Aliasing, Image Sampling and Reconstruction
|
|
|
- Gerald Aldous Boyd
- 9 years ago
- Views:
Transcription
1 Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is a SAMPLE Many of the slides are taken from Thomas Funkhouser course slides and the rest from various sources over the web Image Sampling An image is a D rectilinear array of samples o Quantization due to limited intensity resolution o Sampling due to limited spatial and temporal resolution Imaging devices area sample. In video camera the CCD array is an area integral over a pixel. The eye: photoreceptors Intensity, I Pixels are infinitely small point samples J. Liang, D. R. Williams and D. Miller, "Supernormal vision and high- resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 4, (997) Sampling and Reconstruction Reconstruction artefact Figure 9.9 FvDFH Slide Rosalee Nerheim-Wolfe
2 Sampling and Reconstruction Sampling Reconstruction Sources of Error Intensity quantization o Not enough intensity resolution Spatial aliasing o Not enough spatial resolution Temporal aliasing o Not enough temporal resolution E = ( I( x, y) P( x, y) ) ( x, y) Aliasing (in general) In general: o Artifacts due to under-sampling or poor reconstruction Specifically, in graphics: o Spatial aliasing o Temporal aliasing Under-sampling Figure 4.7 FvDFH Sampling & Aliasing Real world is continuous The computer world is discrete Mapping a continuous function to a discrete one is called sampling Mapping a continuous variable to a discrete one is called quantizaion To represent or render an image using a computer, we must both sample and quantize Spatial Aliasing Artifacts due to limited spatial resolution Can be a serious problem Slide Rosalee Nerheim-Wolfe
3 Spatial Aliasing Artifacts due to limited spatial resolution Temporal Aliasing Artifacts due to limited temporal resolution o Strobing o Flickering Jaggies Temporal Aliasing Artifacts due to limited temporal resolution o Strobing o Flickering Temporal Aliasing Artifacts due to limited temporal resolution o Strobing o Flickering Temporal Aliasing Artifacts due to limited temporal resolution o Strobing o Flickering Staircasing or Jaggies The raster aliasing effect removal is called antialiasing Images by Don Mitchell 3
4 Nearest neighbor sampling Filtered Texture: Blurring doesn t work well. Unweighted Area Sampling Removed the jaggies, but also all the detail! Reduction in resolution Weighted Area Sampling with Overlap 4
5 Sampling and Reconstruction Antialiasing Sample at higher rate o Not always possible o Doesn t always solve problem Pre-filter to form bandlimited signal o Form bandlimited function (low-pass filter) o Trades aliasing for blurring Must consider sampling theory! Figure 9.9 FvDFH How is antialiasing done? We need some mathematical tools to o analyse the situation. o find an optimum solution. Tools we will use : o Fourier transform. o Convolution theory. o Sampling theory. Spectral Analysis / Fourier Transforms Spectral representation treats the function as a weighted sum of sines and cosines Every function has two representations o Spatial (time) domain - normal representation o Frequency domain - spectral representation The Fourier transform converts between the spatial and frequency domains. We need to understand the behavior of the signal in frequency domain Spectral Analysis / Fourier Transforms Note the Euler formula : Spatial domain e it iωx = f ( x e dx F( ω ) ) = cos t + i sin t i f x = Π F ω e ω x ( ) ( ) dω Frequency domain. Fourier transform conventions. We will use the optical convention. F(ω) f(x) The Fourier transform converts between the spatial and frequency domain. Real and imaginary components. Forward and reverse transforms very similar. Note : spectral transform has origin in centre, and is symmetrical Low frequencies in centre, High frequencies at the edge. Note symmetry. 5
6 Sampling Theory How many samples are required to represent a given signal without loss of information? What signals can be reconstructed without loss for a given sampling rate? Spectral Analysis Spatial domain: o Function: f(x) o Filtering: convolution Frequency domain: o Function: F(u) o Filtering: multiplication Any signal can be written as a sum of periodic functions. -D Fourier Transform F( u) = I( x)exp( jux) dx π Makes any signal I(x) out of sine I( x) = F( u)exp( jux) du π waves j = Converts spatial domain into exp( jux) = cosux j sin ux frequency domain a + bj = a + b arg a + bj = arctan( b / a) Yields spectrum F(u) of frequencies u Spatial Frequency o u is actually complex p /p I F o Only worried about amplitude: u x u 0 DC term: F(0) = mean I(x) Symmetry: F(-u) = F(u) Fourier Transform Figure.6 Wolberg Fourier Transform Sampling Theorem A signal can be reconstructed from its samples, if the original signal has no frequencies above / the sampling frequency - Shannon The minimum sampling rate for bandlimited function is called Nyquist rate Figure.5 Wolberg A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth. 6
