1.571 Structural Analysis and Control Prof. Connor Section 1: Straight Members with Planar Loading. b Displacements (u, vβ),



Similar documents
Solar Geometry P L A N E O F S U N

GED MATH STUDY GUIDE. Last revision July 15, 2011

2. Before we answer the question, here are four important terms relating to redox reactions and galvanic cells.

Network Theorems - Alternating Current examples - J. R. Lucas

Electric Circuits II. More about Mutual Inductance. Lecture #22

Applied Spatial Statistics: Lecture 6 Multivariate Normal

Honors Geometry A. Semester Exam Review Answers

Semester Exam Review Answers. 3. Construct a perpendicular at point B, then bisect the right angle that is formed. 45 o

MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 1 TRIGONOMETRIC RATIOS, TRIGONOMETRIC TECHNIQUES AND GRAPHICAL METHODS

Electrochemical cells

Unit tests need to be supervised and the final exam invigilated.

CFD AND SPOT FOREX TERMS: DEPOSIT ACCOUNTS

Case Study. Sonata develops. comprehensive BI Application for a leading provider of Animal Nutrition Solutions. Ananthakrishnan

Chapter 6. Work and Energy

ViPNet VPN in Cisco Environment. Supplement to ViPNet Documentation

Motor Calculations. Calculating Mechanical Power Requirements Torque - Speed Curves Numerical Calculation Sample Calculation Thermal Calculations

Peratr Accreditatin and Services in Queensland

Sinusoidal Steady State Response of Linear Circuits. The circuit shown on Figure 1 is driven by a sinusoidal voltage source v s (t) of the form

Operational Amplifier Circuits Comparators and Positive Feedback

New York University Computer Science Department Courant Institute of Mathematical Sciences

Implementing ifolder Server in the DMZ with ifolder Data inside the Firewall

!"#$%&'()%"*#%*+,-./-*+01.2(.* *!"#$%&"'()'*+,-."/01&2#."'3424,'

Times Table Activities: Multiplication

Newborn Blood Spot Failsafe Solution (NBSFS) Operational Level Agreements. Part B: Child Health Record Department (CHRD) Users

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION

FCA US INFORMATION & COMMUNICATION TECHNOLOGY MANAGEMENT

Conduction in the Cylindrical Geometry

GETTING STARTED IN BUILDER 1 WITH AN AUTOCAD DWG DRAWING

CIVL 7/8117 Chapter 3a - Development of Truss Equations 1/80

Spread Bet Terms: Deposit Accounts

TYPICAL STERILIZATION PROCESS IN AUTOCLAVE FOR POLYPROPYLENE BAGS AND/OR POLYPROPYLEN BOTTLES

Finite Element Formulation for Beams - Handout 2 -

Budget Planning. Accessing Budget Planning Section. Select Click Here for Budget Planning button located close to the bottom of Program Review screen.

Success in Mathematics

17 Construction environmental management plan (CEMP)

Spread Bet Terms: Deposit Accounts

UCONS Ductless Heat Pump Sacramento Field Demonstration Draft Metering Protocol Last update:

Spread Bet Terms: Deposit Accounts

Computer Engineering College of Science, Technology, Engineering and Mathematics University of Wisconsin Stout

MECHANICS OF MATERIALS

Coordinates. Definition of terms

Baker Street Two Way Post-implementation monitoring strategy

How To Install Fcus Service Management Software On A Pc Or Macbook

STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION

Fahrenheit & Celcius. Working with. Temperature Scales

Time is Money Profiting from Reduced Cycle Time

NDB TRAVEL PAL. National Development Bank PLC. - Card Business -

Consumer Complaint Roadmap

1 Functional connectivity toolbox manual v1.0

Unit 6 Plane Stress and Plane Strain

STANLEY Healthcare University Training & Certification Portal. Student Quick Reference Guide

FOCUS Service Management Software Version 8.5 for Passport Business Solutions Installation Instructions

PN002. The ARES-EVF: Option for Measuring Extensional Viscosity of Polymer Melts. v end. dl ε. L o. A. Franck, TA Instruments Germany

Firewall/Proxy Server Settings to Access Hosted Environment. For Access Control Method (also known as access lists and usually used on routers)

1.3. The Mean Temperature Difference

DYNAMIC ANALYSIS OF THICK PLATES SUBJECTED TO EARTQUAKE

How to put together a Workforce Development Fund (WDF) claim 2015/16

What Does Specialty Own Occupation Really Mean?

