Giant Slinky: Quantitative Exhibit Activity



Similar documents
Waves - Transverse and Longitudinal Waves

Waves and Sound. AP Physics B

Waves-Wave Characteristics

Standing Waves on a String

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

16.2 Periodic Waves Example:

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

Experiment 1: SOUND. The equation used to describe a simple sinusoidal function that propagates in space is given by Y = A o sin(k(x v t))

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

Acoustics: the study of sound waves

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Chapter 15, example problems:

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Interference. Physics 102 Workshop #3. General Instructions

The Physics of Guitar Strings

Doppler Effect Plug-in in Music Production and Engineering

Resonance in a Closed End Pipe

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

Ch 25 Chapter Review Q & A s

Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Practice Test SHM with Answers

Describing Sound Waves. Period. Frequency. Parameters used to completely characterize a sound wave. Chapter 3. Period Frequency Amplitude Power

Waves Sound and Light

Solution Derivations for Capa #13

EXPERIMENT 2 Measurement of g: Use of a simple pendulum

Chapter 17: Change of Phase

Sound and stringed instruments

INTERFERENCE OF SOUND WAVES

Structure Factors

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of

UNIT 1: mechanical waves / sound

Pendulum Investigations. Level A Investigations. Level B Investigations

AP Physics C. Oscillations/SHM Review Packet

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell ( )

7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( )

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

SOLUTIONS TO CONCEPTS CHAPTER 15

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

How does a microwave oven work?

PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors

explain your reasoning

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

All around us we see things that wiggle and jiggle. Even

Diffraction of Laser Light

Acousto-optic modulator

Answer the following questions during or after your study of Wave Properties. 4. How are refraction and the speed of wave in different media related?

The Sonometer The Resonant String and Timbre Change after plucking

Experiment 5. Lasers and laser mode structure

A pulse is a collection of cycles that travel together. the cycles ( on or transmit time), and. the dead time ( off or receive time)

A-LEVEL PHYSICS A. PHYA2 mechanics, materials and waves Mark scheme June Version: 1.0 Final

Diffraction and Young s Single Slit Experiment

Oscillations: Mass on a Spring and Pendulums

HOOKE S LAW AND SIMPLE HARMONIC MOTION

LAB #11: RESONANCE IN AIR COLUMNS

Chapter 21 Study Questions Name: Class:

Infrared Spectroscopy: Theory

Physics 1120: Simple Harmonic Motion Solutions

Boardworks AS Physics

How Waves Helped Win the War: Radar and Sonar in WWII

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

Physics 41 HW Set 1 Chapter 15

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

Visit the Piano Learning Center of the Piano Technicians Guild at for more fun ways to learn about the piano.

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time

Teaching Fourier Analysis and Wave Physics with the Bass Guitar

Mathematical Harmonies Mark Petersen

Simple Harmonic Motion

Basic Acoustics and Acoustic Filters

Does Quantum Mechanics Make Sense? Size

Using light scattering method to find The surface tension of water

AP PHYSICS C Mechanics - SUMMER ASSIGNMENT FOR

Introduction to acoustic imaging

Sample Problems. Practice Problems

Energy. Mechanical Energy

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.

Waves disturbances caused by the movement of energy from a source through some medium.

Sample Questions for the AP Physics 1 Exam

226 Chapter 15: OSCILLATIONS

Engineering with Sound Lesson Plan

FXA UNIT G484 Module Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

Experiment 9. The Pendulum

Waves and Light Extra Study Questions

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING/PHYSICS

Bay Area Scientists in Schools Presentation Plan

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

INTERFERENCE OF SOUND WAVES

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines

Measurement with Ratios

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, :15 to 4:15 p.m.