7 Convolution Convolution of two functions (= filtering): g ( x) = f ( x) h( x) = f ( λ) h( x λ) dλ Antialiasing in Image Processing General Strategy o Pre-filter transformed image via convolution with low-pass filter to form bandlimited signal Rationale o Prefer blurring over aliasing Convolution theorem o Convolution in frequency domain is same as multiplication in spatial domain, and vice-versa Filtering in the frequency domain Low and High Pass Filtering. Image Fourier Transform Frequency domain Filter Fourier Transform Image Low pass Lowpass filter Highpass filter High pass Low-pass Filtering Low-pass Filtering 7
8 Product and Convolution Product of two functions is just their product at each point Convolution is the sum of products of one function at a point and the other function at all other points E.g. Convolution of square wave with square wave yields triangle wave Convolution in spatial domain is product in frequency domain, and vice versa f*g FG fg F*G ( gh )( x) = g( x) h( x) ( g * h)( x) = g( s) h( x s) ds Filtering in the space domain Blurring or averaging pixels together. Increment x g(y) f(x) Integrate over y h(x) h ( x) = f g = f ( x) g( x y) dy Calculate integral of one function, f(x) by a sliding second function g(x-y). Known as Convolution. Low-pass Filtering Sampling Functions Sampling takes measurements of a continuous function at discrete points Equivalent to product of continuous function and sampling function Uses a sampling function s(x) Sampling function is a collection of spikes Frequency of spikes corresponds to their resolution Frequency is inversely proportional to the distance between spikes Fourier domain also spikes Distance between spikes is the frequency s(x) S(u) Spatial Domain Frequency Domain /p p Sampling, the Comb function How can we represent sampling? Multiplication of the sample with a regular train of delta functions. 8
9 Sampling: Frequency domain. Reconstruction in frequency domain The Fourier transform of regular comb of delta functions is a comb. Spacing is inversely proportional Multiple solutions at regularly increasing values of f Original signal. Bandpass filter due to regular array of pixels. Undersampling leads to aliasing. Sampling I(x) F(u) s(x) (Is)(x) p /p S(u) (F*S)(u) Samples are too close together in f. Spurious components : Cause of aliasing. s (x) (Is )(x) S (u) (F*S )(u) Aliasing, can t retrieve original signal Shannon s Sampling Theorem The Sampling Theorem. Sampling frequency needs to be at least twice the highest signal frequency Otherwise the first replica interferes with the original spectrum Sampling below this Nyquist limit leads to aliasing Conceptually, need one sample for each peak and another for each valley max {u : F(u) > ε} p > max u This result is known as the Sampling Theorem and is due to Claude Shannon who first discovered it in 949 A signal can be reconstructed from its samples without loss of information, if the original signal has no frequencies above / the sampling frequency For a given bandlimited function, the rate at which it must be sampled is called the Nyquist Frequency 9
10 Prefiltering Spatial Domain Frequency Domain Prefiltering Can Prevent Aliasing Aliases occur at high frequencies Sharp features, edges Fences, stripes, checkerboards Prefiltering removes the high frequency components of an image before it is sampled Box filter (in frequency domain) is an ideal low pass filter Preserves low frequencies Zeros high frequencies Inverse Fourier transform of a box function is a sinc function sinc(x) = sin(x)/x Convolution with a sinc function removes high frequencies sinc(x) I(x) (I*sinc)(x) DC Term box(u) F(u) (F box)(u) s (x) (Is )(x) I = (I*sinc) (I s )(x) (sinc)*(i s )(x) S (u) (F*S )(u) F = (F box) (F *S )(u) (box)(f *S )(u) Aliasing in the space domain. Sampling at the Nyquist Frequency Original signal Aliased result Summary : Aliasing is the appearance of spurious signals when the frequency of the input signal goes above the Nyquist limit. Sampling Below the Nyquist Frequency How do we remove aliasing? Perfect solution - prefilter with perfect bandpass filter. No aliasing. Perfect bandpass Aliased example 0
11 How do we remove aliasing? How do we remove aliasing? Perfect solution - prefilter with perfect bandpass filter. o Difficult/Impossible to do in frequency domain. Convolve with sinc function in space domain o Optimal filter - better than area sampling. o Sinc function is infinite!! o Computationally expensive. Cheaper solution : take multiple samples for each pixel and average them together supersampling. Can weight them towards the centre weighted average sampling Stochastic sampling Removing aliasing is called antialiasing The Sinc function. square / iωx iωx ( x) e dx = e dx / Recall Euler s formula : e it = cos t + i sin t iωx e = iωx iω iω sin ω e e = = iω + iω ω = sinc f
12 The Sinc Filter Common Filters Sample-and-Hold Image Reconstruction Re-create continuous image from samples o Example: cathode ray tube Image is reconstructed by displaying pixels with finite area (Gaussian) End Adjusting Brightness Simply scale pixel components o Must clamp to range (e.g., 0 to 55) Original Brighter
