X-Ray Free Electron Lasers



Similar documents
X-Ray Free Electron Lasers

Status of the Free Electron Laser

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

F en = mω 0 2 x. We should regard this as a model of the response of an atom, rather than a classical model of the atom itself.

Matter Waves. Home Work Solutions

Examples of Uniform EM Plane Waves

Wake Field Calculations at DESY

Limiting factors in fiber optic transmissions

Comb beam for particle-driven plasma-based accelerators

Damping Wigglers in PETRA III

A Quick primer on synchrotron radiation: How would an MBA source change my x-ray beam. Jonathan Lang Advanced Photon Source

LUNEX5: Toward an advanced FEL project

- thus, the total number of atoms per second that absorb a photon is

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

Interferometric Measurement of Dispersion in Optical Components

Class Notes from: Geotechnical Earthquake Engineering By Steven Kramer, Prentice-Hall. Ground motion parameters

The European X-ray Free-Electron Laser Facility European XFEL Massimo Altarelli.

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko

Acousto-optic modulator

Institute of Accelerator Technologies of Ankara University and TARLA Facility

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Les Accélérateurs Laser Plasma

Instrumenter til E-XFEL. Martin Meedom Nielsen Section for Neutrons and X-rays for Materials Physics

The coherence length of black-body radiation

11th International Computational Accelerator Physics Conference (ICAP) August 19 24, 2012, Rostock-Warnemünde (Germany)

One example: Michelson interferometer

The IR FEL at the Fritz Haber Institute Berlin: A Tool for IR Spectroscopy of Molecules, Clusters, and Solids

Frequency-domain and stochastic model for an articulated wave power device

Self-Mixing Laser Diode Vibrometer with Wide Dynamic Range

Chapter 15, example problems:

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

Controller Design in Frequency Domain

Calculation of Eigenmodes in Superconducting Cavities

VCO Phase noise. Characterizing Phase Noise

Time domain modeling

Advanced Micro Ring Resonator Filter Technology

Slice Emittance Measurements at the SLAC Gun Test Facility*

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

Lab 9: The Acousto-Optic Effect

Synthetic Aperture Radar (SAR)

PHYS 331: Junior Physics Laboratory I Notes on Noise Reduction

7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( )

Appendix D Digital Modulation and GMSK

PROCESS CONTROL SYSTEM DESIGN Process Control System Design LECTURE 2: FREQUENCY DOMAIN ANALYSIS

How To Understand The Physics Of Quantum Chemistry

An octave bandwidth dipole antenna

Testing thermo-acoustic sound generation in water with proton and laser beams

Scalable Frequency Generation from Single Optical Wave

Short overview of TEUFEL-project

THE TESLA TEST FACILITY AS A PROTOTYPE FOR THE GLOBAL ACCELERATOR NETWORK

Installation, Commissioning and Operation of the Master Laser Oscillator at FLASH

Self-Guided Intense Laser Pulse Propagation in Air

Wir schaffen Wissen heute für morgen

Perfect Fluids: From Nano to Tera

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

Introduction to Optical Link Design

Oscillations. Vern Lindberg. June 10, 2010

Study of electron cloud at MI and slip stacking process simulation

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Advanced Photon Source. RF Beam Position Monitor Upgrade Robert M. Lill

DIODE PUMPED CRYSTALASER

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

SpectraTec II. Polarized Multi-Laser Source BLUE SKY RESEARCH WAVELENGTHS. The SpectraTec II

Broadband THz Generation from Photoconductive Antenna

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

Broadband microwave conductance across the T=0 superconductor-resistive magnetic field tuned transition in InO x!

