Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits



Similar documents
Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits

Released Assessment Questions, 2015 QUESTIONS

STUDY COURSE BACHELOR OF BUSINESS ADMINISTRATION (B.A.)

Harold s Calculus Notes Cheat Sheet 26 April 2016

MATHEMATICS SYLLABUS SECONDARY 7th YEAR

α. Figure 1(iii) shows the inertia force and

Application: Volume. 6.1 Overture. Cylinders

MATH PLACEMENT REVIEW GUIDE

Repeated multiplication is represented using exponential notation, for example:

SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT INTERMEDIATE ALGEBRA I (3 CREDIT HOURS)

The remaining two sides of the right triangle are called the legs of the right triangle.

output voltage and are known as non-zero switching states and the remaining two

Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

A. Description: A simple queueing system is shown in Fig Customers arrive randomly at an average rate of

We will begin this chapter with a quick refresher of what an exponent is.

Swelling and Mechanical Properties of Hydrogels Composed of. Binary Blends of Inter-linked ph-responsive Microgel Particles

SOME IMPORTANT MATHEMATICAL FORMULAE

Summation Notation The sum of the first n terms of a sequence is represented by the summation notation i the index of summation

Chapter. Contents: A Constructing decimal numbers

m n Use technology to discover the rules for forms such as a a, various integer values of m and n and a fixed integer value a.

PROBLEMS 05 - ELLIPSE Page 1

Volumes by Cylindrical Shells: the Shell Method

Quick Guide to Lisp Implementation

Angles 2.1. Exercise Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example

Maximum area of polygon

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

Ratio and Proportion

Words Symbols Diagram. abcde. a + b + c + d + e

Chapter System of Equations

50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.

Practice Test 2. a. 12 kn b. 17 kn c. 13 kn d. 5.0 kn e. 49 kn

The Fundamental Theorem of Calculus

Reasoning to Solve Equations and Inequalities

1 Fractions from an advanced point of view

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

n Using the formula we get a confidence interval of 80±1.64

The invention of line integrals is motivated by solving problems in fluid flow, forces, electricity and magnetism.

INVESTIGATION OF PARAMETERS OF ACCUMULATOR TRANSMISSION OF SELF- MOVING MACHINE

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Firm Objectives. The Theory of the Firm II. Cost Minimization Mathematical Approach. First order conditions. Cost Minimization Graphical Approach

Roots of Polynomials. Ch. 7. Roots of Polynomials. Roots of Polynomials. dy dt. a dt. y = General form:

Boğaziçi University Department of Economics Spring 2016 EC 102 PRINCIPLES of MACROECONOMICS Problem Set 5 Answer Key

Unit 6: Exponents and Radicals

Distributions. (corresponding to the cumulative distribution function for the discrete case).

Rotating DC Motors Part II

SECTION 7-2 Law of Cosines

CHAPTER 31 CAPACITOR

Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I

Lesson 2.1 Inductive Reasoning

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

MA Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

EQUATIONS OF LINES AND PLANES

Review guide for the final exam in Math 233

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur

Chapter 13 Volumetric analysis (acid base titrations)

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001

The art of Paperarchitecture (PA). MANUAL

Density Curve. Continuous Distributions. Continuous Distribution. Density Curve. Meaning of Area Under Curve. Meaning of Area Under Curve

9 CONTINUOUS DISTRIBUTIONS

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Radius of the Earth - Radii Used in Geodesy James R. Clynch Naval Postgraduate School, 2002

Convexity, Inequalities, and Norms

Lecture 5. Inner Product

MATHEMATICAL ANALYSIS

Outline. Numerical Analysis Boundary Value Problems & PDE. Exam. Boundary Value Problems. Boundary Value Problems. Solution to BVProblems

Section 5-4 Trigonometric Functions

Calculating Principal Strains using a Rectangular Strain Gage Rosette

How To Find The Re Of Tringle

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

Integration by Substitution

AREA OF A SURFACE OF REVOLUTION

Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

MATHEMATICS (860) CLASS XI

Pure C4. Revision Notes

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Section 11.3: The Integral Test

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Math 113 HW #11 Solutions

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

Lecture 3 Gaussian Probability Distribution

Operations with Polynomials

Section 7-4 Translation of Axes

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

The Cat in the Hat. by Dr. Seuss. A a. B b. A a. Rich Vocabulary. Learning Ab Rhyming

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

Name: Period GL SSS~ Dates, assignments, and quizzes subject to change without advance notice. Monday Tuesday Block Day Friday

10.6 Applications of Quadratic Equations

Properties of MLE: consistency, asymptotic normality. Fisher information.

