LAB #11: RESONANCE IN AIR COLUMNS
|
|
|
- Sibyl May Miller
- 9 years ago
- Views:
Transcription
1 OBJECTIVES: LAB #11: RESONANCE IN AIR COLUMNS To determine the speed of sound in air by using the resonances of air columns. EQUIPMENT: Equipment Needed Qty Equipment Needed Qty Resonance Tube Apparatus 1 Tuning Forks 2 600mL Beaker 1 One-Meter Stick 1 SAFETY REMINDER Follow all safety instructions. Keep the area clear where you will be working and walking. THINK SAFETY ACT SAFELY BE SAFE! INTRODUCTION: In this lab you will determine experimentally the speed of sound in air by determining the wavelength of the wave formed by each of two tuning forks with known frequencies. PROCEDURES: Answer all of the questions on this handout. PART 1: Determining the speed of sound with Tuning Fork #1 You have been given two tuning forks. We will refer to the tuning fork with the lower frequency as Tuning Fork #1, and the tuning fork with the higher frequency as Tuning Fork #2. 1. What is the frequency of Tuning Fork #1? To start the tuning fork vibrating, hold the handle and strike the fork on the heel of your hand. Do not strike the fork on the lab bench or anything hard. This can damage the tuning fork. To determine the wavelength of the wave created by the tuning fork, we are going to create a standing wave in the air column. This allows the wave reflected off of the water s surface to
2 combine with the wave coming from the tuning fork to form a louder sound. By listening for this increase in loudness, we fill find the correct length for the air column. To understand this better, consider Figures #1-3. Figure #1 Figure #2 Figure #3 When a vibrating tuning fork is placed above an air column, the fork starts the air vibrating. If the water height is adjusted to the correct position, a standing sound wave is created. This occurs when the wave moving downward from the tuning fork combines with the wave moving upward, that has been reflected off of the water. This can happen when the length of the air column is equal to ¼ of the wavelength of the sound wave, see Figure #1. We show this by drawing vertically one-quarter of a wave in the air space. The water surface corresponds to a node in the wave, and the open end of the tube corresponds to an anti-node. This is called a sound wave resonance. Another resonance will occur when the length of the air column is equal to ¾ of the wavelength 5 of the sound wave, see Figure #2. Also, when the length of the air column is equal to 4 of the wavelength of the sound wave, see Figure #3. You have been given tuning forks that will form at least the ¼ and ¾ wavelength resonances within your air columns. Other resonances may be too long to fit in the tube.
3 By finding these resonances, we will be able to determine the wavelength of your sound waves, and given the sound s frequency, we can then determine the speed of sound. It will help us find these resonances if we have some idea of where to look. Using an approximate value for the speed of sound, 350.m/s, determine an approximate value for your wavelength using 2. What is your approximate value for λ? λ approx = v approx / f. 3. What is your approximate value for ¼ λ? 4. What is your approximate value for ¾ λ? Your answers to Questions #3 and 4 will give you a starting point for looking for the resonances. Notice that your resonance tube apparatus has a hose connected at the bottom which leads to a plastic beaker. The beaker is held in place with a ring clamp. Move the ring clamp so that the center of the plastic cup is about 10cm or so below your answer to Question #3 as read on the scale on the side of the tube. This will be your starting water height. Pour some water into the plastic cup until the water level in the resonance tube is up to this point, that is, 10cm or so below your answer to Question #3. Notice that you can move the plastic cup up and down and by doing so easily change the water height in the resonance tube. Strike Tuning Fork #1 on the heel of your hand and hold it near the top of the resonance tube. You will get the best results if you hold the fork horizontally with one prong above the other, as in Figure #4. While the tuning fork is vibrating, have another lab member raise and lower the plastic cup so that the water level in the tube moves through the position given as answer to Question #3. You should notice that the volume (loudness) of the sound increases and decreases as the water level changes. Notice at what level the sound is the loudest. Repeat this allowing the water level to move through this area more slowly and try to determine as accurately as possible the level at which the sound is the loudest. This may require you to strike the tuning fork several times and allow the water to raise and lower a number of times. 5. What is the length of the air column for your first resonance?