SASE X-Ray Free Electron Laser in DESY --The 4th Generation Light Source. 1. Introduction

Fraunhofer Diffraction

Simulation of Electron Cloud Effects in the PETRA Positron Storage Ring

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff

Calorimetry in particle physics experiments

Quasi-Continuous Wave (CW) UV Laser Xcyte Series

ELECTROMAGNETIC ANALYSIS AND COLD TEST OF A DISTRIBUTED WINDOW FOR A HIGH POWER GYROTRON

Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System

Realization and characterization of a phase locked laser system for coherent spectroscopy of fiber-coupled cesium atoms

HP 70950B OPTICAL SPECTRUM ANALYZER

SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY

Aliasing, Image Sampling and Reconstruction

Laser plasma wakefield acceleration and ICAN

Data-analysis scheme and infrastructure at the X-ray free electron laser facility, SACLA

Fourier Analysis. u m, a n u n = am um, u m

Two-photon FCS Tutorial. Berland Lab Department of Physics Emory University

Antenna A mean for radiating and receiving radio waves Transitional structure between free-space and a guiding device. Application: Radiation

OPTICAL RADIATION SAFETY INFORMATION Application Note

16th International Toki Conference on Advanced Imaging and Plasma Diagnostics

Transcription:

X-Ray Free Electron Lasers Lecture 5. Self-amplified spontaneous emission. FLASH and the European XFEL in Hamburg Igor Zagorodnov Deutsches Elektronen Synchrotron TU Darmstadt, Fachbereich 18 2. June 2014

Contents Motivation Shot noise in electron beam Current modulation from shot noise FEL start up from shot noise Statistical properties of SASE radiation FEL facilities Outlook PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 2

Motivation How to obtain a useful external field? SASE Electrons produce spontaneous undulators radiation A. Kondratenko, E. Saldin, Part. Accelerators 10, 207 (1980) R.Bonifacio et al, Opt. Comm.50, 373 (1984) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 3

Motivation Low-energy undulator test line (LEUTL), USA 530 nm PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 4

Motivation TESLA Test Facility (TTF), Hamburg PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 5

Shot-noise in electron beam Fluctuations of the electron beam current density serve as the input signal in the SAS EFEL P( t ) Laser pulse P( ω) Spectrum ω ~ ρω t[ a. u] ω ω PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 6

Shot-noise in electron beam The electron beam current (at the undulator entrance) consists from electrons randomly arriving at time t k N I ( t) = e δ ( t tk ) k= 1 The electron beam averaged over an ensemble of bunches I ( t) enf( t) The electron beam profile function can be, for example, 1 Fg ( t) = e 2πσ T 2 t 2σ 2 T χ 1 F ( t) = ( t) T χ r [0, T ] [0, T ] 1, 0 t T, ( t) = 0, otherwise PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 7

Shot-noise in electron beam In frequency domain N N i ω t i ω t i t k k= 1 k= 1 I ( ω) = I ( t) e dω = e e δ ( t t ) dω = e e ω k It follows from central limit theorem that the real and imaginary parts are normally distributed x 2σ 2 1 2 p ( x) = e x, x = Re I ( ω), or x = Im I ( ω) 2πσ x The probability density distribution of spectral power x 1 p ( x) = e λ, λ = x, x = I ( ω) λ 2 PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 8

Shot-noise in electron beam First-order correlation function * 2 N N i ω t i ω ' t I ( ω) I ( ω ') = e e k n = N k= 1n= 1 N i ω ω t iωt iω ' t 2 ( ') 2 = e e + e e e k= 1 k n k k n iωt 1 iωt iωt F( ω) = F( t) e dω = δ ( t t ) k k e dω = e N N k= 1 * 2 2 * I ( ω) I ( ω ') = e NF( ω ω ') + e N ( N 1) F( ω) F ( ω ') PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 9

Shot-noise in electron beam First-order correlation function * 2 2 * I ( ω) I ( ω ') = e NF( ω ω ') + e N( N 1) F( ω) F ( ω ') Fg ( ω) 2 2 T ω σ 2 = e F ( ω) = sinc( 0.5ωT ) = * r NF( ω) F ( ω ') << 1, forωσ >> 1 sin 0.5ωT ( ) 0.5ωT ( ) Averaged spectral current density ( white noise ) T * 2 I ( ω) I ( ω ') e NF( ω ω ') I ( ω) 2 2 e N PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 10