Transcription:

Clulus Chet Sheet Limits Deiitios Preise Deiitio : We sy lim L i or every ε > 0 there is δ > 0 suh tht wheever 0 δ L < ε. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig suiietly lose to (o either sie o ) without lettig. Right h limit : lim + L. This hs the sme eiitio s the limit eept it requires >. Let h limit : lim L. This hs the Limit t Iiity : We sy lim sme eiitio s the limit eept it requires egtive. <. Reltioship etwee the limit oe-sie limits lim L lim lim L lim lim L + + lim lim lim + Assume lim lim g. lim lim. lim ± g lim ± lim g. lim g lim lim g Note : sg( ) i > 0. lim e & lim e 0. liml & lim l 0 L i we mke ( ) s lose to L s we wt y tkig lrge eough positive. There is similr eiitio or lim eept we require lrge egtive. Iiite Limit : We sy lim L i we mke ( ) ritrrily lrge ( positive) y tkig suiietly lose to (o either sie o ) without lettig. There is similr eiitio or lim eept we mke ( ) ritrrily lrge lim Does Not Eist Properties oth eist is y umer the, 4. lim lim g lim g. lim lim 6. lim lim Bsi Limit Evlutios t ± sg i < 0.. I r > 0 the lim r 0 r 4. I r > 0 is rel or egtive the lim r 0. eve : lim ± L provie g 6. o : lim & lim lim 0 7. eve : lim sg ± + + + 8. o : lim sg + + + 9. o : lim sg + + + Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis

Clulus Chet Sheet Cotiuous Futios I is otiuous t the Cotiuous Futios Compositio ( ) is otiuous t lim g the ( ) lim lim g g Ftor Cel + 4 + 6 lim lim + 6 8 lim 4 Rtiolize Numertor/Deomitor + lim lim 9 9 8 8 + 9 lim lim 9 9 8 + + 9 + 8 6 08 Comie Rtiol Epressios ( + h) lim lim h 0 h h h 0 + h ( h) + h lim lim h 0 h ( h) h 0 + ( + h) Evlutio Tehiques L Hospitl s Rule lim 0 I lim or lim g 0 g lim lim g g ± ± the, is umer, or Polyomils t Iiity q re polyomils. To ompute p( ) p lim ± q p( ) tor lrgest power o out o oth q the ompute limit. ( ) 4 4 4 lim lim lim ( ) Pieewise Futio + i < lim g where g i Compute two oe sie limits, lim g lim + 9 lim g lim 7 + + Oe sie limits re ieret so lim g oes t eist. I the two oe sie limits h lim g woul hve eiste ee equl the h the sme vlue. Some Cotiuous Futios Prtil list o otiuous utios the vlues o or whih they re otiuous.. Polyomils or ll. 7. os( ) si ( ) or ll.. Rtiol utio, eept or s tht give ivisio y zero. 8. t ( ) se( ) provie. ( o) or ll. π π π π,,,,, 4. ( eve) or ll 0. 9. ot. e or ll. ( ) s( ) provie 6. l or > 0., π, π,0, π, π, Itermeite Vlue Theorem Suppose tht ( ) is otiuous o [, ] let M e y umer etwee ( ) The there eists umer suh tht < < ( ) M.. Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis

Clulus Chet Sheet Derivtives Deiitio Nottio I y the the erivtive is eie to e ( + ). h h 0 lim h I y the ll o the ollowig re equivlet ottios or the erivtive. y y D I y ll o the ollowig re equivlet ottios or erivtive evlute t. y y D I y the,. m is the slope o the tget lie to y t the equtio o the tget lie t is y +. give y I ( ). ( ) Iterprettio o the Derivtive is the istteous rte o. hge o ( ) t.. I ( ) is the positio o ojet t time the is the veloity o the ojet t. Bsi Properties Formuls g re ieretile utios (the erivtive eists), re y rel umers,. ( ± g) ± g. g g+ g Prout Rule g g 4. Quotiet Rule g g Power Rule ( ( g )) g g This is the Chi Rule. ( ) 0 6. 7. ( ) ( si) ( os) os si ( t) se se set Commo Derivtives ( s) sot ( ot) s ( si ) ( os ) ( t ) + ( ) l ( ) ( e ) e ( l ), > 0 ( l ), 0 ( log ), > 0 l Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis

Clulus Chet Sheet Chi Rule Vrits The hi rule pplie to some speii utios.. ( ). ( os ) si. ( e ) e 6. ( t ) se. ( l ) 7. se [ ] se t 4. ( si ) os 8. ( t ) + ( ) [ ] [ ] Higher Orer Derivtives The Seo Derivtive is eote s The th Derivtive is eote s ( ) ( is eie s ) is eie s ( ), i.e. the erivtive o the, i.e. the erivtive o. irst erivtive, ( ( ) ) the (-) st erivtive, ( ) Impliit Dieretitio + y si y + y y here, so prouts/quotiets o y 9y Fi y i e. Rememer will use the prout/quotiet rule erivtives o y will use the hi rule. The trik is to ieretite s orml every time you ieretite y you tk o y (rom the hi rule). Ater ieretitig solve or y. e ( y ) y yy ( y) y e e y e y 9y 9 + + os + y + y + yy y y + y 9y 9y e 9 os y 9 os y y y 9 9 Critil Poits is ritil poit o. ( ) 0 or. ( ) Iresig/Deresig Cove Up/Cove Dow oes t eist. provie either Iresig/Deresig. I > 0 or ll i itervl I the ( ) is iresig o the itervl I. < or ll i itervl I the. I 0 ( ) is eresig o the itervl I. or ll i itervl I the. I 0 ( ) is ostt o the itervl I.. 9y e y 9y y9e os ( y) Cove Up/Cove Dow. I > 0 or ll i itervl I the ( ) is ove up o the itervl I. < or ll i itervl I the. I 0 ( ) is ove ow o the itervl I. Iletio Poits is iletio poit o ovity hges t. i the Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis

Asolute Etrem. is solute mimum o ( ) i ( ) or ll i the omi. is solute miimum o ( ). i ( ) or ll i the omi. Fermt s Theorem hs reltive (or lol) etrem t I, the is ritil poit o Clulus Chet Sheet. Etreme Vlue Theorem is otiuous o the lose itervl I [, ] the there eist umers so tht,.,,. ( ) is the s. m. i [, ],. is the s. mi. i [, ]. Fiig Asolute Etrem To i the solute etrem o the otiuous, use the utio ( ) o the itervl [ ] ollowig proess.. Fi ll ritil poits o ( ) i [, ].. Evlute ( ) t ll poits ou i Step.. Evlute ( ) ( ). 4. Ietiy the s. m. (lrgest utio vlue) the s. mi.(smllest utio vlue) rom the evlutios i Steps &. Etrem Reltive (lol) Etrem. is reltive (or lol) mimum o or ll er. ( ) i. is reltive (or lol) miimum o or ll er. ( ) i st Derivtive Test I is ritil poit o. rel. m. o ( ) i 0 the is > to the let o < 0 to the right o.. rel. mi. o ( ) i 0 < to the let o > 0to the right o. is. ot reltive etrem o ( ) i the sme sig o oth sies o Derivtive Test I Me Vlue Theorem,. is ritil poit o ( ) suh tht ( ) 0 the. is reltive mimum o ( ) i ( ) 0. is reltive miimum o ( ) i ( ) 0. my e reltive mimum, reltive miimum, or either i ( ) 0. Fiig Reltive Etrem /or Clssiy Critil Poits. Fi ll ritil poits o ( ).. Use the st erivtive test or the erivtive test o eh ritil poit. <. >. I ( ) is otiuous o the lose itervl [ ] ieretile o the ope itervl (, ) the there is umer < < suh tht ( ). Newto s Metho I is the th guess or the root/solutio o ( ) 0 the (+) st guess is provie ( ) eists. + ( ) ( ) Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis

Clulus Chet Sheet Relte Rtes Sketh piture ietiy kow/ukow qutities. Write ow equtio reltig qutities ieretite with respet to t usig impliit ieretitio (i.e. o erivtive every time you ieretite utio o t). Plug i kow qutities solve or the ukow qutity. E. A oot ler is restig gist wll. The ottom is iitilly 0 t wy is eig pushe towrs the wll t 4 t/se. How st is the top movig ter se? E. Two people re 0 t prt whe oe strts wlkig orth. The gleθ hges t 0.0 r/mi. At wht rte is the iste etwee them hgig whe θ 0. r? is egtive euse is eresig. Usig Pythgore Theorem ieretitig, + y + yy 0 Ater se we hve 0 7 so y 7 76. Plug i solve or y. 7 7( 4 ) + 76 y 0 y t/se 4 76 4 We hve θ 0.0 r/mi. wt to i. We use vrious trig s ut esiest is, seθ seθ tθθ 0 0 We kowθ 0.0 so plug i θ solve. se( 0.) t( 0.)( 0.0) 0 0. t/se Rememer to hve lultor i ris! Optimiztio Sketh piture i eee, write ow equtio to e optimize ostrit. Solve ostrit or oe o the two vriles plug ito irst equtio. Fi ritil poits o equtio i rge o vriles veriy tht they re mi/m s eee. E. We re elosig retgulr iel with E. Determie poit(s) o y + tht re 00 t o ee mteril oe sie o the losest to (0,). iel is uilig. Determie imesios tht will mimize the elose re. Mimize A y sujet to ostrit o + y 00. Solve ostrit or plug ito re. A y( 00y) 00y 00y y Dieretite i ritil poit(s). A 004y y By eriv. test this is rel. m. so is the swer we re ter. Filly, i. 00 0 The imesios re the 0. Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. Miimize ( 0) ( y ) ostrit is + the y +. Solve ostrit or plug ito the utio. y y + y + y y y+ Dieretite i ritil poit(s). y y By the erivtive test this is rel. mi. so ll we ee to o is i vlue(s). ± The poits re the (, ) (, ). 00 Pul Dwkis

