Appendix D Digital Modulation and GMSK
|
|
|
- Gabriella McLaughlin
- 9 years ago
- Views:
Transcription
1 D1 Appendix D Digital Modulation and GMSK A brief introduction to digital modulation schemes is given, showing the logical development of GMSK from simpler schemes. GMSK is of interest since it is used in the GSM system. The phase and amplitude relations between carrier cycles over a data bit are developed, enabling rigourous modelling of ensemble fields to be carried out. D1. Phase shift keying For binary PSK (BPSK) S 0 (t) = A cos (ωt) represents binary 0 S 1 (t) = A cos (ωt + π) represents binary 1 For M-ary PSK, M different phases are required, and every n (where M=2 n ) bits of the binary bit stream are coded as one signal that is transmitted as A sin (ωt + θ j ) j=1,...,m. D2. Quadrature Phase Shift Keying If we define four signals, each with a phase shift differing by 90 0 quadrature phase shift keying (QPSK). then we have The input binary bit stream {d k }, d k = 0,1,2,... arrives at the modulator input at a rate 1/T bits/sec and is separated into two data streams d I (t) and d Q (t) containing odd and even bits respectively. d I (t) = d 0, d 2, d 4,... d Q (t) = d 1, d 3, d 5,...
2 D2 A convenient orthogonal realisation of a QPSK waveform, s(t) is achieved by amplitude modulating the in-phase and quadrature data streams onto the cosine and sine functions of a carrier wave as follows: s(t)=1/ 2d I (t) cos (2πft + π/4) + 1/ 2 d Q (t) sin (2πft + π/4) Using trigonometric identities this can also be written as s(t)=a cos [2πft + π/4 + θ(t)]. The pulse stream d I (t) modulates the cosine function with an amplitude of ± 1. This is equivalent to shifting the phase of the cosine function by 0 or π; consequently this produces a BPSK waveform. Similarly the pulse stream d Q (t) modulates the sine function, yielding a BPSK waveform orthogonal to the cosine function. The summation of these two orthogonal waveforms is the QPSK waveform. The values of θ(t) = 0, -(π/2), π/2, π represent the four possible combinations of a I (t) and a Q (t). Each of the four possible phases of carriers represents two bits of data. Thus there are two bits per symbol. Since the symbol rate for QPSK is half the bit rate, twice as much data can be carried in the same amount of channel bandwidth as compared to BPSK. This is possible because the two signals I and Q are orthogonal to each other and can be transmitted without interfering with each other.
3 D3 In QPSK the carrier phase can change only once every 2T secs. If from one T interval to the next one, neither bit stream changes sign, the carrier phase remains unchanged. If one component a I (t) or a Q (t) changes sign, a phase change of π/2 occurs. However if both components change sign then a phase shift of π occurs. If a QPSK modulated signal undergoes filtering to reduce the spectral side lobes, the resulting waveform will no longer have a constant envelop and in fact, the occasional 180 o shifts in phase will cause the envelope to go to zero momentarily. D3. Offset Quadrature Phase Shift Keying If the two bit streams I and Q are offset by a 1/2 bit interval, then the amplitude fluctuations are minimised since the phase never changes by 180 o. This modulation scheme, Offset Quadrature Phase shift Keying (OQPSK) is obtained from QPSK by delaying the odd bit stream by half a bit interval with respect to the even bit stream.
4 D4 Thus the range of phase transitions is 0 o and 90 o (the possibility of a phase shift of 180 o is eliminated) and occurs twice as often, but with half the intensity of the QPSK. While amplitude fluctuations still occur in the transmitter and receiver they have smaller magnitude. The bit error rate for QPSK and OQPSK are the same as for BPSK. When an OQPSK signal undergoes bandlimiting, the resulting intersymbol interference causes the envelop to droop slightly to the region of ± 90 o phase transition, but since the phase transitions of 180 have been avoided in OQPSK, the envelop will never go to zero as it does in QPSK. D4. Minimum Shift Keying We previously showed that OQPSK is obtained from QPSK by delaying the Q data stream by 1 bit or T seconds with respect to the I data stream. This delay has no effect on the error or bandwidth. Minimum Shift Keying (MSK) is derived from OQPSK by replacing the rectangular pulse in amplitude with a half-cycle sinusoidal pulse. The MSK signal is defined as: S(t) = d(t) cos (πt/2t) cos 2πft + d(t) sin (πt/2t) sin 2πft.