Current modulation from shot-noise We consider a rectangular averaged current 1 Fr ( t) ( ) T χ I ( t) = enf ( t) χ = [0, T ] t [0, T ] r ( t) 1, 0 t T, = 0, otherwise F r ( ω) = sinc 0.5ωT ( ) I ( ω) = enf ( ω) = ensinc 0.5ωT r ( ) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 11

Current modulation from shot-noise Spectral power density of averaged current 2 2 1 1 1 S( ω) dω = I ( t) dt = I ( ω) dω = T T π 0 0 0 = 1 1 T π 0 F r ( ω) T 2 Parseval's theorem dω 2 I ( ω) ( ) 2 S ω = ~ sinc ( 0.5ωT ) 0, for Tω >> 1 πt PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 12

Current modulation from shot-noise We are interested in an averaged spectral power density of shot noise, which by analogy can be written as S shot ( ω) I ( ω) 2 2 e N ei = = 0 πt πt π The amplification takes place in bandwidth ω and we can replace the power of the current in this bandwidth by power of the equivalent current with fluctuations at ω at amplitude I 2 rms ɶj ( ω ) = S ( ω ) ω 1 shot 1 I ω S ( ω ) ω I ( ω) e ω rms ( 1 ) shot 1 1,shot = = j0 A 0 b Ab I π 2 2 e N PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 13

FEL start up from shot-noise High-gain FEL model with space-charge d n 2 ku n, n 1,2,... N dz ψ = η = dη ek[ JJ ] n iψ == R( Eɶ n ) z n 2 2 2 xe 2 e γ r γ r e µ ck[ JJ ] ee ( ψ ) dz m c m c d E ɶ 0 x( z ) = ɶ j z1 dz 4γ r N 2 i m z1 = z0 N ψ m= 1 N jz0 z ( ψ n) = π sgn ψ n ψ m ψ n ψ m Nωε 0 m= 1 ɶj j e E ( ) ( ) ( ) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 14

FEL start up from shot-noise Eɶ x Eɶ 2 2 ˆ x E iη ɶ + + ˆ η x ieɶ 0 3 2 x = Γ Γ Γ η ˆ η = ρ 3 ɶ j ( ) z x( η, ) = 0 0 j ( η) η = γ j= 1 0 2ω0 E z c e α η γ γ ω ω 1 1 1 c 1 Eɶ x(0) α1 α2 α3 c2 = Eɶ x (0) 2 2 2 α c 1 α2 α3 3 Eɶ x (0) c Eɶ (0) 1 x 1 c2 = A Eɶ x (0) c 3 Eɶ x (0) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 15

FEL start up from shot-noise µ ck[ JJ ] ɶ 0 x (0) = ɶ 0 jz1(0) Ex = 4γ r E ɶ µ ck[ JJ ] (0) ɶj z 1(0) 4γ d ɶj j e 2 k, n 1, 2,... N N 2 i n z1 = z0 N ψ n u n n= 1 dz ψ = η = N N ɶ 2 iψ 2 n iψ j 1 0 2 n z = ij z e ψ n = kuij z0 e ηn N n= 1 N n= 1 r ηn(0) η, n = 1, 2,... N ɶj (0) = i2 k ηɶj (0) z1 u z1 ck[ JJ ] Eɶ µ (0) i2 k ɶj (0) 0 x = uη z1 4γ r PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 16

FEL start up from shot-noise Start up from current modulation c (0) 1 Eɶ x 0 1 1 µ 0cK[ JJ ] c2 = A Eɶ x (0) = A 1 ɶ jz1(0) 4γ r c 3 E (0) i2k x uη ɶ Start up from seed field c1 c 2 c 3 Eɶ x (0) Ein 1 1 = A Eɶ x (0) = A 0 Eɶ (0) 0 x PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 17

