Left-Handed Completeness



Similar documents
T ( a i x i ) = a i T (x i ).

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

Section Inner Products and Norms

Continued Fractions and the Euclidean Algorithm

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

Solving Systems of Linear Equations

Lecture 1: Schur s Unitary Triangularization Theorem

Finite dimensional C -algebras

Similarity and Diagonalization. Similar Matrices

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Matrix Representations of Linear Transformations and Changes of Coordinates

University of Lille I PC first year list of exercises n 7. Review

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

1 Introduction to Matrices

Lectures notes on orthogonal matrices (with exercises) Linear Algebra II - Spring 2004 by D. Klain

Chapter 6. Orthogonality

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

MA106 Linear Algebra lecture notes

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Methods for Finding Bases

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n

NOTES ON LINEAR TRANSFORMATIONS

Solution to Homework 2

Separation Properties for Locally Convex Cones

Linear Algebra Review. Vectors

Orthogonal Diagonalization of Symmetric Matrices

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Chapter 2: Fixed Point Theory

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

Linear Algebra Notes

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

Group Theory. Contents

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

( ) which must be a vector

1 Sets and Set Notation.

GROUPS ACTING ON A SET

NOTES ON CATEGORIES AND FUNCTORS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

Inner Product Spaces

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:

Quadratic forms Cochran s theorem, degrees of freedom, and all that

GROUP ALGEBRAS. ANDREI YAFAEV

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

6. Cholesky factorization

Math 312 Homework 1 Solutions

Solving Linear Systems, Continued and The Inverse of a Matrix

CONSEQUENCES OF THE SYLOW THEOREMS

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

6.3 Conditional Probability and Independence

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.

CONTROLLABILITY. Chapter Reachable Set and Controllability. Suppose we have a linear system described by the state equation

by the matrix A results in a vector which is a reflection of the given

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

3. Prime and maximal ideals Definitions and Examples.

Applied Linear Algebra I Review page 1

CLUSTER ALGEBRAS AND CATEGORIFICATION TALKS: QUIVERS AND AUSLANDER-REITEN THEORY

Math 4310 Handout - Quotient Vector Spaces

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

Notes on Symmetric Matrices

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

Recall that two vectors in are perpendicular or orthogonal provided that their dot

α = u v. In other words, Orthogonal Projection

4. FIRST STEPS IN THE THEORY 4.1. A

160 CHAPTER 4. VECTOR SPACES

Introduction to Topology

Linear Algebra I. Ronald van Luijk, 2012

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

Multivariate normal distribution and testing for means (see MKB Ch 3)

A note on companion matrices

Omega Automata: Minimization and Learning 1

def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

C H A P T E R Regular Expressions regular expression

Let H and J be as in the above lemma. The result of the lemma shows that the integral

Math Practice Exam 2 with Some Solutions

Non-deterministic Semantics and the Undecidability of Boolean BI

Brief Introduction to Vectors and Matrices

Inner products on R n, and more

Orthogonal Projections

13 MATH FACTS a = The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

Parabolic Equations. Chapter 5. Contents Well-Posed Initial-Boundary Value Problem Time Irreversibility of the Heat Equation

6.2 Permutations continued

1 = (a 0 + b 0 α) (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Vector and Matrix Norms

INCIDENCE-BETWEENNESS GEOMETRY

Lights and Darks of the Star-Free Star

Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic.

Continuity of the Perron Root

MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

Research Note. Bi-intuitionistic Boolean Bunched Logic

ISOMETRIES OF R n KEITH CONRAD

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Factorization Theorems

LINEAR ALGEBRA W W L CHEN

Transcription:

Left-Handed Completeness Dexter Kozen Computer Science Department Cornell University RAMiCS, September 19, 2012 Joint work with Alexandra Silva Radboud University Nijmegen and CWI Amsterdam

Result A new proof of the completeness of left-handed KA

Axioms of KA Idempotent Semiring Axioms p + (q + r) = (p + q) + r p + q = q + p p(qr) = (pq)r 1p = p1 = p p + 0 = p p0 = 0p = 0 p + p = p p(q + r) = pq + pr (p + q)r = pr + qr a b def a + b = b Axioms for 1 + pp p q + px x p q x 1 + p p p q + xp x qp x