Deiite Itegrl: Suppose o [, ]. Divie [, ] with hoose Clulus Chet Sheet Itegrls Deiitios is otiuous ito suitervls o rom eh itervl. * i * The lim ( i ). i Ati-Derivtive : A ti-erivtive o ( ) is utio, F( ), suh tht F. Ieiite Itegrl : F + where F( ) is ti-erivtive o ( ). Fumetl Theorem o Clulus is otiuous o [, ] the Vrits o Prt I : u g () t t is lso otiuous o [, ] () t t u u g t t. () t t v v v is otiuous o[, ], F( ) is u () t t u u v v F ) Prt I : I () Prt II : ti-erivtive o ( ) (i.e. F F. the ± ± ± ± g g g g 0 I g o the I 0 o the 0 Properties [ ] [ v ], is ostt, is ostt () g t t I m M o the m ( ) M ( ) + + k k+ + +, + l + + l luu ul ( u) u+ u u e u e + Commo Itegrls osuu si u+ siuu osu+ se uu t u+ seutuu seu+ suotuu su+ s uu ot u+ tuu l seu + seuu l seu+ t u + u u t u + + u u si u + Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis

Clulus Chet Sheet Str Itegrtio Tehiques Note tht t my shools ll ut the Sustitutio Rule te to e tught i Clulus II lss. u Sustitutio : The sustitutio u g will overt u g. For ieiite itegrls rop the limits o itegrtio. E. os u u u :: 8 u u Itegrtio y Prts : uv uv vu g ( g ) g ( u) u usig g 8 si( u) ( si( 8) si() ) 8 itegrl ompute u y ieretitig u ompute v usig v E. u v e u ve e e + e e e + os os u u uv uv vu. Choose u v rom E. l v. u l v u v ( ) l l l l l Prouts (some) Quotiets o Trig Futios m m For si os we hve the ollowig : For t se we hve the ollowig :. o. Strip sie out overt rest to osies usig si os, the use the sustitutio u os.. m o. Strip osie out overt rest to sies usig os si, the use the sustitutio u si.. m oth o. Use either. or. 4. m oth eve. Use oule gle /or hl gle ormuls to reue the itegrl ito orm tht e itegrte.. o. Strip tget set out overt the rest to sets usig t se, the use the sustitutio u se.. m eve. Strip sets out overt rest to tgets usig se + t, the use the sustitutio u t.. o m eve. Use either. or. 4. eve m o. Eh itegrl will e elt with ieretly. si si os os os si os Trig Formuls :, +, E. t se 4 ( se se ) tse 4 ( u ) uu ( u se ) 4 t se t se t se se se + 7 7 E. si os 4 si si si (si ) si os os os (os ) si os ( u) u u4 u + u u ( os ) u u se + l os os + Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis

Clulus Chet Sheet Trig Sustitutios : I the itegrl otis the ollowig root use the give sustitutio ormul to overt ito itegrl ivolvig trig utios. siθ os θ si θ seθ t θ se θ + tθ se θ + t θ 6 E. 49 si θ osθ θ 4 4si 4os 4 9 θ θ os θ Rell. Beuse we hve ieiite itegrl we ll ssume positive rop solute vlue rs. I we h eiite itegrl we ee to ompute θ s remove solute vlue rs se o tht, i 0 i < 0 I this se we hve 4 9 osθ. 6 4 si θ θ si θ 9 ( os ) ( os ) θ θ θ s ot θ θ + Use Right Trigle Trig to go k to s. From sustitutio we hve siθ so, From this we see tht 49 otθ. So, 6 4 4 9 49 + Prtil Frtios : I itegrtig P where the egree o Q P is smller th the egree o Q( ). Ftor eomitor s ompletely s possile i the prtil rtio eompositio o the rtiol epressio. Itegrte the prtil rtio eompositio (P.F.D.). For eh tor i the eomitor we get term(s) i the eompositio orig to the ollowig tle. Ftor i Q( ) Term i P.F.D Ftor i Q( ) + A + A+ B + + ( + ) k ( + + ) + + k Term i P.F.D A A Ak + + + + + + A + B A k + Bk + + + + + + k k 7+ ( )( + 4) E. 7+ 4 + 6 ( )( 4) + + + 4 + + 4 6 + 4 + 4 ( ) 4l + l + 4 + 8t Here is prtil rtio orm reomie. A ( + 4 + 4 + 4 7+ A B+ C + 4) + ( B+ C)( ) + Set umertors equl ollet like terms. 7 + A+ B + C B + 4A C Set oeiiets equl to get system solve to get ostts. A+ B 7 C B 4A C 0 A 4 B C 6 A lterte metho tht sometimes works to i ostts. Strt with settig umertors equl i 7 + A + 4 + B+ C. Chose ie vlues o plug i. previous emple : For emple i we get 0 A whih gives A 4. This wo t lwys work esily. Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis

Clulus Chet Sheet Applitios o Itegrls Net Are : ( ) represets the et re etwee the -is with re ove -is positive re elow -is egtive. Are Betwee Curves : The geerl ormuls or the two mi ses or eh re, upper utio lower utio & right utio let utio y A y A y I the urves iterset the the re o eh portio must e ou iiviully. Here re some skethes o ouple possile situtios ormuls or ouple o possile ses. A ( y) g( y) y + A g Volumes o Revolutio : The two mi ormuls re V A g g A V A( y) y. Here is some geerl iormtio out eh metho o omputig some emples. Rigs Cyliers A π (( outer rius) ( ier rius) ) A π ( rius)( with / height) Limits: /y o right/ot rig to /y o let/top rig Limits : /y o ier yl. to /y o outer yl., y, y,, Horz. Ais use g( ), A( ). Vert. Ais use g( y ), A( y ) y. Horz. Ais use g( y ), A( y ) y. Vert. Ais use g( ), A( ). E. Ais : y > 0 E. Ais : y 0 E. Ais : y > 0 E. Ais : y 0 outer rius : ier rius : g outer rius: + g ier rius: + rius : y with : ( y) g( y) rius : + y with : ( y) g( y) These re oly ew ses or horizotl is o rottio. I is o rottio is the -is use the y 0 se with 0. For vertil is o rottio ( > 0 0) iterhge y to get pproprite ormuls. Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis

Work : I ore o F moves ojet i, the work oe is W Clulus Chet Sheet F Averge Futio Vlue : The verge vlue o ( ) o is vg Ar Legth Sure Are : Note tht this is ote Cl II topi. The three si ormuls re, L s SA π ys (rotte out -is) SA π s (rotte out y-is) where s is epeet upo the orm o the utio eig worke with s ollows. y ( ) s + i y, s + y i y, y y y () () s + t i t, y g t, t t t r s r + θ i r θ, θ With sure re you my hve to sustitute i or the or y epeig o your hoie o s to mth the ieretil i the s. With prmetri polr you will lwys ee to sustitute. Improper Itegrl A improper itegrl is itegrl with oe or more iiite limits /or isotiuous itegrs. Itegrl is lle overget i the limit eists hs iite vlue iverget i the limit oes t eist or hs iiite vlue. This is typilly Cl II topi. Iiite Limit. lim t. lim t. + provie BOTH itegrls re overget. Disotiuous Itegr t. Disot. t : lim. Disot. t : lim. Disotiuity t + t t θ < < : + t t t provie oth re overget. Compriso Test or Improper Itegrls : I g 0 o [, ) the,. I ov. the ov.. I ivg. the Useul t : I > 0 the For give itegrl ( ) ivie [, ] g p overges i g p > iverges or p. ivg. Approimtig Deiite Itegrls (must e eve or Simpso s Rule) eie ito suitervls [, ], [, ],, [ ] 0 with 0, * * * Mipoit Rule : ( ) + + + ( ) the, *, i i, i 0 + ++ + + + 0 + 4 + + + 4 + + is mipoit [ ] Trpezoi Rule : Simpso s Rule : Visit http://tutoril.mth.lmr.eu or omplete set o Clulus otes. 00 Pul Dwkis