13 Adjusting Contrast Compute mean luminance for all pixels o luminance = 0.30*r *g + 0.*b Image Processing Consider reducing the image resolution Scale deviation from o Must clamp to range (e.g., 0 to 55) for each pixel component Original More Contrast Original image /4 resolution Image Processing Image processing is a resampling problem Resampling Thou shalt avoid aliasing! Image Processing Quantization o Uniform Quantization o Random dither o Ordered dither o Floyd-Steinberg dither Pixel operations o Add random noise o Add luminance o Add contrast o Add saturation Filtering o Blur o Detect edges Warping o Scale o Rotate o Warps Combining o Morphs o Composite Adjust Blurriness Convolve with a filter whose entries sum to one o Each pixel becomes a weighted average of its neighbors Edge Detection Convolve with a filter that finds differences between neighbor pixels Original Blur Original Detect edges 6 Filter = Filter = + 8 3
14 Image Processing Quantization o Uniform Quantization o Random dither o Ordered dither o Floyd-Steinberg dither Pixel operations o Add random noise o Add luminance o Add contrast o Add saturation Filtering o Blur o Detect edges Warping o Scale o Rotate o Warps Combining o Morphs o Composite Scaling Resample with triangle or Gaussian filter More on this next lecture! Original /4X resolution 4X resolution Summary Image processing is a resampling problem o Avoid aliasing o Use filtering Triangle Filter Convolution with triangle filter Convolution with Gaussian filter Figure.4 Wolberg 4
The continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201
Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem
Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs
Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in
CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging
Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through
SIGNAL PROCESSING & SIMULATION NEWSLETTER
1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty
How To Understand The Nyquist Sampling Theorem
Nyquist Sampling Theorem By: Arnold Evia Table of Contents What is the Nyquist Sampling Theorem? Bandwidth Sampling Impulse Response Train Fourier Transform of Impulse Response Train Sampling in the Fourier
Computational Foundations of Cognitive Science
Computational Foundations of Cognitive Science Lecture 15: Convolutions and Kernels Frank Keller School of Informatics University of Edinburgh [email protected] February 23, 2010 Frank Keller Computational
Lecture 14. Point Spread Function (PSF)
Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect
Introduction to Digital Audio
Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.
Time series analysis Matlab tutorial. Joachim Gross
Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,
SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS
SIGNAL PROCESSING FOR EFFECTIVE VIBRATION ANALYSIS Dennis H. Shreve IRD Mechanalysis, Inc Columbus, Ohio November 1995 ABSTRACT Effective vibration analysis first begins with acquiring an accurate time-varying
Linear Filtering Part II
Linear Filtering Part II Selim Aksoy Department of Computer Engineering Bilkent University [email protected] Fourier theory Jean Baptiste Joseph Fourier had a crazy idea: Any periodic function can
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya ([email protected]) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
Specular reflection. Dielectrics and Distribution in Ray Tracing. Snell s Law. Ray tracing dielectrics
Specular reflection Dielectrics and Distribution in Ray Tracing CS 465 Lecture 22 Smooth surfaces of pure materials have ideal specular reflection (said this before) Metals (conductors) and dielectrics
5 Signal Design for Bandlimited Channels
225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g
SGN-1158 Introduction to Signal Processing Test. Solutions
SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire
INTRODUCTION TO RENDERING TECHNIQUES
INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature
Analog and Digital Signals, Time and Frequency Representation of Signals
1 Analog and Digital Signals, Time and Frequency Representation of Signals Required reading: Garcia 3.1, 3.2 CSE 3213, Fall 2010 Instructor: N. Vlajic 2 Data vs. Signal Analog vs. Digital Analog Signals
Analog Representations of Sound
Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone
ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1
WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's
Analysis/resynthesis with the short time Fourier transform
Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis
Convolution, Correlation, & Fourier Transforms. James R. Graham 10/25/2005
Convolution, Correlation, & Fourier Transforms James R. Graham 10/25/2005 Introduction A large class of signal processing techniques fall under the category of Fourier transform methods These methods fall
Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal.