Student Academic Learning Services Page 1 of 7. Statistics: The Null and Alternate Hypotheses. A Student Academic Learning Services Guide

The elements used in commercial codes can be classified in two basic categories:

The Gibbs Free Energy and Cell Voltage

Structural engineering certificate best practice requirements

CHAPTER 12 SHIP STABILITY AND BUOYANCY

Chris Chiron, Interim Senior Director, Employee & Management Relations Jessica Moore, Senior Director, Classification & Compensation

Mobile & Point of Sale QUICK START GUIDE

Exercise 5 Server Configuration, Web and FTP Instructions and preparatory questions Administration of Computer Systems, Fall 2008

FOCUS Service Management Software Version 8.5 for CounterPoint Installation Instructions

CFD and Spot Forex Terms: Deposit Accounts

Bending Stress in Beams

Plane Stress Transformations

Kepware Technologies ClientAce: Creating a Simple Windows Form Application

In addition to assisting with the disaster planning process, it is hoped this document will also::

David Drivers Revit One-sheets: Linked Project Positioning and shared coordinates

Beam Deflections: Second-Order Method

How To Get A Degree From Uw Stut

One Call Quality Assurance

Regions File Transmission

Reading Pie Charts Introduction to Bar Graphs Reading Bar Graphs Introduction to Data in Tables Reading Data in Tables

Live Analytics for Kaltura Live Streaming Information Guide. Version: Jupiter

Accessing SpringBoard Online Table of Contents: Websites, pg 1 Access Codes, 2 Educator Account, 2 How to Access, 3 Manage Account, 7

Solid Mechanics. Stress. What you ll learn: Motivation

Lecture 16: Single-Component phase diagrams continued; Thermodynamics of solutions

Transcription:

1.571 Structural nalysis and Cntrl Prf. Cnnr Sectin 1: Straight Members with Planar ading Gverning Equatins fr inear ehavir 1.1 Ntatin Yv, a V M F Xu, a 1.1.2 Defrmatin Displacement Relatins Internal Frces Y a β θ a v a a ssume β is small b Displacements (u, vβ), ngitudinal strain at lcatin y : Fr small β hen ε( y) uy ( ) uy ( ) u( 0) yβ vy ( ) v( 0) ε( y) u, yβ, ε a + ε b ε a u, stretching strain ε b yβ, bending strain 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 1 f 17

Shear Strain a b β a b θ γ decrease in angle between lines a and b γ θ β dv θ v, d γ v, β 1.3 Frce Defrmatin Relatins σ Eε stress strain relatins fr linear elastic material τ Gγ τ σ V M F X F σd M -yσd V τd Cnsider initial strain fr lngitudinal actins ε σ + ε ε + ε b a ε where ε σ ε strain due t stress initial strain hen ε ttal strain ε a + ε b ε σ ε ε -- 1 -σ E 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 2 f 17

ls σ E(ε + ε ) E(ε + ε b ε ) a Eu, yβ, ε ) ( F σd F E( u, yβ, ε )d F u, E β, -ye M M -yσd If ne lcates the X ais such that d + d + -ε Ed -ye( u, yβ, ε )d M u, -ye d + β, y 2 Ed + yε Ed ye d 0 the equatins uncuple t give: Define hen F u, Ed + -ε Ed M β, y 2 Ed + yε E d D F M Ed stretching rigidity 2 y Ed bending rigidity - ε Ed yε Ed F u, + F M D β, + M Cnsider n inital shear strain τ Gγ Gv, ( β) V Gγd G(v, β)d V (v, β) Gd Define D Gd transverse shear rigidity 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 3 f 17

then V D (v, β) 1.4 Frce Equilibrium Equatins M V + V M + M F m C F + F b V b y Cnsider the rate f change f the internal frce quantities ver an interval F -F+ F+ F+ b 0 F+ b 0 F y M c F ------ + b 0 -V+ V+ V+ by 0 V+ by 0 V ------ + b y 0 2 -M + M + M+ m b y -------- + V 0 2 2 M m V b -------- + + y 2 0 et 0 (i. e. d ) M -------- + m+ V b y ----- 0 2 F + b 0 V + by 0 M + V + m 0 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 4 f 17

1.5 Summary f Frmulatin Equatins uncuple int 2 sets f equatins; ne set fr aial lading and the ther set fr transverse lading. ial (Stretching) F, + b 0 F F + u, undary Cnditin F r u prescribed at each end ransverse (ending) V, + b y 0 M, + V+ m 0 M D β, + M V D (v, β) undary Cnditins M r β prescribed at each end and V r v prescribed at each end Nte: hese equatins uncuple fr tw reasns 1. he lcatin f the X ais was selected t eliminate the cupling term yed 2. he lngitudinal ais is straight and the rtatin f the crss sectins is cnsidered t be small. his simplificatin des nt apply when: i the X ais is curved (see Sectin 2) ii the rtatin, β, can nt be cnsidered small, creating gemetric nn linearity (see Sectin 4) 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 5 f 17

1.6 Fundamental Slutin Stretching Prblem Gverning Equatins: F + b 0 (i) undary Cnditins Frm (i) u F F + D S F F u u b F ( ) - b d + C 1 (ii) F ( ) -( b d) + C 1 F F hen which can be written as C 1 F + ( b d) F ( ) - b d + ( b d) + F F ( ) b d + F Nte: yu culd als btain this result by inspectin: b F ( ) F F ( ) b d + F 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 6 f 17

Frm (ii) F F --------------- u, F F u ( ) --------------- d + C 2 F F --------------- d + C 2 u DS 0 F F C 2 u --------------- d DS F F u ( ) -------------- d + u 0 F u ( ) u + ----- d + u p ( ) 0 F u ( ) u + -------- + u p ( ) where u p ( ) particular slutin due t b and F. where F u u + --------- + u, DS u, u p ( ) 0 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 7 f 17

1.7 Fundamental Slutin: ending Prblem V V, v M, β M V ( ) V, v M ( ) M, β Internal Frces V ( ) V M ( ) M + V ( ) Gverning Equatins fr Displacement M M M D β, + M β, ---------------- D V V D (v, β) v, β + ------ D Integratin leads t: 2 M V ( ) + ---------- β β + ------ ---- - + β ( ) D D 2 M V 2 β( ) β β + ---------- + ----------- + β 2, D D 2 3 M 2 V V v ( ) v + β + ------- ---- + ------ ---- - ---- + ------ + v ( ) 2 D 2 6 D D M 2 V 3 V v ( ) v v + β + ------- ----- + ----------- + ------+ v D, 2 D 3 D 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 8 f 17

1.8 Particular Slutins Set hen where β i, end rtatin at i due t span lad v i, end displacement at i due t span lad β i β i e + v i v i e +, β i,, v i, β i, e end rtatin at i due t end actins v i, e end displacement at i due t end actins Cncentrated Mment a b M* M* a --------- - β, D M* a 2 M* a v, ------------- + ---------- ( a) 2 D 2 D Cncentrated Frce a P* b β, P* a 2 ----------- 2 D P* a P* a 3 P* a 2 v --------- + ------------ + ------------, ( a) D 3 D 2 D 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 9 f 17

Distributed ading bd d Replace P* with bd an d integrate frm 0 t 2 β, --------- bd 0 2 D 3 2 v, ------bd + --------- bd + --------- bd ( ) 0 D 0 3 D 0 2 D fr b cnstan t (ie unifrmly distributed lading) β, 3 b --------- 6 D 2 4 b b v, --------- + --------- 2 D 8 D 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 10 f 17