4 This is your value for ¼ λ. From this, determine λ. 6. What is your first experimental value for λ? Now adjust the water height to about 10cm below your answer to Question #4. This may require pouring some water out of your plastic cup. Following the same procedure, determine where the second resonance is. 7. What is the length of the air column for your second resonance? Figure #4 This is your value for ¾ λ. From this, determine λ. 8. What is your second experimental value for λ? 9. What is your average value for λ? 10. Using your average λ and your tuning fork frequency, what is the speed of sound? Although the water makes a very good node for the waves, the opening at the top of the tube may not be the exact location for the anti-node. Another way to find λ from your answers to Questions #5 and 7 is to subtract them and use the difference for ½ λ. This helps cancel any error that might occur due to the anti-nodes being above or below the opening of the tube. 11. What is your value for λ using twice the difference between the resonance lengths?
5 12. What is your value for the speed of sound using the λ from Question #11? It has been shown experimentally that the speed of sound varies with temperature so that where T is the room temperature in Celsius. v sound = (331.5 m/s) + (0.607m/s o C) T, 13. What is room temperature (in o C) according to the thermometer at the back of the room? 14. What is the speed of sound using this temperature? 15. Assuming your answer to Question #14 is the correct v sound, what is the error for your v sound from Question # Assuming your answer to Question #14 is the correct v sound, what is the error for your v sound from Question #12. PART 2: Determining the speed of sound with Tuning Fork #2 You will now go through the same procedure with Tuning Fork # What is the frequency of Tuning Fork #2? Using this frequency, and the approximate value for the speed of sound, determine an approximate value for your wavelength.
6 18. What is your approximate value for λ? 19. What is your approximate value for ¼ λ? 20. What is your approximate value for ¾ λ? Use your answers to Questions #19 and 20 as starting points to find your resonance lengths. 21. What is the length of the air column for your first resonance? This is your value for ¼ λ. From this, determine λ. 22. What is your first experimental value for λ? 23. What is the length of the air column for your second resonance? This is your value for ¾ λ. From this, determine λ. 24. What is your second experimental value for λ? 25. What is your average value for λ?
7 26. Using your average λ and your tuning fork frequency, what is the speed of sound? 27. What is your value for λ using twice the difference between the resonance lengths? 28. What is your value for the speed of sound using the λ from Question #27? 29. Assuming your answer to Question #14 is the correct v sound, what is the error for your v sound from Question # Assuming your answer to Question #14 is the correct v sound, what is the error for your v sound from Question #28. Notice that although we did use an approximate value for the speed of sound to help us find the location of the resonances, it wasn t absolutely necessary to do that. With patience, and enough time, the resonances can be found without a starting point, and from them the speed of sound can be accurately determined. Clean-Up Pour out as much of the water from the resonance tube apparatus as you can, wipe up any spills, and return all of the equipment to the arrangement in which you found it.
PHYSICS EXPERIMENTS (SOUND)
PHYSICS EXPERIMENTS (SOUND) In the matter of physics, the first lessons should contain nothing but what is experimental and interesting to see. A pretty experiment is in itself often more valuable than
Resonance in a Closed End Pipe
Experiment 12 Resonance in a Closed End Pipe 12.1 Objectives Determine the relationship between frequency and wavelength for sound waves. Verify the relationship between the frequency of the sound, the
AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.
1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the
The Physics of Guitar Strings
The Physics of Guitar Strings R. R. McNeil 1. Introduction The guitar makes a wonderful device to demonstrate the physics of waves on a stretched string. This is because almost every student has seen a
Waves and Sound. AP Physics B
Waves and Sound AP Physics B What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Two types of
Standing Waves on a String
1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end
1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.
practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes
v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review
L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review
Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)
Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) OVERVIEW Students will measure a sound wave by placing the Ward s DataHub microphone near one tuning fork A440 (f=440hz). Then
Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES
Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES The learning objectives of this experiment are to explore the relationship between the temperature and vapor pressure of water. determine the molar
Sound and stringed instruments
Sound and stringed instruments Lecture 14: Sound and strings Reminders/Updates: HW 6 due Monday, 10pm. Exam 2, a week today! 1 Sound so far: Sound is a pressure or density fluctuation carried (usually)
Determining the Acceleration Due to Gravity
Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different
What Is Sound? 20 minutes. Materials For the teacher. 1 pr. *cymbals, large 1 pr. cymbals, small 1 xylophone *Not provided in kit
Share with Your Students Vocabulary pitch STUDENT RESOURCE 1.1 INFORMATION SHEET how high or low a sound is What Is Sound? 1. Make copies of Student Resource 1.1, Vocabulary, and cut it up to make flashcards.