1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =

What is Sound? Simple Harmonic Motion -- a Pendulum. The Unit Circle. Sine Waves. Frequency

Transcription:

Name: Giant Slinky: Quantitative Exhibit Activity Materials: Tape Measure, Stopwatch, & Calculator. In this activity, we will explore wave properties using the Giant Slinky. Let s start by describing the two types of waves: transverse and longitudinal. Transverse and Longitudinal Waves A transverse wave moves side-to-side orthogonal (at a right angle; perpendicular) to the direction the wave is moving. These waves can be created on the Slinky by shaking the end of it left and right. A longitudinal wave is a pressure wave alternating between high and low pressure. These waves can be created on the Slinky by gathering a few (about 5 or so) Slinky rings, compressing them with your hands and letting go. The area of high pressure is where the Slinky rings are bunched up and the area of low pressure is where the Slinky rings are spread apart. Transverse Waves Before we can do any math with our Slinky, we need to know a little more about its properties. Begin by measuring the length (L) of the Slinky (attachment disk to attachment disk). If your tape measure only measures in feet and inches, convert feet into meters using 1 ft = 0.3048 m. Length of Slinky: L = m We must also know how long it takes a wave to travel the length of the Slinky so that we can calculate the speed of a wave. For now, we are going to investigate transverse waves, so make a single pulse by jerking the Slinky sharply to the left and right ONCE (very quickly) and then return the Slinky to the original center position. Time how long it takes the pulse to make it to the other end of the Slinky. Do this several times and average the trials together for a more accurate result. Be sure to stop any remaining waves in the Slinky in between measurements. (Table on next page.) - 1 -

Trial 1 Trial 2 Trial 3 Average time ( t ) Time Now, we can calculate the speed (v) of a transverse wave in this Slinky: v = L t! v = m/s With this information, we can now calculate wavelengths and frequencies of a wave. Wavelength, Amplitude and Frequency Wavelength (λ) is the distance along the direction of motion between successive peaks or valleys (maxima and minima) of a wave; note that wavelength is not the distance between a peak and the next valley, but the peak-topeak or valley-to-valley distance. Since this is a measure of distance, wavelength will be in units of meters. Amplitude (y) is the maximum displacement a wave makes from the rest position (in the side-to-side direction that the wave is vibrating). Note that this is half the full peak to valley distance. Amplitude is measure of distance and will have units of meters. Frequency (f) is the count of how many wavelengths pass by a point every ond. If 5 waves go by every ond, then the frequency would be 5/. The 1/ unit is also called a Hertz () and is the standard unit of frequency. The wave in the example given above then has a frequency of 5. Period (T) is how long it takes a wave to travel past a point and is simply the inverse of frequency (T=1/f) and has units of onds. - 2 -

Given the equation for speed above, derive the relationship between wavelength, frequency and wave speed. (Hint: Wave speed will simply be v and has units of m/. What combination of wavelength and frequency will produce the correct units for speed? Determine this by multiplying or dividing the units of the variables for frequency and wavelength just like you would if you were substituting numbers for the variables.) v = Does the speed, frequency or wavelength of a wave depend on its amplitude? Yes No Use this relationship between wave speed, wavelength and frequency to determine what the frequency of a transverse wave in this Slinky would need to be in order to fit a single wavelength along the length of the Slinky. f = Try and make a wave with this frequency in the Slinky. As you continue to pump waves with this frequency into the Slinky, you may notice that a special pattern is starting to develop in the wave. Specifically, that there is one point in the middle of the Slinky that appears to not move at all while other parts of the wave oscillate largely. This special wave is called a standing wave. - 3 -

Longitudinal Waves: All of the wave properties discussed for transverse waves also apply to longitudinal waves. However, the maximum and minimum of a wave have special names: the area of high pressure (corresponding to the transverse wave s maximum) is called the compression and the area of low pressure (corresponding to the transverse wave s minimum) is called the rarefaction. Now calculate the speed of a longitudinal wave in the Slinky. Gather several (about 5 or so) rings of the Slinky together. When you let go, you will see the compression travel the length of the Slinky. Time how long it takes the compression to travel the whole length (you will here the compression clink against the attachment disk when it arrives at the end): Trial 1 Trial 2 Trial 3 Average time ( t ) Time - 4 -