5 D5 The MSK modulation makes the phase change linear and limited to ± (π/2) over a bit interval T. This enables MSK to provide a significant improvement over QPSK. Because of the effect of the linear phase change, the power spectral density has low side lobes that help to control adjacent-channel interference. However the main lobe becomes wider than the quadrature shift keying. D5. Gausssian Minimum Shift Keying (GMSK) In MSK we replace the rectangular pulse with a sinusoidal pulse. Obviously other pulse shapes are possible. A Gaussian-shaped impulse response filter generates a signal with low side lobes and narrower main lobe than the rectangular pulse. Since
6 D6 the filter theoretically has output before input, it can only be approximated by a delayed and shaped impulse response that has a Gaussian - like shape. This modulation is called Gaussian Minimum Shift Keying (GMSK). The relationship between the premodulation filter bandwidth, B and the bit period, T defines the bandwidth of the system. GSM designers used a BT = 0.3 with a channel data rate of kbs. This compromises between a bit error rate and an out-of-band interference since the narrow filter increases the intersymbol interference and reduces the signal power. D5.1 GMSK Modulation There are two methods to generate GMSK, one is frequency shift keyed modulation, the other is quadrature phase shift keyed modulation. a(t) Gaussian LPF VCO m=0.5 m(t) RF Amplifier GMSK implemented by Frequency Shift Keying modulation with FM-VCO. GMSK implemented by a quadrature baseband method. The shaded areas in the two above figures have the same function. The GMSK VCO-modulator architecture as shown in the first is simple but is not however, suitable for coherent demodulation due to component tolerance problems. This method requires that the frequency deviation factor of the VCO exactly equals 0.5, but the modulation index of conventional VCO based transmitters drifts over time and temperature.
7 D7 The implementation in the second employs a quadrature baseband process followed by a quadrature modulator. With this implementation, the modulation index can be maintained at exactly 0.5. This method is also cheaper to implement. Both methods lead to the same GMSK modulated signal. We are going to be looking at the second of these two methods, that is we shall be looking at a quadrature baseband processor followed by a quadrature modulator as shown in the second. The Gaussian low-pass filter has an impulse response given by the following equation for g(t) = 1 2T [Q(2πB t b T / 2 ln2 )-Q(2πB t + T / 2 b ln2 )] where Q(t) is the Q-function 0 B b T Q(t) = 1 exp(-x 2 /2) dx, 2 t B b is the bandwidth of the low pass filter having a Gaussian shaped spectrum, T is the bit period and BN=B b T is the normalised bandwidth. To demonstrate this, we are looking at a filter with a bandwidth of B b =1000 and a bit rate of T=1/2000, i.e. a normalised bandwidth B N =B b.t =0.5. The impulse response of the Gaussian low-pass filter has to be truncated and scaled, according to the B N value, to ensure that the effect of a single 1 passing through the filter, is a phases change of π/2. For a B N of 0.5 the filter response is truncated, symmetrically around zero, to two bit periods, i.e. from -T to T. The truncated filter response is represented graphically in the following figure.
8 D8 The truncated and scaled impulse response of the Gaussian low-pass filter. Ensuring that the response of the filter to a single 1 is a phase change of π/2, is equivalent to choosing the constant K to satisfy the following equation T T Kg() tdt = π/2. To demonstrate the modulation, we are using the following randomly chosen binary data stream. (This data stream repeats after 12 bits.) {1,1,-1,1,1,-1,-1,1,-1,1,-1,-1, 1,1,-1,1,1,-1,-1,1,-1,1,-1,-1,...}. The beginning of this data stream can be represented graphically by the following The beginning of the data stream being sent through the filter.
9 D9 As the data passes through the filter it is shaped and ISI (inter symbol interference) is introduced since more than one bit is passing through the filter at any one time. For B N = 0.5, since the bits are spread over two bit periods, the second bit enters the filter as the first is half way through, the third enters as the first leaves etc... The first few Gaussian shaped pulses are represented graphically in the following figure. The individual shaped pulses representing the data stream. These individual shaped pulses are then added together to give a function which is represented graphically in the following figure. This is the function denoted by b(t). The function b(t) as in the second figure
10 D10 This function, b(t), is then integrated, with respect to t (time) from t to, to give the function c(t) as shown in the second figure. This function c(t) is represented graphically below. The function c(t) as in the second figure. Once we have the function c(t), we take Sine and Cosine functions of it to produce the I and Q-baseband signals. Taking the Cosine of c(t) produces the I-baseband signal I(t) i.e. I(t) = Cos[ c(t) ]. This function I(t) is represented graphically below. The I-baseband signal, i.e. the function I(t) as the second figure
11 D11 Taking the Sine of c(t) produces the Q-baseband signal Q(t) i.e. Q(t) = Sin[ c(t) ]. This function Q(t) is represented graphically below. The Q-baseband signal, i.e. the function Q(t) as in the second figure. These two functions I(t) and Q(t) are then passed through the I/Q modulator which leads to the output signal m(t) which can be written as m(t) = Sin(2πf c t) I(t) + Cos(2πf c t) Q(t), where f c is the carrier frequency used as the oscillator in the second figure The GMSK signal m(t) is represented The GMSK modulated signal m(t) as in the second figure.
Contents. A Error probability for PAM Signals in AWGN 17. B Error probability for PSK Signals in AWGN 18
Contents 5 Signal Constellations 3 5.1 Pulse-amplitude Modulation (PAM).................. 3 5.1.1 Performance of PAM in Additive White Gaussian Noise... 4 5.2 Phase-shift Keying............................
MODULATION Systems (part 1)
Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,
University of Manchester School of Computer Science CS3282: Digital Communications '06 Section 9: Multi-level digital modulation & demodulation.
CS3282 Digital Comms 9.1 2 May 06 / BMGC University of Manchester School of Computer Science CS3282: Digital Communications '06 Section 9: Multi-level digital modulation & demodulation. 9.1. ntroduction:
Vector Signal Analyzer FSQ-K70
Product brochure Version 02.00 Vector Signal Analyzer FSQ-K70 July 2004 Universal demodulation, analysis and documentation of digital radio signals For all major mobile radio communication standards: GSM
Implementation of Digital Signal Processing: Some Background on GFSK Modulation
Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering [email protected] Version 4 (February 7, 2013)
Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System
Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source
Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels
Performance of Quasi-Constant Envelope Phase Modulation through Nonlinear Radio Channels Qi Lu, Qingchong Liu Electrical and Systems Engineering Department Oakland University Rochester, MI 48309 USA E-mail:
Lezione 6 Communications Blockset
Corso di Tecniche CAD per le Telecomunicazioni A.A. 2007-2008 Lezione 6 Communications Blockset Ing. Marco GALEAZZI 1 What Is Communications Blockset? Communications Blockset extends Simulink with a comprehensive
Lecture 1: Introduction
Mobile Data Networks Lecturer: Victor O.K. Li EEE Department Room: CYC601D Tel.: 857 845 Email: [email protected] Course home page: http://www.eee.hku.hk/courses.msc/ 1 Lecture 1: Introduction Mobile data
PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUMBER OF REFERENCE SYMBOLS
PHASE ESTIMATION ALGORITHM FOR FREQUENCY HOPPED BINARY PSK AND DPSK WAVEFORMS WITH SMALL NUM OF REFERENCE SYMBOLS Benjamin R. Wiederholt The MITRE Corporation Bedford, MA and Mario A. Blanco The MITRE
5 Signal Design for Bandlimited Channels
225 5 Signal Design for Bandlimited Channels So far, we have not imposed any bandwidth constraints on the transmitted passband signal, or equivalently, on the transmitted baseband signal s b (t) I[k]g
Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise
Apéndice A. Lista de s ACI AM AMC AMPS ARQ AWGN BB BER BPSK BPF BW CCK CD CDMA CDPD COFDM CRL CSI CWTS Adjacent Channel Interference Amplitude Modulation Adaptive Modulation and Coding Advanced Mobile
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
Agilent Digital Modulation in Communications Systems An Introduction. Application Note 1298
Agilent Digital Modulation in Communications Systems An Introduction Application Note 1298 Introduction This application note introduces the concepts of digital modulation used in many communications systems
CDMA TECHNOLOGY. Brief Working of CDMA
CDMA TECHNOLOGY History of CDMA The Cellular Challenge The world's first cellular networks were introduced in the early 1980s, using analog radio transmission technologies such as AMPS (Advanced Mobile
