the (+) st guess is provie ( ) eists. + ( ) ( ) Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis
Clulus Chet Sheet Relte Rtes Sketh piture ietiy kow/ukow qutities. Write ow equtio reltig qutities ieretite with respet to t usig impliit ieretitio (i.e. o erivtive every time you ieretite utio o t). Plug i kow qutities solve or the ukow qutity. E. A oot ler is restig gist wll. The ottom is iitilly 0 t wy is eig pushe towrs the wll t 4 t/se. How st is the top movig ter se? E. Two people re 0 t prt whe oe strts wlkig orth. The gleθ hges t 0.0 r/mi. At wht rte is the iste etwee them hgig whe θ 0. r? is egtive euse is eresig. Usig Pythgore Theorem ieretitig, + y + yy 0 Ater se we hve 0 7 so y 7 76. Plug i solve or y. 7 7( 4 ) + 76 y 0 y t/se 4 76 4 We hve θ 0.0 r/mi. wt to i. We use vrious trig s ut esiest is, seθ seθ tθθ 0 0 We kowθ 0.0 so plug i θ solve. se( 0.) t( 0.)( 0.0) 0 0. t/se Rememer to hve lultor i ris! Optimiztio Sketh piture i eee, write ow equtio to e optimize ostrit. Solve ostrit or oe o the two vriles plug ito irst equtio. Fi ritil poits o equtio i rge o vriles veriy tht they re mi/m s eee. E. We re elosig retgulr iel with E. Determie poit(s) o y + tht re 00 t o ee mteril oe sie o the losest to (0,). iel is uilig. Determie imesios tht will mimize the elose re. Mimize A y sujet to ostrit o + y 00. Solve ostrit or plug ito re. A y( 00y) 00y 00y y Dieretite i ritil poit(s). A 004y y By eriv. test this is rel. m. so is the swer we re ter. Filly, i. 00 0 The imesios re the 0. Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. Miimize ( 0) ( y ) ostrit is + the y +. Solve ostrit or plug ito the utio. y y + y + y y y+ Dieretite i ritil poit(s). y y By the erivtive test this is rel. mi. so ll we ee to o is i vlue(s). ± The poits re the (, ) (, ). 00 Pul Dwkis
Deiite Itegrl: Suppose o [, ]. Divie [, ] with hoose Clulus Chet Sheet Itegrls Deiitios is otiuous ito suitervls o rom eh itervl. * i * The lim ( i ). i Ati-Derivtive : A ti-erivtive o ( ) is utio, F( ), suh tht F. Ieiite Itegrl : F + where F( ) is ti-erivtive o ( ). Fumetl Theorem o Clulus is otiuous o [, ] the Vrits o Prt I : u g () t t is lso otiuous o [, ] () t t u u g t t. () t t v v v is otiuous o[, ], F( ) is u () t t u u v v F ) Prt I : I () Prt II : ti-erivtive o ( ) (i.e. F F. the ± ± ± ± g g g g 0 I g o the I 0 o the 0 Properties [ ] [ v ], is ostt, is ostt () g t t I m M o the m ( ) M ( ) + + k k+ + +, + l + + l luu ul ( u) u+ u u e u e + Commo Itegrls osuu si u+ siuu osu+ se uu t u+ seutuu seu+ suotuu su+ s uu ot u+ tuu l seu + seuu l seu+ t u + u u t u + + u u si u + Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis
Clulus Chet Sheet Str Itegrtio Tehiques Note tht t my shools ll ut the Sustitutio Rule te to e tught i Clulus II lss. u Sustitutio : The sustitutio u g will overt u g. For ieiite itegrls rop the limits o itegrtio. E. os u u u :: 8 u u Itegrtio y Prts : uv uv vu g ( g ) g ( u) u usig g 8 si( u) ( si( 8) si() ) 8 itegrl ompute u y ieretitig u ompute v usig v E. u v e u ve e e + e e e + os os u u uv uv vu. Choose u v rom E. l v. u l v u v ( ) l l l l l Prouts (some) Quotiets o Trig Futios m m For si os we hve the ollowig : For t se we hve the ollowig :. o. Strip sie out overt rest to osies usig si os, the use the sustitutio u os.. m o. Strip osie out overt rest to sies usig os si, the use the sustitutio u si.. m oth o. Use either. or. 4. m oth eve. Use oule gle /or hl gle ormuls to reue the itegrl ito orm tht e itegrte.. o. Strip tget set out overt the rest to sets usig t se, the use the sustitutio u se.. m eve. Strip sets out overt rest to tgets usig se + t, the use the sustitutio u t.. o m eve. Use either. or. 4. eve m o. Eh itegrl will e elt with ieretly. si si os os os si os Trig Formuls :, +, E. t se 4 ( se se ) tse 4 ( u ) uu ( u se ) 4 t se t se t se se se + 7 7 E. si os 4 si si si (si ) si os os os (os ) si os ( u) u u4 u + u u ( os ) u u se + l os os + Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis
Clulus Chet Sheet Trig Sustitutios : I the itegrl otis the ollowig root use the give sustitutio ormul to overt ito itegrl ivolvig trig utios. siθ os θ si θ seθ t θ se θ + tθ se θ + t θ 6 E. 49 si θ osθ θ 4 4si 4os 4 9 θ θ os θ Rell. Beuse we hve ieiite itegrl we ll ssume positive rop solute vlue rs. I we h eiite itegrl we ee to ompute θ s remove solute vlue rs se o tht, i 0 i < 0 I this se we hve 4 9 osθ. 6 4 si θ θ si θ 9 ( os ) ( os ) θ θ θ s ot θ θ + Use Right Trigle Trig to go k to s. From sustitutio we hve siθ so, From this we see tht 49 otθ. So, 6 4 4 9 49 + Prtil Frtios : I itegrtig P where the egree o Q P is smller th the egree o Q( ). Ftor eomitor s ompletely s possile i the prtil rtio eompositio o the rtiol epressio. Itegrte the prtil rtio eompositio (P.F.D.). For eh tor i the eomitor we get term(s) i the eompositio orig to the ollowig tle. Ftor i Q( ) Term i P.F.D Ftor i Q( ) + A + A+ B + + ( + ) k ( + + ) + + k Term i P.F.D A A Ak + + + + + + A + B A k + Bk + + + + + + k k 7+ ( )( + 4) E. 7+ 4 + 6 ( )( 4) + + + 4 + + 4 6 + 4 + 4 ( ) 4l + l + 4 + 8t Here is prtil rtio orm reomie. A ( + 4 + 4 + 4 7+ A B+ C + 4) + ( B+ C)( ) + Set umertors equl ollet like terms. 7 + A+ B + C B + 4A C Set oeiiets equl to get system solve to get ostts. A+ B 7 C B 4A C 0 A 4 B C 6 A lterte metho tht sometimes works to i ostts. Strt with settig umertors equl i 7 + A + 4 + B+ C. Chose ie vlues o plug i. previous emple : For emple i we get 0 A whih gives A 4. This wo t lwys work esily. Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis
Clulus Chet Sheet Applitios o Itegrls Net Are : ( ) represets the et re etwee the -is with re ove -is positive re elow -is egtive. Are Betwee Curves : The geerl ormuls or the two mi ses or eh re, upper utio lower utio & right utio let utio y A y A y I the urves iterset the the re o eh portio must e ou iiviully. Here re some skethes o ouple possile situtios ormuls or ouple o possile ses. A ( y) g( y) y + A g Volumes o Revolutio : The two mi ormuls re V A g g A V A( y) y. Here is some geerl iormtio out eh metho o omputig some emples. Rigs Cyliers A π (( outer rius) ( ier rius) ) A π ( rius)( with / height) Limits: /y o right/ot rig to /y o let/top rig Limits : /y o ier yl. to /y o outer yl., y, y,, Horz. Ais use g( ), A( ). Vert. Ais use g( y ), A( y ) y. Horz. Ais use g( y ), A( y ) y. Vert. Ais use g( ), A( ). E. Ais : y > 0 E. Ais : y 0 E. Ais : y > 0 E. Ais : y 0 outer rius : ier rius : g outer rius: + g ier rius: + rius : y with : ( y) g( y) rius : + y with : ( y) g( y) These re oly ew ses or horizotl is o rottio. I is o rottio is the -is use the y 0 se with 0. For vertil is o rottio ( > 0 0) iterhge y to get pproprite ormuls. Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis
Work : I ore o F moves ojet i, the work oe is W Clulus Chet Sheet F Averge Futio Vlue : The verge vlue o ( ) o is vg Ar Legth Sure Are : Note tht this is ote Cl II topi. The three si ormuls re, L s SA π ys (rotte out -is) SA π s (rotte out y-is) where s is epeet upo the orm o the utio eig worke with s ollows. y ( ) s + i y, s + y i y, y y y () () s + t i t, y g t, t t t r s r + θ i r θ, θ With sure re you my hve to sustitute i or the or y epeig o your hoie o s to mth the ieretil i the s. With prmetri polr you will lwys ee to sustitute. Improper Itegrl A improper itegrl is itegrl with oe or more iiite limits /or isotiuous itegrs. Itegrl is lle overget i the limit eists hs iite vlue iverget i the limit oes t eist or hs iiite vlue. This is typilly Cl II topi. Iiite Limit. lim t. lim t. + provie BOTH itegrls re overget. Disotiuous Itegr t. Disot. t : lim. Disot. t : lim. Disotiuity t + t t θ < < : + t t t provie oth re overget. Compriso Test or Improper Itegrls : I g 0 o [, ) the,. I ov. the ov.. I ivg. the Useul t : I > 0 the For give itegrl ( ) ivie [, ] g p overges i g p > iverges or p. ivg. Approimtig Deiite Itegrls (must e eve or Simpso s Rule) eie ito suitervls [, ], [, ],, [ ] 0 with 0, * * * Mipoit Rule : ( ) + + + ( ) the, *, i i, i 0 + ++ + + + 0 + 4 + + + 4 + + is mipoit [ ] Trpezoi Rule : Simpso s Rule : Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis