GPS receiver calibration: a tutorial. Michael Wouters, NMIA Bruce Warrington, NMIA



Similar documents
Remote Calibration of a GPS Timing Receiver to UTC(NIST) via the Internet*

REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS)

TI GPS PPS Timing Application Note

Post Processing Service

Global Positioning System

GPS Receiver Test. Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology

Agenda. Agilent GPS Receiver Test Solutions. GPS technology concepts. Basic tests required for GPS receiver verification Test solutions

GPS BLOCK IIF RUBIDIUM FREQUENCY STANDARD LIFE TEST

A GPS Digital Phased Array Antenna and Receiver

Phase coherency of CDMA caller location processing based on TCXO frequency reference with intermittent GPS correction

Bi-Directional DGPS for Range Safety Applications

A NEW ALGORITHM FOR CLOCK WEIGHTS FOR THE SIM TIME SCALE

Introduction into Real-Time Network Adjustment with Geo++ GNSMART

International Global Navigation Satellite Systems Service

High accuracy positioning using carrier-phases with the open source GPSTk software.

CDMA Technology : Pr. S. Flament Pr. Dr. W. sk On line Course on CDMA Technology

The IGS: A Multi-GNSS Service

GPS Precise Point Positioning with a Difference*

Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern

Radio Technical Commission for Maritime Services. GPS Update. Bob Markle RTCM Arlington, VA USA. NMEA Convention & Expo 2010

Global Positioning System (GPS) Time Dissemination for Real-Time Applications

GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON

GPS Positioning Modes

GPS CARRIER-PHASE FREQUENCY TRANSFER ON THE NIMA MONITOR STATION NETWORK

The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA)

On May 27, 2010, the U.S. Air. Satellite. Antenna Phase Center and Attitude Modeling

European Position Determination System. Guidelines For Cross- Border Data Exchange

HANDBOOK. Measuring System DESIGN EDITORS PETER H. SYDENHAM RICHARD THORN ARTICLE OFFPRINT

Online GPS processing services: an initial study

Greg Keel P.Eng. Parallel Geo Services

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

TIME AND FREQUENCY METROLOGY WORKING GROUP Working to support time and frequency metrology throughout the Americas

CW46S GPS Sensor P R O D U C T B R I E F. Description. Features. Applications. Block Diagram

GNSS integrity monitoring for the detection and mitigation of interference

Delivering NIST Time to Financial Markets Via Common-View GPS Measurements

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model

A Laser Scanner Chip Set for Accurate Perception Systems

4-3 Two Way Satellite Time and Frequency Transfer

Spectrum occupancy measurement and evaluation

Leica GNSS Reference Antennas White Paper

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System

Time and frequency distribution using satellites

GNSS Reflectometry at GFZ: ocean altimetry and land surface monitoring

Satellite Altimetry Missions

THE USE OF MEASUREMENTS & GPS FOR NOISE MAPPING. Douglas Manvell

m Antenna Subnet Telecommunications Interfaces

Divvela.Santhosh Raghava Rao [1],Sreevardhan cheerla [2]

Truck Automation for the Ready Mixed Concrete Industry. Michael J. Hoagland (205) ext

Analytical Test Method Validation Report Template

RPG MWR PRO TN Page 1 / 12 physics.de Radiometer Physics GmbH

Synchronization in. Distributed Systems. Cooperation and Coordination in. Distributed Systems. Kinds of Synchronization.

Development of BeiDou Navigation Satellite System

The Integration of GPS and Pseudolites for Bridge Monitoring

The Status and Development of the APREF GNSS Network Guorong Hu

International time scales Atomic standards

Spherotech, Inc Irma Lee Circle, Unit 101, Lake Forest, Illinois

Leica SmartNet UK & Ireland Network RTK User Guide

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform

NV08C-CSM-BRD GNSS card. Datasheet. Version 0.1

Tracking IRNSS Satellites. for Multi-GNSS Positioning in Finland

GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS

[3] beautiful visualisation of the satellites positions by HSR / ICOM

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION

IRT Eurocard. Type DAX Audio Extractor for 270 Mb/s SDI

How To Understand Gate

Impedance 50 (75 connectors via adapters)

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP)

0HDVXULQJWKHHOHFWULFDOSHUIRUPDQFH FKDUDFWHULVWLFVRI5),)DQGPLFURZDYHVLJQDO SURFHVVLQJFRPSRQHQWV

GPS Selection Guide. EZ Guide 500 & 250 Trimble #

RELEASE NOTES. Trimble VRS 3 Net GNSS Infrastructure Software. Introduction. New features. Enhancements. Supported operating systems and SQL Server

The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use

Implementing Digital Wireless Systems. And an FCC update

Clocks/timers, Time, and GPS

AP Series Autopilot System. AP-202 Data Sheet. March,2015. Chengdu Jouav Automation Tech Co.,L.t.d

CHAPTER 11 SATELLITE NAVIGATION

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14

Guidelines for RTK/RTN GNSS Surveying in Canada

EXCEL Tutorial: How to use EXCEL for Graphs and Calculations.

Modeling a GPS Receiver Using SystemC

Trimble CenterPoint RTX Post-Processing Services FAQs

ACT4077 Driver for MACAIR A3818, A5690, A5232, A4905 & MIL-STD-1553

NJDEP GPS Data Collection Standards For GIS Data Development

Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Analytical Methods: A Statistical Perspective on the ICH Q2A and Q2B Guidelines for Validation of Analytical Methods

Scaling and Biasing Analog Signals

Impact Analysis for Software changes in OpenLAB CDS A.01.04

AIAA Distributed Operation of a Military Research Micro Satellite Using the Internet

Financial Risk Management Exam Sample Questions/Answers

Scatter Plot, Correlation, and Regression on the TI-83/84

Tech Info Document: PIC16F84A LCD Satellite Antenna Tracking Interface

Transcription:

GPS receiver calibration: a tutorial Michael Wouters, NMIA Bruce Warrington, NMIA

Purpose To introduce the draft protocol for calibration of GPS receiver delays and provide sufficient information to: Give participating laboratories confidence in the reported delays Allow laboratories to independently analyse data obtained during a comparison Allow laboratories to use the same protocol to calibrate other receivers they may operate

Outline Introduction to the draft technical protocol for calibration of L1 delays using C/A measurements Sample data analysis Diagnostics and checks An exercise Resources

Reminder: basic GPS signals L1 1575.42 MHz C/A code coarse acquisition P(Y)-code (encrypted) L2 1227.60 MHz P(Y)-code (encrypted) New signals eg L2C a new civilian code available at L2

Reminder: CGGTTS files GGTTS GPS DATA FORMAT VERSION = 01 REV DATE = 1997-11-04 RCVR = NML Topcon Euro-80 L1/L2 CH = 12 IMS = NML Euro-80 L1/L2 Pseudorange differences LAB = NML Australia X = -4648200.298 m Y = +2560484.035 m Z = -3526505.358 m FRAME = ITRF93 COMMENTS = NML Lindfield - Primary system. INT DLY = 46.5 ns CAB DLY = 75.9 ns REF DLY = 68.9 ns REF = 360340 CKSUM = A6 modelled troposphere modelled ionosphere measured ionosphere PRN CL MJD STTIME TRKL ELV AZTH REFSV SRSV REFGPS SRGPS DSG IOE MDTR SMDT MDIO SMDI MSIO SMSI ISG CK hhmmss s.1dg.1dg.1ns.1ps/s.1ns.1ps/s.1ns.1ns.1ps/s.1ns.1ps/s.1ns.1ps/s.1ns 30 FF 53249 002600 780 390 2257-5507621 +7 +5062-24 21 104 129-18 80-8 41 +42 30 3D 24 FF 53249 002600 780 650 1383-534562 -35 +5185-5 5 000 90 +6 60 +4 28 +30 11 F3 10 FF 53249 002600 780 306 334-493148 -19 +5135-13 30 104 159-31 105-13 119 +9 41 4C 6 FF 53249 002600 780 160 2559-4081768 -199 +5087 +57 33 058 292-82 125-11 132 +10 81 AA 5 FF 53249 002600 780 741 2373-463113 +15 +5093 +33 6 141 84-3 57-0 36 +19 6 EC 17 FF 53249 002600 780 792 3303 +1408508 +98 +5156 +11 6 072 83-2 57-0 33-23 7 18 4 FF 53249 002600 780 265 1360 +2749375 +50 +5131-109 29 179 181 +43 104 +15 78 +86 61 8E 9 AC 53249 002600 780 271 3258 +30402 +17 +5202-1 25 047 178 +37 108 +18 77-2 38 1 REFSV is corrected for: geometric delay; modelled ionosphere; modelled troposphere; Sagnac effect; relativistic effect due to the eccentricity of the GPS satellite s orbit; L1-L2 broadcast correction; INT, CAB and REF delays

Draft analysis protocol for multichannel GPS receivers 1. Obtain precise antenna co-ordinates for the travelling receiver. 2. Regenerate CCTF data for the travelling system. 3. Filter the tracks, discarding any which do not meet defined quality criteria. 4. Match the tracks and form REF-SV differences. 5. Linear fits to REF-SV are performed. 6. The raw offset as obtained from the linear fit is corrected for any difference between the delays recorded in the CCTF file and those reported by the host laboratory.

Protocol: antenna coordinates http://www.ga.gov.au/earth-monitoring/geodesy/auspos-online-gps-processing-service.html GGTTS GPS DATA FORMAT VERSION = 01 REV DATE = 1997-11-04 RCVR = NML Topcon Euro-80 L1/L2 CH = 12 IMS = NML Euro-80 L1/L2 Pseudorange differences LAB = NML Australia X = -4648200.298 m Y = +2560484.035 m Z = -3526505.358 m FRAME = ITRF93 Upload RINEX observation files to eg AUSPOS to obtain precise coordinates Update CCTF header/configuration files with new antenna coordinates

Protocol: reprocess raw data CCTF... details may vary raw GPS data TI measurements

Protocol: filtering Discard the track if any of these fields is tagged bad with a value of 999 PRN CL MJD STTIME TRKL ELV AZTH REFSV SRSV REFGPS SRGPS DSG IOE MDTR SMDT MDIO SMDI MSIO SMSI ISG CK hhmmss s.1dg.1dg.1ns.1ps/s.1ns.1ps/s.1ns.1ns.1ps/s.1ns.1ps/s.1ns.1ps/s.1ns 30 FF 53249 002600 780 390 2257-5507621 +7 +5062-24 21 104 129-18 80-8 41 +42 30 3D 24 FF 53249 002600 780 650 1383-534562 -35 +5185-5 5 000 90 +6 60 +4 28 +30 11 F3 10 FF 53249 002600 780 306 334-493148 -19 +5135-13 30 104 159-31 105-13 119 +9 41 4C 6 FF 53249 002600 780 160 2559-4081768 -199 +5087 +57 33 058 292-82 125-11 132 +10 81 AA 5 FF 53249 002600 780 741 2373-463113 +15 +5093 +33 6 141 84-3 57-0 36 +19 6 EC 17 FF 53249 002600 780 792 3303 +1408508 +98 +5156 +11 6 072 83-2 57-0 33-23 7 18 4 FF 53249 002600 780 265 1360 +2749375 +50 +5131-109 29 179 181 +43 104 +15 78 +86 61 8E 9 AC 53249 002600 780 271 3258 +30402 +17 +5202-1 25 047 178 +37 108 +18 77-2 38 1 The track length must be the full 780 s