Now, we can calculate the speed (v) of a longitudinal wave in this Slinky: " v = L % $ ' # t &! v = m/s Use this relationship between wave speed, wavelength and frequency to determine what the frequency of a longitudinal wave in this Slinky would need to be in order to fit two wavelengths along the length of the Slinky. (Be careful, this is a slightly different question than the similar one asked for transverse waves!) f = Sound Sound waves are good examples of longitudinal waves in air. The figure below shows how molecules of air (the individual dots) are affected by sound waves. The compressions of the sound wave are areas in the air that have higher air pressure (density) and the rarefactions are areas with lower pressure (density). These alternating densities will cause our eardrums to vibrate and this is how we sense sound. Compression Rarefaction - 5 -

Standing Waves Extension: Interference and Standing Transverse Waves Interference occurs when two waves overlap each other. In the Giant Slinky, these waves are caused by the newly produced waves traveling towards one end of the Slinky and older waves that have been reflected back to the other end. When these two waves overlap, they add up to make larger and smaller amplitude waves. Constructive interference occurs when two peaks (maxima) of a wave (or two valleys/minima) overlap and add together to create a larger wave than either of the original waves. Destructive interference occurs when a peak (maximum) and a valley (minimum) overlap and add to either partially or completely cancel out the waves. Constructive: Destructive: Combined waves Wave 1 Wave 2 Standing waves are the result of continuous interference of waves with specific frequencies that allow for certain points of the waves to have no movement while other parts of the wave undergo all of the movement. Nodes are the places in a standing wave where there appears to be no movement. Anti-nodes are the places in a standing wave where the maximum amount of movement (full amplitude) appears to take place. The criteria to form a standing wave is that integer (whole) multiples of half a wavelength be within the length of the Slinky. When a standing wave is produced with exactly half a wavelength along the length of the Slinky, the resulting wave is called the fundamental and the nodes are at the endpoints of the wave. When a full wavelength is used, the resulting wave is called the first harmonic (B on the illustration on the next page) and a node also appears at the midpoint of the Slinky length. (If you were able to produce a standing wave with the frequency determined above, you were seeing the first harmonic wave for this Slinky.). Label the frequencies needed to produce each of the standing waves below; the positions of the nodes are labeled according to what fraction of the Slinky length the first node that is not an end point appears. (Table on next page.) - 6 -

A: B: C: D: E: F: G: Frequency A Fundamental B 1 st Harmonic (same frequency as found on page 3) C 2 nd Harmonic D 3 rd Harmonic E 4 th Harmonic F 5 th Harmonic G 6 th Harmonic (Hint: If λ B is 2λ A, then f a = 0.5f b. If λ C is 3λ A, then f c =3f a, etc.) - 7 -

Try this: Start waving the end of the Slinky back and forth until you create a standing wave. Don t try to produce any specific frequency, just find one that is comfortable for you. Have a partner count the number of nodes and identify which harmonic is being produced. Then count how many complete back-and-forth oscillations (swings) of the Slinky you make in 10 onds (have your partner time the 10 onds while you count your oscillations). The frequency you are creating is then: f = number of oscilations time where time would be 10. See if the frequency you measured compares well to the frequency of your identified harmonic.! Harmonic: Oscillations per 10 onds: Frequency: f = Image Credit: - Page 2 image from: http://upload.wikimedia.org/wikipedia/commons/e/e9/wave.png, retrieved on 21 Aug 2008. - Page 4 image from: http://www.gcsescience.com/longitudinal-wave.gif, retrieved 27 Jan 2009. - Page 5 image from: http://scienceclass.ca/physics11/wp-content/uploads/2007/08/longitudinal.gif, retrieved 27 Jan 2009 - Page 6 image from: http://upload.wikimedia.org/wikipedia/commons/8/8a/interference_of_two_waves.png, retrieved on 16 April 2009. - Page 7 image from: http://upload.wikimedia.org/wikipedia/commons/c/c5/harmonic_partials_on_strings.svg, retrieved on 21 Aug 2008. - 8 -