The Sonometer The Resonant String and Timbre Change after plucking
The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes
Soaking Up Solar Energy
Soaking Up Solar Energy Monica Laux Grade 8 Enriched and modified lab **Note, I am a special education teacher in 8 th grade Science using an inclusionary model. This lab has also been re-designed to differentiate
Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid
Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions
COMMON LABORATORY APPARATUS
COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen
Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface
Pressure -Temperature Relationship in Gases Computer 7 Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The velocity and
explain your reasoning
I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,
INTERFERENCE OF SOUND WAVES
1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.
Three Methods for Calculating the Buoyant Force Gleue: Physics
Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion
A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
Waves-Wave Characteristics
1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of
EXPERIMENT 4 THE DETERMINATION OF THE CALORIC CONTENT OF A CASHEW NUT
EXPERIMENT 4 THE DETERMINATION OF THE CALORIC CONTENT OF A CASHEW NUT Textbook reference: pp103-105 Purpose: In this Activity, students determine how many calories are released per gram when cashews burn
Distillation Experiment
Distillation Experiment CHM226 Background The distillation process is a very important technique used to separate compounds based on their boiling points. A substance will boil only when the vapor pressure
EXPRESS STILL WARNING It is legal in New Zealand to own and operate a still for the purpose of producing alcohol for your own consumption.
THE EXPRESS STILL This still represents the next generation in home distillation equipment. It eliminates the problem of having to spend all day processing a 25 litre wash. Taking 1 hour to heat up, then
UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 ABSORPTION OF CARBON DIOXIDE INTO WATER
UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 ABSORPTION OF CARBON DIOXIDE INTO WATER OBJECTIVE The objective of this experiment is to determine the equilibrium line,
Chapter 15, example problems:
Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,
Physical Properties of a Pure Substance, Water
Physical Properties of a Pure Substance, Water The chemical and physical properties of a substance characterize it as a unique substance, and the determination of these properties can often allow one to
SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB
SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,
Partner: Jack 17 November 2011. Determination of the Molar Mass of Volatile Liquids
Partner: Jack 17 November 2011 Determination of the Molar Mass of Volatile Liquids Purpose: The purpose of this experiment is to determine the molar mass of three volatile liquids. The liquid is vaporized
Question based on Refraction and Refractive index. Glass Slab, Lateral Shift.
Question based on Refraction and Refractive index. Glass Slab, Lateral Shift. Q.What is refraction of light? What are the laws of refraction? Ans: Deviation of ray of light from its original path when
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1
Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long
IDEAL AND NON-IDEAL GASES
2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to
Buoyant Force and Archimedes Principle
Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring
Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle
Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when
PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction. Name. Constants and Conversion Factors
PHYSICS 202 Practice Exam Waves, Sound, Reflection and Refraction Name Constants and Conversion Factors Speed of sound in Air œ $%!7Î= "'!*7/>/
Figure 1. A typical Laboratory Thermometer graduated in C.
SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Sample Mid-Term 3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If you double the frequency of a vibrating object, its period A) is quartered.
Decimals Adding and Subtracting
1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal
To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility.
THE SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES 2007, 1995, 1991 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included. OBJECTIVE To measure
Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables.
Determination of Molar Mass by Freezing Point Depression M. Burkart & M. Kim Experimental Notes: Students work in pairs. Safety: Goggles and closed shoes must be worn. Dispose of all chemical in the plastic
Physics 2521 Laboratory Manual. Edited by: Brian Cudnik & Qwadwo Agyepong
Physics 2521 Laboratory Manual Edited by: Brian Cudnik & Qwadwo Agyepong Spring 2006 1 Table of Contents The following is a list of experiments prepared for Physics 2521. Of this list of fifteen, ten to
The Molar Mass of a Gas
The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar
PART I SIEVE ANALYSIS OF MATERIAL RETAINED ON THE 425 M (NO. 40) SIEVE
Test Procedure for PARTICLE SIZE ANALYSIS OF SOILS TxDOT Designation: Tex-110-E Effective Date: August 1999 1. SCOPE 1.1 This method covers the quantitative determination of the distribution of particle
Physics 101 Hour Exam 3 December 1, 2014
Physics 101 Hour Exam 3 December 1, 2014 Last Name: First Name ID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. Calculators cannot be shared. Please keep
One- and Two-dimensional Motion
PHYS-101 LAB-02 One- and Two-dimensional Motion 1. Objective The objectives of this experiment are: to measure the acceleration of gravity using one-dimensional motion to demonstrate the independence of
Solution Derivations for Capa #13
Solution Derivations for Capa #13 1 Identify the following waves as T-Transverse, or L-Longitudinal. If the first is T and the rets L, enter TLLL. QUESTION: A The WAVE made by fans at sports events. B
Where the exp subscripts refer to the experimental temperature and pressure acquired in the laboratory.