Protocol: match tracks Host receiver PRN CL MJD STTIME TRKL ELV AZTH REFSV hhmmss s.1dg.1dg.1ns 4 FF 53170 001000 780 148 264 +1767377 5 FF 53170 001000 780 207 3064-347030 17 FF 53170 001000 780 229 3098 +433616 10 FF 53170 001000 780 673 2727-455681 7 FF 53170 001000 780 462 774-5043058 26 FF 53170 001000 780 162 1959-1165558 28 FF 53170 001000 780 225 1543-346695 29 FF 53170 001000 780 275 1848-2251213 4 FF 53170 002600 780 133 329 +1767556 Travelling receiver PRN CL MJD STTIME TRKL ELV AZTH REFSV hhmmss s.1dg.1dg.1ns 7 FF 53170 001000 780 470 788-5043243 26 FF 53170 001000 780 176 1970-1165797 24 FF 53170 001000 780 253 3493-344492 17 FF 53170 001000 780 240 3110 +433448 4 FF 53170 001000 780 160 278 +1767320 28 FF 53170 001000 780 235 1560-346695 5 FF 53170 001000 780 220 3075-347208 29 FF 53170 001000 780 290 1859-2251418 10 FF 53170 001000 780 680 2742-455828 Form the set of differences REF SV ε(t) = [REF SV] A (t) + [MDIO] A (t) [REF SV] B (t) [MDIO] B (t) The modelled ionosphere MDIO is removed since it can add noise

Protocol: linear fits Calculate the mean offset ε(t) by performing a linear regression The linear term accounts for any slow variation in the offset between the two receivers The regression is performed using both an unweighted fit and a fit weighted by the DSG value for a track PRN CL MJD STTIME TRKL ELV AZTH REFSV SRSV REFGPS SRGPS DSG IOE MDTR SMDT MDIO SMDI MSIO SMSI ISG CK hhmmss s.1dg.1dg.1ns.1ps/s.1ns.1ps/s.1ns.1ns.1ps/s.1ns.1ps/s.1ns.1ps/s.1ns 30 FF 53249 002600 780 390 2257-5507621 +7 +5062-24 21 104 129-18 80-8 41 +42 30 3D 24 FF 53249 002600 780 650 1383-534562 -35 +5185-5 5 000 90 +6 60 +4 28 +30 11 F3 10 FF 53249 002600 780 306 334-493148 -19 +5135-13 30 104 159-31 105-13 119 +9 41 4C 6 FF 53249 002600 780 160 2559-4081768 -199 +5087 +57 33 058 292-82 125-11 132 +10 81 AA 5 FF 53249 002600 780 741 2373-463113 +15 +5093 +33 6 141 84-3 57-0 36 +19 6 EC 17 FF 53249 002600 780 792 3303 +1408508 +98 +5156 +11 6 072 83-2 57-0 33-23 7 18 4 FF 53249 002600 780 265 1360 +2749375 +50 +5131-109 29 179 181 +43 104 +15 78 +86 61 8E 9 AC 53249 002600 780 271 3258 +30402 +17 +5202-1 25 047 178 +37 108 +18 77-2 38 1 Analysis of many data sets shows good agreement between the weighted and unweighted fits An unweighted fit is therefore used The offset is evaluated at the midpoint of the data set

Protocol: correct for delays [REF SV] = (REF SV) Raw [INT DLY] [CAB DLY] + [REF DLY] [REF SV] = [REF SV] + δ δ = [INT DLY] Reported + [INT DLY] Internal Correct [REF-SV] for reported delays [CAB DLY] Reported δ X + [CAB DLY] Internal + [REF DLY] Reported [REF DLY] Internal ε(t) = [REF SV] A (t) [REF SV] B (t) = ([REF SV] A (t) + δ A ) ([REF SV] B (t) + δ B ) = ε(t) + δ A δ B Define the corrected [REF-SV] difference ε(t) = ε(t) + δ A δ B Δ Form the mean, corrected [REF-SV] difference ε(t) = ε(t) Δ so that ε(t) =0 [REF SV] A = [REF SV] A (t) [INT DLY] A, True + [INT DLY] A, Reported Correct the reported internal delay [INT DLY] A, True = [INT DLY] A, Reported + Δ