3.3 Analog to Digital Conversion (ADC) Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 1 3.3 Analog to Digital Conversion (ADC) WCB/McGraw-Hill
Superresolution images reconstructed from aliased images
Superresolution images reconstructed from aliased images Patrick Vandewalle, Sabine Süsstrunk and Martin Vetterli LCAV - School of Computer and Communication Sciences Ecole Polytechnique Fédérale de Lausanne
Design of FIR Filters
Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 68 FIR as
CHAPTER 6 Frequency Response, Bode Plots, and Resonance
ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal
The Fourier Analysis Tool in Microsoft Excel
The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier
Introduction to Complex Fourier Series
Introduction to Complex Fourier Series Nathan Pflueger 1 December 2014 Fourier series come in two flavors. What we have studied so far are called real Fourier series: these decompose a given periodic function
Short-time FFT, Multi-taper analysis & Filtering in SPM12
Short-time FFT, Multi-taper analysis & Filtering in SPM12 Computational Psychiatry Seminar, FS 2015 Daniel Renz, Translational Neuromodeling Unit, ETHZ & UZH 20.03.2015 Overview Refresher Short-time Fourier
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
1995 Mixed-Signal Products SLAA013
Application Report 995 Mixed-Signal Products SLAA03 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service
jorge s. marques image processing
image processing images images: what are they? what is shown in this image? What is this? what is an image images describe the evolution of physical variables (intensity, color, reflectance, condutivity)
T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
Improving A D Converter Performance Using Dither
Improving A D Converter Performance Using Dither 1 0 INTRODUCTION Many analog-to-digital converter applications require low distortion for a very wide dynamic range of signals Unfortunately the distortion
Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University
Digital Imaging and Multimedia Filters Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines What are Filters Linear Filters Convolution operation Properties of Linear Filters Application
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
Frequency Response of FIR Filters
Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input
To determine vertical angular frequency, we need to express vertical viewing angle in terms of and. 2tan. (degree). (1 pt)
Polytechnic University, Dept. Electrical and Computer Engineering EL6123 --- Video Processing, S12 (Prof. Yao Wang) Solution to Midterm Exam Closed Book, 1 sheet of notes (double sided) allowed 1. (5 pt)
Admin stuff. 4 Image Pyramids. Spatial Domain. Projects. Fourier domain 2/26/2008. Fourier as a change of basis
Admin stuff 4 Image Pyramids Change of office hours on Wed 4 th April Mon 3 st March 9.3.3pm (right after class) Change of time/date t of last class Currently Mon 5 th May What about Thursday 8 th May?
DIGITAL IMAGE PROCESSING AND ANALYSIS
DIGITAL IMAGE PROCESSING AND ANALYSIS Human and Computer Vision Applications with CVIPtools SECOND EDITION SCOTT E UMBAUGH Uffi\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC Press is
Composite Video Separation Techniques
TM Composite Video Separation Techniques Application Note October 1996 AN9644 Author: Stephen G. LaJeunesse Introduction The most fundamental job of a video decoder is to separate the color from the black
ADC and DAC. Quantization
CHAPTER ADC and DAC Most of the signals directly encountered in science and engineering are continuous: light intensity that changes with distance; voltage that varies over time; a chemical reaction rate
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain)
Application of Fourier Transform to PDE (I) Fourier Sine Transform (application to PDEs defined on a semi-infinite domain) The Fourier Sine Transform pair are F. T. : U = 2/ u x sin x dx, denoted as U
4 Sums of Random Variables
Sums of a Random Variables 47 4 Sums of Random Variables Many of the variables dealt with in physics can be expressed as a sum of other variables; often the components of the sum are statistically independent.
(2) (3) (4) (5) 3 J. M. Whittaker, Interpolatory Function Theory, Cambridge Tracts
Communication in the Presence of Noise CLAUDE E. SHANNON, MEMBER, IRE Classic Paper A method is developed for representing any communication system geometrically. Messages and the corresponding signals
Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:
Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional
7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( )
34 7. Beats 7.1. What beats are. Musicians tune their instruments using beats. Beats occur when two very nearby pitches are sounded simultaneously. We ll make a mathematical study of this effect, using
CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC
CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC 1. INTRODUCTION The CBS Records CD-1 Test Disc is a highly accurate signal source specifically designed for those interested in making
Lectures 6&7: Image Enhancement
Lectures 6&7: Image Enhancement Leena Ikonen Pattern Recognition (MVPR) Lappeenranta University of Technology (LUT) [email protected] http://www.it.lut.fi/ip/research/mvpr/ 1 Content Background Spatial
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Digital Transmission of Analog Data: PCM and Delta Modulation
Digital Transmission of Analog Data: PCM and Delta Modulation Required reading: Garcia 3.3.2 and 3.3.3 CSE 323, Fall 200 Instructor: N. Vlajic Digital Transmission of Analog Data 2 Digitization process
The Calculation of G rms
The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving
Lecture 7 ELE 301: Signals and Systems
Lecture 7 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 22 Introduction to Fourier Transforms Fourier transform as a limit
Introduction to IQ-demodulation of RF-data
Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced
Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics
Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Dimitri Van De Ville Ecole Polytechnique Fédérale de Lausanne Biomedical Imaging Group [email protected]
Chapter 8 - Power Density Spectrum
EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is
Appendix D Digital Modulation and GMSK
D1 Appendix D Digital Modulation and GMSK A brief introduction to digital modulation schemes is given, showing the logical development of GMSK from simpler schemes. GMSK is of interest since it is used
High Performance GPU-based Preprocessing for Time-of-Flight Imaging in Medical Applications
High Performance GPU-based Preprocessing for Time-of-Flight Imaging in Medical Applications Jakob Wasza 1, Sebastian Bauer 1, Joachim Hornegger 1,2 1 Pattern Recognition Lab, Friedrich-Alexander University
Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf. Flow Visualization. Image-Based Methods (integration-based)
Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf Flow Visualization Image-Based Methods (integration-based) Spot Noise (Jarke van Wijk, Siggraph 1991) Flow Visualization:
Dithering in Analog-to-digital Conversion
Application Note 1. Introduction 2. What is Dither High-speed ADCs today offer higher dynamic performances and every effort is made to push these state-of-the art performances through design improvements
Function Guide for the Fourier Transformation Package SPIRE-UOL-DOC-002496
Function Guide for the Fourier Transformation Package SPIRE-UOL-DOC-002496 Prepared by: Peter Davis (University of Lethbridge) [email protected] Andres Rebolledo (University of Lethbridge) [email protected]
FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW
FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Wei Lin Department of Biomedical Engineering Stony Brook University Instructor s Portion Summary This experiment requires the student to
FFT Algorithms. Chapter 6. Contents 6.1
Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT
Computational Optical Imaging - Optique Numerique. -- Deconvolution --
Computational Optical Imaging - Optique Numerique -- Deconvolution -- Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method
High Quality Image Magnification using Cross-Scale Self-Similarity
High Quality Image Magnification using Cross-Scale Self-Similarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, Rolf-Rainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D-21079 Hamburg
Understand the effects of clock jitter and phase noise on sampled systems A s higher resolution data converters that can
designfeature By Brad Brannon, Analog Devices Inc MUCH OF YOUR SYSTEM S PERFORMANCE DEPENDS ON JITTER SPECIFICATIONS, SO CAREFUL ASSESSMENT IS CRITICAL. Understand the effects of clock jitter and phase
DDS. 16-bit Direct Digital Synthesizer / Periodic waveform generator Rev. 1.4. Key Design Features. Block Diagram. Generic Parameters.