FEL start up from shot-noise On resonance energy γ γ Eɶ η = r x 0 ieɶ = 0 3 x Γ γ r ɶ z x = Ae α α 3 = iγ 3 E ( i ) α 1 = + 3 Γ 2 ( i ) α 2 α 2 = 3 Γ 2 Imα α 1 Reα Γ α 3 = iγ Eɶ x 3 = j= 1 c e α j j z A 1 1 1 1 1 * 1 1 2 3 3 3 α α α = A = 2 2 2 α1 α2 α3 * PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 18

FEL start up from shot-noise Start up from seed field Start up from current modulation c1 c 2 c 3 Ein 1 1 Ein = A 0 = 1 3 0 1 * c1 0 α1 1 µ 0cK[ JJ ] 1 µ 0cK[ JJ ] * c2 1 jz1(0) jz1(0) α2 = A ɶ = ɶ 4γ r 3 4γ r c * 3 0 α3 µ ck[ JJ ] ck[ JJ ] e E ɶ µ ω j j γ γ π 0 0 in, shot = z1, shot (0) = 0 4 4 0 rγ rγ I ω 2ρω 1 PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 19

FEL start up from shot-noise PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 20

Statistical properties of SASE radiation Interference Coherence Coherence is a property of waves that enables interference. Temporal coherence is the measure of correlation between the wave and itself delayed. it characterizes how well a wave can interfere with itself at a different time. The delay over which the phase or amplitude wanders by a significant amount is defined as the coherence time PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 21

Statistical properties of SASE radiation Coherence time The time-averaged intensity (blue) detected at the output of an interferometer plotted as a function of delay. The interference envelope gives the degree of coherence τ coh 1 1 ~ ~ ω ω ρ PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 22 1

Statistical properties of SASE radiation Coherence length Typical length of one spike l coh N = c τ = c l c coh ~ I ce c ρω 1 Number of cooperative electrons Number of spikes (longitudinal modes) P [GW] l coh Laserpuls s[µm] Lb 1 1 M = = : l τ T coh c b PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 23

Statistical properties of SASE radiation Spikes in spectrum S( ω ) Spectrum ( ) S ω M = 6 M = 2.6 λ ~ 2ρλ 1 long bunch (~100fs) V. Ayvazyan et al, Eur. Phys.Journ. D 20, 149 (2002) short bunch (~40fs) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 24

Statistical properties of SASE radiation Fluctuations of SASE pulse energy PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 25

Statistical properties of SASE radiation Fluctuations of SASE pulse energy (linear regime) M M 1 M u pm ( u) = e Γ( M ) Mu u = U U rad rad Γ = z 1 t ( z) t e dt 0 PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 26

Statistical properties of SASE radiation Fluctuations of SASE pulse energy (after saturation, 13 nm, FLASH) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 27

Statistical properties of SASE radiation Saturation length (SASE) P ρw b 2 1.5 SASE with N c 1 0.5 0 0 10 20 30 40 L sat L g = 3 3 + ln N c L electrons on coherence length z g PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 28

Statistical properties of SASE radiation Coherence Longitudinal profile with large statical fluctuations radiation electrons Transverse profile is coherent PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 29

FEL facilities TESLA Test Facility ( until 2002) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 30

FEL facilities TESLA Test Facility ( until 2002) Three undulator modules. Total length 15m PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 31

FEL facilities TESLA Test Facility ( until 2002) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 32

FEL facilities TESLA Test Facility ( until 2002) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 33

FEL facilities TESLA Test Facility II ( 2002-2006) From 2003 on, TTF1 was expanded to TTF2, an FEL user facility for the spectral range of soft x-rays, including a new tunnel and a new experimental hall (in the foreground). In April 2006, the facility was renamed FLASH: FEL in Hamburg PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 34

FEL facilities FLASH ( from 2006) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 35

FEL facilities FLASH ( from 2005) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 36

FEL facilities FLASH ( from 2005) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 37