Example: APMP round 2 Travelling receiver Topcon Euro 80 dual-frequency receiver Host receiver (KRISS) Topcon Euro 80 dual-frequency receiver

An aside: cable delays Measurements of APMP antenna cable by host laboratories Method Delay (ns) Network analyzer 159.0 ±1.5 Insertion delay 158.6 ± 0.3 Cable reversal 158.9 ± 2 Insertion delay 159.7 ± 0.03 Network analyzer 158.2 ± 0.1 1 pps delay 159.2 ± 1 delay - <delay> (ns) 1 pps delay 158.2 ± 1 1 pps delay 159.8 ± 1

Example: update antenna coordinates http://www.ga.gov.au/earth-monitoring/geodesy/auspos-online-gps-processing-service.html Select upload method Select RINEX observation files to upload Enter email address Submit

Example: reprocess raw data CCTF... details may vary raw GPS data TI measurements

Example: filter and match tracks REF-SV with modelled ionosphere removed Δ MDIO (offset by -154.5 ns) KRISS: 2403 of 2566 tracks ok APMP: 2381 of 2496 tracks ok 2305 matched tracks from 7 days of data

Example: linear fits 1.1 ns RMS Offset (ns) Slope (ps/day) Unweighted fit -154.6 16 ± 12 DSG weighted fit -154.6 16 ± 9

Example: correct for delays [REF SV] = [REF SV] + δ δ = [INT DLY] Reported + [INT DLY] Internal [CAB DLY] Reported δ X + [CAB DLY] Internal + [REF DLY] Reported [REF DLY] Internal Rx Internal Reported δ KRISS INT DLY = 36.5 ns CAB DLY = 114.8 ns REF DLY = 22.4 ns INT DLY = 36.5 ns CAB DLY = 114.8 ns REF DLY = 22.4 ns δ A = 0 ns APMP INT DLY = 0.0 ns CAB DLY = 0.0 ns REF DLY = 0.0 ns INT DLY = 33.1 ns CAB DLY = 159.8 ns REF DLY = 20.8 ns δ B = -172.1 ns ε(t) = ε(t) + δ A δ B Δ Final result: Δ = -154.6 + 0 + 172.1 = 17.5 ns This is added to the reported delay.

Checking for biases Allan deviation of REF-SVN 10 σ(τ) (10-10 s) 5 τ -1 overlapping 2 τ -1/2 non-overlapping 10 3 10 4 10 5 10 6 τ (s)

More bias checks Travelling receiver: Schedule ( ) and non-schedule ( ) tracks elevation azimuth elevation travelling host matched azimuth

Even more bias checks Plot residuals of the fit to (REF-SVN) as a function of azimuth and elevation

An aside: long term stability INT DLY (ns) 46 44 42 40 APMP receiver INT DLY calibrated against NMIA primary receiver 53000 54000 55000 MJD INT DLY (comparison, ns) MJD Value RMS 53000 42.3 2.0 53092 42.3 2.6 53195 43.6 2.0 53240 44.3 2.1 53284 44.2 2.1 53342 42.7 0.9 53524 43.4 1.9 53539 43.5 1.9 53630 43.7 2.4 53995 43.6 2.0 55006 44.6 2.1

An exercise Calibrate the MSL host receiver using data collected during APMP 2012 Data will be available at ftp://time.nmi.gov.au/apmp2012/exercise Results will be posted later on the ftp server

Resources This presentation... PLUS perl script for reading and comparing CCTF data Mathematica notebook for analysis of CCTF data (with thanks to Bruce Warrington, NMIA) MATLAB files for analysis of CCTF data (with thanks to Magnus Hsu, NMIA) All available from ftp://time.nmi.gov.au/apmp2012/resources

National Measurement Institute Bradfield Road West Lindfield NSW 2070 Australia Phone: +61 2 8467 3501 Email: michael.wouters@measurement.gov.au Web: www.measurement.gov.au/time