1.9 Summary F, + --------- + u u u DS M 2 V 3 V v v, + ------- ----- + ----------- + ------+ v + β 2 D 3 D M V 2 β β, + ---------- + ----------- + β D 2 D hese equatins can be written as D u v β u, v, β, + ------ 0 0 F u 3 2 100 0 --------- + ------ -------- - + 01 v 3 D D 2 D V 001 β 2 M 1 0 --------- ----- - 2 D D ls Rigid bdy transfrmatin frm t F F, F V V, V M M, M V F V M F, V, M, 10 0 01 0 0 1 F V M 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 11 f 17

1.10 Matri Frmulatin Strai ght Members Define: u u v β Dis placement Matri F F V M End ctin Matri General Frce Displacemnt Relatin Epress displacement at as: u u, + f F + u u, : Due t applied lading f F : Due t frces at u : Effect f mtin at as ed n cantilever mdel Interpret f Member fleibility matri Ri gid bdy transfrmatin frm t Fr the prismatic case ------ 0 0 3 2 f 0 --------- + ------ --------- 3 D D 2 D 2 1 0 --------- ----- - 2 D D 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 12 f 17

Frce Displacement Relatins 1 Define k f Member stiffness matri Start with u u, + f F + u Slve fr F Define hen f F u u u, F k u k u k u, F i, k u, F k u k u + F, i Net, determine F where F F, F k F ( )u + ( k )u + F, i F, i F, F, i Nte F i and, are the initial end actins with n end displacements, F i Finally, rewrite as F + F i k u + k u, F k u + k u + F i, Ntice that there are tw fundamental matrices: k and 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 13 f 17

Matrices fr Prismatic Case u v β u v β F ------ 0 0 ------ 0 0 V 0 12 D* ( 6)D* ( 12)D* ( 6)D* ---------------- --------------------- 0 ------------------------ -------------------- - 3 2 3 2 M 0 ( 6)D* (4 + a)d* 6 D* (2 + a)d* --------------------- -------------------------- Ḇ - 0 ------------- -------------------------- - 2 2 F ------ 0 0 ----- 0 0 V 0 ( 12)D* 6 D* 12 D* 6 D* ------------------------ ------------- 0 ---------------- ------------ - 3 2 3 2 M 0 ( 6)D* (2 + a)d* 6 D* (4 + a)d* --------------------- -------------------------- Ḇ - 0 ------------- -------------------------- - 2 2 12 D D a ------------ D* --------------- - 2 D (1 + a) 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 14 f 17

1.11 ransfrmatin Relatins Rigid dy Displacement ransfrmatin u u r ω ω ω ω u u + ω r u u v v + ω in tw dimensins ω ω u v ω 100 01 001 u v ω u u Statically Equivalent Frce ransfrmatin ranslate frce system acting at t pint P P r m m P P m m + r P F F, F 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 15 f 17

Crdinate ransfrmatin y y z,z a a a y a ' a' a y' a z a' Ra a z' he inverse is ake cs θ sin θ 0 R sin θ cs θ 0 0 0 1 cs θ cs ( θ) 1 sin θ sin( θ) R R 1 R R( θ) (, yz), Glbal frame (', y',z') cal frame l ( ) g F () R gl F ( ) R ( gl) R l Given k in lcal frame ( k () ), transfrm t glbal frame If hen l F () l () k () R gl u g k () u l l ( ) ( ) ( ) F g ( ) F () ( ) () gl g R lg k R u R lg l l ( ) ( ) ( ) F g ( ) g k g u ( ) ( ) k g ( ) () ( gl ) ( ) () gl k R R R lg l ( ) (R gl ) k l 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 16 f 17

1.12 Structural Stiffness Matri assembly g F g g g g g k u + k u + F i, g g g g g k F ( g ) u + k u + F i, F i g l R F i Use direct stiffness methd t generate the system equatins referred t the glbal frame. ake as the psitive end and as the negative end. n+ n- fr member n Write system equatin as P I + KU E Wrk with the partitined frm f system stiffness matri K. k in n+,n+ k in n,n k in n+,n with k F i in n,n+ in n+ f P I F, i, in n f P I 1.571 Structural nalysis and Cntrl Sectin 1 Prf Cnnr Page 17 f 17