Molar Volume of Carbon Dioxide Reading assignment: Julia Burdge, Chemistry 3rd edition, Chapter 10. Goals To determine the molar volume of carbon dioxide gas and the amount of sodium carbonate in a sample.
CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST
CONSTANT HEAD AND FALLING HEAD PERMEABILITY TEST 1 Permeability is a measure of the ease in which water can flow through a soil volume. It is one of the most important geotechnical parameters. However,
INTERFERENCE OF SOUND WAVES
2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference phenomena
Heat. LD Physics Leaflets. Determining the adiabatic exponent c P /c V of various gases using the gas elastic resonance apparatus P2.5.3.
WZ 013-06 Heat Kinetic theory of gases Specific heat of gases LD Physics Leaflets P..3. Determining the adiabatic exponent c P /c V of various gases using the gas elastic resonance apparatus Experiment
AIR RESONANCE IN A PLASTIC BOTTLE Darrell Megli, Emeritus Professor of Physics, University of Evansville, Evansville, IN dm37@evansville.
AIR RESONANCE IN A PLASTIC BOTTLE Darrell Megli, Emeritus Professor of Physics, University of Evansville, Evansville, IN [email protected] It is well known that if one blows across the neck of an empty
Giant Slinky: Quantitative Exhibit Activity
Name: Giant Slinky: Quantitative Exhibit Activity Materials: Tape Measure, Stopwatch, & Calculator. In this activity, we will explore wave properties using the Giant Slinky. Let s start by describing the
CSUS Department of Chemistry Experiment 8 Chem.1A
EXPERIMENT #8 Name: PRE-LABORATORY ASSIGNMENT: Lab Section 1. The alkali metals are so reactive that they react directly with water in the absence of acid. For example, potassium reacts with water as follows:
LAB 24 Transpiration
Name: AP Biology Lab 24 LAB 24 Transpiration Objectives: To understand how water moves from roots to leaves in terms of the physical/chemical properties of water and the forces provided by differences
Experiment 8: Undriven & Driven RLC Circuits
Experiment 8: Undriven & Driven RLC Circuits Answer these questions on a separate sheet of paper and turn them in before the lab 1. RLC Circuits Consider the circuit at left, consisting of an AC function
In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..
Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set
Lab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
Active noise control in practice: transformer station
Active noise control in practice: transformer station Edwin Buikema 1 ; Fokke D. van der Ploeg 2 ; Jan H. Granneman 3 1, 2, 3 Peutz bv, Netherlands ABSTRACT Based on literature and extensive measurements
If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ
Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces
Practice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
The Determination of an Equilibrium Constant
The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium
Determining Equivalent Weight by Copper Electrolysis
Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.
www.ptg.org Visit the Piano Learning Center of the Piano Technicians Guild at www.ptg.org for more fun ways to learn about the piano.
Piano Science Connect Music and Science Age: Elementary, Middle School The piano is one of the most interesting musical instruments you can learn to play. www.ptg.org It is also one of the most versatile
SOLUTIONS TO CONCEPTS CHAPTER 15
SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L
Appendix C. Vernier Tutorial
C-1. Vernier Tutorial Introduction: In this lab course, you will collect, analyze and interpret data. The purpose of this tutorial is to teach you how to use the Vernier System to collect and transfer
Upon completion of this lab, the student will be able to:
1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for
Name. Lab 3: ENZYMES. In this lab, you ll investigate some of the properties of enzymes.
Name Lab 3: ENZYMES In this lab, you ll investigate some of the properties of enzymes. So what are enzymes? Enzymes are large protein molecules (macromolecules) They catalyze or speed up chemical reactions
Valor Christian High School Mrs. Bogar Biology Graphing Fun with a Paper Towel Lab
1 Valor Christian High School Mrs. Bogar Biology Graphing Fun with a Paper Towel Lab I m sure you ve wondered about the absorbency of paper towel brands as you ve quickly tried to mop up spilled soda from
Exploring Energy. Third - Fifth TEKS. Vocabulary
Exploring Energy Third - Fifth TEKS Third Grade: 3.5A, 3.5B, 3.5C, 3.6A Fourth Grade: 4.5A, 4.5B, 4.6A, 4.6B, 4.6C Fifth Grade: 5.5A, 5.6A, 5.6B Vocabulary conductor, convection, conversions, electrical,
Experiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION Objective: To understand the motion of a projectile in the earth s gravitational field and measure the muzzle velocity of the projectile
Triple Point Experiment
Equipment List Rotary vane vacuum pump 2-stage, 2 to 7 CFM. For example, Edwards 2M2 (2 CFM), Edwards RV5 (3.5 CFM), Edwards E2M8 (6.7 CFM) or equivalent. Bell jar Nalgene polycarbonate plastic, 5-5/8
Determination of a Chemical Formula
1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl
THE STUDY OF THE EFFECT OF DRY ICE ON THE TEMPERATURE OF WATER
THE STUDY OF THE EFFECT OF DRY ICE ON THE TEMPERATURE OF WATER Justin Tunley Cary Academy ABSTRACT: The purpose of this study was to find out how much the temperature of water would change over time after
Oxidation States of Copper Two forms of copper oxide are found in nature, copper(i) oxide and copper(ii) oxide.