Axioms of KA Idempotent Semiring Axioms p + (q + r) = (p + q) + r p + q = q + p p(qr) = (pq)r 1p = p1 = p p + 0 = p p0 = 0p = 0 p + p = p p(q + r) = pq + pr (p + q)r = pr + qr a b def a + b = b Axioms for 1 + pp p q + px x p q x 1 + p p p q + xp x qp x

Left-Handed Completeness This is a known result! claimed without proof by Conway (1971) The only extant proofs are by Krob/Boffa (95) and Ésik (99) Krob gives an equational axiomatization with infinitely many equations of a specified form an entire journal issue of TCS (137 pages!) later reworked in the context of iteration theories by Ésik, but essentially the same proof (50 pages) Boffa observed that all Krob s equations were provable with the left-handed rule

Krob s Equations Idempotent semiring axioms Conway axioms p = p p = p (p + q) = p (qp ) (pq) = 1 + p(qp) q M = m M ε 1 M (m) for all finite monoids M, where ε M : M M is the unique monoid homomorphism such that ε M (m) = m No finite set of equations suffices (Redko 64)

Monoid Equations M = m M ε 1 M (m) for all finite monoids M, where ε M : M M is the unique monoid homomorphism such that ε M (m) = m Take M = a /(a 4 = 1) = {1, a, a 2, a 3 } a 3 1 a 3 a 3 a a a 2 a a a a = (1 + a + a 2 + a 3 )(a 4 ) a 3 a 2 a 3

Purely Equational Axiomatizations Purely equational axiomatizations are undesirable from a practical point of view: they do not interact well with equations assumptions, which is almost always the case in real-life applications For example, consider the redundant assignment x := 1; x := 1. let a = x := 1 have aa = a, since the assignment is redundant would expect this to imply a = 1 + a, but this is not a consequence of the equational theory of KA plus aa = a the free R-algebra on the monoid a /(aa = a) = {0, 1, a, 1 + a, a, aa }. In particular, a 1 + a. This algebra that satisfies all the equations of KA but is not a KA itself in a finite KA a star is always equal to a finite sum of powers

Practical Motivation Characterizing a as a least fixpoint is natural and powerful and is satisfied in virtually all models that arise in real life However, there are interesting and useful models that satisfy only one of the two star rules, so it is useful to know that only one of the rules is needed for equational completeness

Technical Motivation We define differential Kleene algebra, which captures abstractly the interplay between algebra and coalgebra in the theory of regular sets the (syntactic) Brzozowski derivative on regular expressions maps algebra to coalgebra the canonical embedding of a coalgebra into a matrix algebra plays the converse role matrix representation algebra Kleene s theorem Brzozowski derivative coalgebra

Left-Handed Kleene Algebra A weak KA is an idempotent semiring with star satisfying the Conway equations a = 1 + aa (ab) a = a(ba) (a + b) = a (ba ) a = a Incomplete, but sufficient for many arguments involving. A left-handed Kleene algebra (LKA) is a weak KA satisfying the left-handed star rule b + ax x a b x or ax x a x x where a b a + b = b. One consequence is the left-handed bisimulation rule ax xb a x xb

Matrices Let Mat(S, K) be the family of square matrices with rows and columns indexed by S with entries in K. The characteristic matrix P f of a function f : S S has (P f ) st = 1 if f (s) = t, 0 otherwise. M is a function matrix if it is P f for some f. Let S 1,..., S n S be a partition of S. A matrix A Mat(S, K) is said to be block diagonal with blocks S 1,..., S n if A st = 0 whenever s and t are in different blocks. Lemma Let A, P f Mat(S, K) with P f the characteristic matrix of a function f : S S. The following are equivalent: i A is block diagonal with blocks refining the kernel of f ; that is, if A st 0, then f (s) = f (t); ii AP f = DP f for some diagonal matrix D; iii AP f = DP f, where D is the diagonal matrix D ss = f (s)=f (t) A st.

Differential Kleene Algebra A differential Kleene algebra (DKA) K is a weak KA containing a (finite) set Σ K, called the actions, and a subalgebra C, called the observations, such that i ii iii ac = ca for all a Σ and c C C and Σ generate K K supports a Brzozowski derivative consisting of functions ε: K C and δ a : K K, a Σ, satisfying δ a (e 1 + e 2 ) = δ a (e 1 ) + δ a (e 2 ) ε(e 1 + e 2 ) = ε(e 1 ) + ε(e 2 ) δ a (e 1 e 2 ) = δ a (e 1 )e 2 + ε(e 1 )δ a (e 2 ) ε(e 1 e 2 ) = ε(e 1 )ε(e 2 ) δ a (e ) = ε(e )δ a (e)e ε(e ) = ε(e) { 1 if a = b, δ a (b) = b Σ ε(b) = 0, b Σ 0 if a b, δ a (c) = 0, c C ε(c) = c, c C

Differential Kleene Algebra δ a (e 1 + e 2 ) = δ a (e 1 ) + δ a (e 2 ) ε(e 1 + e 2 ) = ε(e 1 ) + ε(e 2 ) δ a (e 1 e 2 ) = δ a (e 1 )e 2 + ε(e 1 )δ a (e 2 ) ε(e 1 e 2 ) = ε(e 1 )ε(e 2 ) δ a (e ) = ε(e )δ a (e)e ε(e ) = ε(e) { 1 if a = b, δ a (b) = b Σ ε(b) = 0, b Σ 0 if a b, δ a (c) = 0, c C ε(c) = c, c C Thus ε: K C is a retract (a KA homomorphism that is the identity on C, which immediately implies 0, 1 C). This definition is a generalization of the usual situation in which C = 2 = {0, 1} and the function ε and δ a are the (syntactic) Brzozowski derivatives.

Extension to Matrices Lemma If K is a DKA with actions Σ and observations C, then Mat(S, K) is a DKA with actions (a) and observations Mat(S, C) under the pointwise operations. We are primarily interested in matrix KAs in which C is the set of square matrices over 2.

Examples 1 A DKA with observations 2 is Brz = (2 Σ, δ, ε), where ε(a) = 1 iff A contains the null string and 0 otherwise, and δ a : 2 Σ 2 Σ is the usual Brzozowski derivative δ a (A) = {x Σ ax A}. This is the final coalgebra of the functor Σ 2. It is also an LKA under the usual set-theoretic operations. 2 Another example is the free LKA K Σ on generators Σ. It is also a DKA, where δ a and ε are defined inductively on the syntax of regular expressions. The maps δ a and ε are well defined modulo the axioms of LKA. The following comes from an observation of Jacobs (2006) for KA. Lemma The axioms of LKA are complete iff the unique homomorphism L KΣ : K Σ Brz is injective.

The Fundamental Theorem (Silva 2010) The following result characterizes the relationship between algebraic and coalgebraic structure of DKA s. Theorem Let K be a DKA. For all elements e K, e = a Σ aδ a (e) + ε(e).

Consequences of the Fundamental Theorem Let K be a DKA. Define the C-free part of e K to be e = a Σ aδ a (e). By the fundamental theorem, e = e + ε(e) and ε(e ) = 0. Theorem The map e e is linear and satisfies the following derivation properties: 1 = 0 (de) = d e + de e = ε(e )(e ε(e )) + The decomposition e = e + ε(e) is unique such that ε(e ) = 0.

Systems of Linear Equations as Coalgebras A system of (left-)linear equations over a weak KA K is a coalgebra (S, D, E), where Σ K, D a : S S, and E : S K. A solution in K is a map ϕ : S K such that ϕ(s) = a Σ aϕ(d a (s)) + E(s).