Phase space linearization rollover compression vs. linearized compression Q=0.5 nc ~ 1.5 ka Q=1 nc ~2.5 ka PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 38

Phase space linearization FLASH In accelerator modules the energy of the electrons is increased from 5 MeV (gun) to 1200 MeV (undulator). PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 39

Phase space linearization FLASH In compressors the peak current I is increased from 1.5-50 A (gun) to 2500 A (undulator). PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 40

Phase space linearization FLASH FEL radiation parameters Wavelength Range 4.1-45 nm Average Single Pulse Energy 10-400 µj Pulse Duration (FWHM) Peak Power (from av.) Average Power (5000 pulses/sec) 50-200 fs 1-3 GW 400 mw Spectral Width (FWHM) 0.7-2 % Average Brilliance 10^17-10^21 photons/s/mrad2/mm2/0.1%bw PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 41

FEL facilities FLASH 2 ( from 2013) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 42

FEL facilities FLASH 2 ( from 2013) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 43

FEL facilities FLASH 2 Photon Beam HHG SASE Wavelength range (fundamental) Average single pulse energy Pulse duration (FWHM) Peak power (from av.) Spectral width (FWHM) Peak Brilliance*10-40 nm 10-40 nm 4-80 nm 1 50 µj 1 500 µj <15 fs 10 200 fs 1 5 GW 1 5 GW 0.1 1 % 0.5 1.5 % 10 28-10 31 10 28-10 31 PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 44

FEL facilities LCLS E= 3.5-14 GeV Intensity distrubution for λ= 0.14 nm radiation power ~ GW pulse length ~30 fs G.Gutt et al, PRL, 108, 024801 (2012) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 45

FEL facilities LCLS λ=1.4 P. Emma et al, Nature Photon. 4, 641(2010) radiation power ~ GW Pulse length ~30 fs G.Gutt et al, PRL, 108, 024801 (2012) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 46

FEL facilities European XFEL - kürzeste Wellenlänge - größte Brillanz PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 47

FEL facilities European XFEL PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 48

FEL facilities European XFEL PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 49

FEL facilities European XFEL PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 50

FEL facilities European XFEL PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 51

FEL facilities European XFEL PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 52

FEL facilities European XFEL PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 53

FEL facilities European XFEL Parameter Value SASE 1 SASE 2 SASE 3 photon energy [kev] 12.4-4.0 12.4-3.1 3.1-0.2 wavelength [nm] 0.1-0.31 0.1-0.4 0.4-6.4 peak power [GW] 24 22 100-135 average power [W] 72 66 300-800 photon beam size (FWHM) [µm] 110 110 65-95 photon beam divergence (FWHM) [µrad] 0.8 0.8 3-27 bandwidth (FWHM) [%] 0.09 0.08 0.28-0.73 coherence time [fs] 0.3 0.3 0.3-1.9 pulse duration (FWHM) [fs] 100 100 100 average brillance [x10^25, photons/(s mrad^2 mm^2 0.1% bandwidth)] 1.6 1.6 0.52-0.03 PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 54

FEL facilities Linac Coherent Light Source (LCLS) Spring-8 Angstrom Compact Laser (SACLA) European XFEL Standort USA Japan Deutschland Start der Inbetriebnahme Beschleuniger Technologie Anzahl der Lichtblitze pro Sekunde Minimale Wellenlänge 2009 2011 2015 normalleitend normalleitend supraleitend 120 60 27 000 0.15 nm 0.1 nm 0.05 nm Länge 1500 m 750 m 3400 m PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 55

Outlook Methods for improving of coherence self- seeding Monochromator high harmonics of laser light PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 56

Outlook Table-Top-FEL λ=740 nm spontaneous undulator radiation with a laser plasma accelerator H.-P. Schlenvoigt et al, Nature Physics 4, 130 (2008) λ=17 nm M.Fuchs et al, Nature Physics 5, 826(2009) PD Dr. Igor Zagorodnov X-Ray Free Electron Lasers. Lecture 5 2. June 2014 Seite 57