The Empirical Formula of a Copper Oxide Reading assignment: Chang, Chemistry 10 th edition, pp. 55-58. Goals The reaction of hydrogen gas with a copper oxide compound will be studied quantitatively. By
Ambiente Quick Reference Manual
Ambiente Quick Reference Manual Schaerer USA Corporation 2900 Orange Avenue, Suite 102 Signal Hill, CA 90755 Phone (888) 989-3004 Fax (562) 989-3075 TABLE OF CONTENTS Machine Overview Page 1 Button Panel
Buoyant Force. Goals and Introduction
Buoyant Force Goals and Introduction When an object is placed in a fluid, it either floats or sinks. While the downward gravitational force, F g, still acts on the object, an object in a fluid is also
VAPOR PRESSURE AS A FUNCTION OF TEMPERATURE. This laboratory covers material presented in section 11.8 of the 9 th Ed. of the Chang text.
VAPOR PRESSURE AS A FUNCTION OF TEMPERATURE Objectives: (1) Observe and measure the change in the vapor pressure (dependent variable) as a function of temperature (independent variable). (2) Analyze the
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
Hands-On Labs SM-1 Lab Manual
EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.
Activity P13: Buoyant Force (Force Sensor)
Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI-6746) 1 Mass and Hanger Set (ME-9348) 1 Base and Support Rod (ME-9355) 1 Ruler, metric 1 Beaker,
Chapter 17: Change of Phase
Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.
14 Friedel-Crafts Alkylation
14 Friedel-Crafts Alkylation 14.1 Introduction Friedel-Crafts alkylation and acylation reactions are a special class of electrophilic aromatic substitution (EAS) reactions in which the electrophile is
Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
Experiment #9, Magnetic Forces Using the Current Balance
Physics 182 - Fall 2014 - Experiment #9 1 Experiment #9, Magnetic Forces Using the Current Balance 1 Purpose 1. To demonstrate and measure the magnetic forces between current carrying wires. 2. To verify
Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version
Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another
Weather Under Pressure
Primary Subject Integrated Subjects Grade Level Length of Unit Research Sources Science Math 5th 10 days Elementary Science with Vernier Book BrainPop www.areasonfor.com/site/1/docs/science_level_f_swt_lesson_20.pdf
Candidate Number. General Certificate of Education Advanced Level Examination June 2014
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday
UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 CONVECTIVE HEAT TRANSFER
UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 CONVECTIVE HEAT TRANSFER OBJECTIVE The purpose is to measure heat transfer in cases where convection is a significant mechanism.
AP PHYSICS 2012 SCORING GUIDELINES
AP PHYSICS 2012 SCORING GUIDELINES General Notes About 2012 AP Physics Scoring Guidelines 1. The solutions contain the most common method of solving the free-response questions and the allocation of points
Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional
Chapter 14 Fluid Mechanics. Solutions of Selected Problems 14.1 Problem 14.18 (In the text book) Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional area
0610 BIOLOGY. 0610/62 Paper 6 (Alternative to Practical), maximum raw mark 40
CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education MARK SCHEME for the May/June 2014 series 0610 BIOLOGY 0610/62 Paper 6 (Alternative to Practical), maximum raw
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel
Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
Experiment 5: Column Chromatography
Experiment 5: Column Chromatography Separation of Ferrocene & Acetylferrocene by Column Chromatography Reading: Mohrig, Hammond & Schatz Ch. 18 pgs 235-253 watch the technique video on the course website!
Enzyme Activity Measuring the Effect of Enzyme Concentration
6 Measuring the Effect of Enzyme Concentration Enzymes are proteins that serve as biological catalysts in a wide variety of life sustaining chemical reactions that take place in cells. As catalysts, enzymes