Canonical Solution and Standard Embedding Given a finite system of linear equations, form the matrix A = a Σ (a)p(a) Mat(S, K) where (a) is the diagonal matrix with diagonal entries a P(a) is the characteristic matrix of the function D a. The solution condition is ϕ = Aϕ + E. Since Mat(S, K) is a weak KA, the vector A E is a solution, called the canonical solution. If in addition K is an LKA, then the canonical solution is also the least solution. If K is freely generated by Σ, then the map a (a)p(a) extends uniquely to an injective KA homomorphism χ : K Mat(S, K), called the standard embedding.

Decompositions Let (S, D, E) be a finite coalgebra with standard embedding χ : K Σ Mat(S, K Σ ) χ(a) = (a)p(a). Let e K Σ. Let M be a finite set with a map γ : Σ M such that P(x) = P(γ(x)). A decomposition of e is a family of expressions e x K Σ indexed by M such that a e = x e x, and b χ(e x ) = (e x )P(x) for all x M. It follows that χ(e) = x (e x )P(x). The decomposition respects P, Q if in addition c P(x)Q = P for all x such that e x 0.

Decompositions Lemma Let x e x be a decomposition of e. The decomposition respects P, Q iff χ(e)q = (e)p. Lemma Let e α and P α be finite indexed collections of elements of K Σ and function matrices, respectively, such that e = α e α χ(e α ) = (e α )P α and such that each P α is P(y α ) for some y α Σ. Then e x = x=γ(y α) e α is a decomposition of e.

Decompositions Decompositions can be combined additively or multiplicatively. The sum and product of two decompositions F : M K Σ and G : M K Σ are, respectively, the decompositions (F + G)(x) = F (x) + G(x) (F G)(x) = F (y)g(z). x=γ(yz) Lemma i ii If F is a decomposition of e and G is a decomposition of d, then F + G is a decomposition of e + d. If F and G both respect P, Q, then so does F + G. If F is a decomposition of e and G is a decomposition of d, then F G is a decomposition of ed. If F respects P, Q and G respects Q, R, then F G respects P, R.

Star Star is handled with a kind of monad structure M M (details omitted). Lemma Suppose that ( x M x) K M has a decomposition d α, α M with respect to η and that e K Σ has a decomposition σ : x e x with respect to χ. Let µ(x) = x=γ(α) d α. Then σµ : x σ( x=γ(α) d α) is a decomposition of e with respect to χ. Moreover, if the decomposition of e respects Q, Q, then so does the decomposition e.

Universal Decomposition A universal decomposition is a decomposition for the universal expression ( a Σ a). Corollary There exists a universal decomposition. Corollary Every expression has a decomposition.

Completeness Let (S, D, E) be a coalgebra of signature Σ 2. Let L S : S Brz be the unique homomorphism to the final coalgebra L S (s) = {x Σ E(D x (s)) = 1}. Recall that for a coalgebra (S, D, E) we form an associated matrix A = a Σ (a)p(a) Mat(S, K), where (a) is the diagonal matrix with diagonal entries a and P(a) is the characteristic matrix of the function D a. Lemma If L S (s) = L S (t) then (A E) s = (A E) t.

Completeness Recall that every e K Σ generates a finite subcoalgebra, since it has finitely many Brzozowski derivatives modulo the weak KA axioms (actually only associativity, commutativity, and idempotency of + are needed for finiteness). Let χ: K Σ Mat(S, K Σ ) be the standard embedding. Lemma e = (χ(e)e) e.

Completeness Lemma e = (A E) e. Proof. By the previous lemma and the monotonicity of χ, e = (χ(e)e) e (χ(( a) )E) e = (( χ(a)) E) e = (A E) e. a Σ a Σ For the reverse inequality, the fundamental theorem says that the identity map e e is a solution, and A E is the least solution. Theorem (Completeness) If L KΣ (d) = L KΣ (e) then d = e.

Conclusion We have given a new, shorter proof of the completeness of the left-handed star rule of Kleene algebra. We have shown that the left-handed star rule is needed only to guarantee the existence of least solutions. Some pressing questions remain: Can we replace the left-handed rule with a neutral rule such as e 2 1 + e e = 1 + e? Can we significantly simplify Krob s proof using these techniques?

Thanks!