Key Design Features Block Diagram Synthesizable, technology independent VHDL IP Core 16-bit signed output samples 32-bit phase accumulator (tuning word) 32-bit phase shift feature Phase resolution of 2π/2
Lecture 8 ELE 301: Signals and Systems
Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
Lab 1. The Fourier Transform
Lab 1. The Fourier Transform Introduction In the Communication Labs you will be given the opportunity to apply the theory learned in Communication Systems. Since this is your first time to work in the
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
Acceleration levels of dropped objects
Acceleration levels of dropped objects cmyk Acceleration levels of dropped objects Introduction his paper is intended to provide an overview of drop shock testing, which is defined as the acceleration
PHYS 39a Lab 3: Microscope Optics
PHYS 39a Lab 3: Microscope Optics Trevor Kafka December 15, 2014 Abstract In this lab task, we sought to use critical illumination and Köhler illumination techniques to view the image of a 1000 lines-per-inch
Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)
Wavelet analysis In the case of Fourier series, the orthonormal basis is generated by integral dilation of a single function e jx Every 2π-periodic square-integrable function is generated by a superposition
Fundamentals of modern UV-visible spectroscopy. Presentation Materials
Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition
Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image Pre-Processing - Pixel Brightness Transformation - Geometric Transformation - Image Denoising 1 1. Image Pre-Processing
Resolution Enhancement of images with Interpolation and DWT-SWT Wavelet Domain Components
Resolution Enhancement of images with Interpolation and DWT-SWT Wavelet Domain Components Mr. G.M. Khaire 1, Prof. R.P.Shelkikar 2 1 PG Student, college of engg, Osmanabad. 2 Associate Professor, college
Performance Verification of Super-Resolution Image Reconstruction
Performance Verification of Super-Resolution Image Reconstruction Masaki Sugie Department of Information Science, Kogakuin University Tokyo, Japan Email: [email protected] Seiichi Gohshi Department
PHYS 331: Junior Physics Laboratory I Notes on Noise Reduction
PHYS 331: Junior Physics Laboratory I Notes on Noise Reduction When setting out to make a measurement one often finds that the signal, the quantity we want to see, is masked by noise, which is anything
Signal to Noise Instrumental Excel Assignment
Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a
Machine vision systems - 2
Machine vision systems Problem definition Image acquisition Image segmentation Connected component analysis Machine vision systems - 1 Problem definition Design a vision system to see a flat world Page
8 Filtering. 8.1 Mathematical operation
8 Filtering The estimated spectrum of a time series gives the distribution of variance as a function of frequency. Depending on the purpose of analysis, some frequencies may be of greater interest than
Imageprocessing. Errors of measurements
Imageprocessing Errors of measurements Many source of errors affect observations, like CCD images: - Diffraction and seeing blur the image. - The imaging optics causes geometric distortions. - The imaging
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
How To Understand The Discrete Fourier Transform
The Fast Fourier Transform (FFT) and MATLAB Examples Learning Objectives Discrete Fourier transforms (DFTs) and their relationship to the Fourier transforms Implementation issues with the DFT via the FFT
The Whys, Hows and Whats of the Noise Power Spectrum. Helge Pettersen, Haukeland University Hospital, NO
The Whys, Hows and Whats of the Noise Power Spectrum Helge Pettersen, Haukeland University Hospital, NO Introduction to the Noise Power Spectrum Before diving into NPS curves, we need Fourier transforms
Controller Design in Frequency Domain
ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract
Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care. by Walt Kester
ITRODUCTIO Taking the Mystery out of the Infamous Formula, "SR = 6.0 + 1.76dB," and Why You Should Care by Walt Kester MT-001 TUTORIAL You don't have to deal with ADCs or DACs for long before running across
What the Nyquist Criterion Means to Your Sampled Data System Design. by Walt Kester
TUTORAL What the Nyquist Criterion Means to Your Sampled Data System Design NTRODUCTON by Walt Kester A quick reading of Harry Nyquist's classic Bell System Technical Journal article of 194 (Reference
Auto-Tuning Using Fourier Coefficients
Auto-Tuning Using Fourier Coefficients Math 56 Tom Whalen May 20, 2013 The Fourier transform is an integral part of signal processing of any kind. To be able to analyze an input signal as a superposition
Convolution. 1D Formula: 2D Formula: Example on the web: http://www.jhu.edu/~signals/convolve/
Basic Filters (7) Convolution/correlation/Linear filtering Gaussian filters Smoothing and noise reduction First derivatives of Gaussian Second derivative of Gaussian: Laplacian Oriented Gaussian filters