Mobile Communications Chapter 2: Wireless Transmission
Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum Modulation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/
HD Radio FM Transmission System Specifications Rev. F August 24, 2011
HD Radio FM Transmission System Specifications Rev. F August 24, 2011 SY_SSS_1026s TRADEMARKS HD Radio and the HD, HD Radio, and Arc logos are proprietary trademarks of ibiquity Digital Corporation. ibiquity,
Introduction to FM-Stereo-RDS Modulation
Introduction to FM-Stereo-RDS Modulation Ge, Liang Tan, EK Kelly, Joe Verigy, China Verigy, Singapore Verigy US 1. Introduction Frequency modulation (FM) has a long history of its application and is widely
Fundamentals of Satellite Communications Part 3
Fundamentals of Satellite Communications Part 3 Modulation Techniques used in Satellite Communication Howard Hausman December, 2009 Fundamentals of Satellite Communications Part 3 Modulation Techniques
Experiment 3: Double Sideband Modulation (DSB)
Experiment 3: Double Sideband Modulation (DSB) This experiment examines the characteristics of the double-sideband (DSB) linear modulation process. The demodulation is performed coherently and its strict
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
Software Defined Radio
Software Defined Radio GNU Radio and the USRP Overview What is Software Defined Radio? Advantages of Software Defined Radio Traditional versus SDR Receivers SDR and the USRP Using GNU Radio Introduction
6.976 High Speed Communication Circuits and Systems Lecture 1 Overview of Course
6.976 High Speed Communication Circuits and Systems Lecture 1 Overview of Course Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Wireless Systems Direct conversion
Complementary Code Keying with PIC Based Microcontrollers For The Wireless Radio Communications
Complementary Code Keying with PIC Based Microcontrollers For The Wireless Radio Communications Boris Ribov, Grisha Spasov Abstract: The IEEE 802.11b is a Direct Sequence Spread Spectrum (DSSS) system
SIGNAL PROCESSING & SIMULATION NEWSLETTER
1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty
Transmitter and Receiver Techniques
Chapter 6 Transmitter and Receiver Techniques 6.1 Introduction Electrical communication transmitter and receiver techniques strive toward obtaining reliable communication at a low cost, with maximum utilization
1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions
Rec. ITU-R SM.853-1 1 RECOMMENDATION ITU-R SM.853-1 NECESSARY BANDWIDTH (Question ITU-R 77/1) Rec. ITU-R SM.853-1 (1992-1997) The ITU Radiocommunication Assembly, considering a) that the concept of necessary
Non-Data Aided Carrier Offset Compensation for SDR Implementation
Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center
Digital Baseband Modulation
Digital Baseband Modulation Later Outline Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation A Communication System Dig. Baseband Modulators (Line Coders) Sequence of bits are modulated
RF Measurements Using a Modular Digitizer
RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.
Appendix C GSM System and Modulation Description
C1 Appendix C GSM System and Modulation Description C1. Parameters included in the modelling In the modelling the number of mobiles and their positioning with respect to the wired device needs to be taken
GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy
GSM/EDGE Output RF Spectrum on the V93000 Joe Kelly and Max Seminario, Verigy Introduction A key transmitter measurement for GSM and EDGE is the Output RF Spectrum, or ORFS. The basis of this measurement
Introduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
CCSDS - SFCG EFFICIENT MODULATION METHODS STUDY A COMPARISON OF MODULATION SCHEMES PHASE 1: BANDWIDTH UTILIZATION
SFCG-13 Ottawa, Canada 13-21 October 1993 SF-13/40/D CCSDS - SFCG EFFICIENT MODULATION METHODS STUDY PHASE 1: BANDWIDTH UTILIZATION (Response to SFCG Action Item 12/32) Warren L. Martin Tien M. Nguyen
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
EE2/ISE2 Communications II
EE2/ISE2 Communications II Part I Communications Principles Dr. Darren Ward Chapter 1 Introduction 1.1 Background Communication involves the transfer of information from one point to another. In general,
All About Pulse Modulation How Ultra Narrow Band Modulation works Updated 12/15//10
All About Pulse Modulation How Ultra Narrow Band Modulation works Updated 12/15//10 Pulse modulation is well known in many forms. In communications it first appeared as Morse Code, otherwise known as ON/OFF
Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth
Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth Product Note The Agilent Technologies 89400 series vector signal analyzers provide unmatched signal analysis
QAM Demodulation. Performance Conclusion. o o o o o. (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser) o o. Wireless Communications
0 QAM Demodulation o o o o o Application area What is QAM? What are QAM Demodulation Functions? General block diagram of QAM demodulator Explanation of the main function (Nyquist shaping, Clock & Carrier
Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight
TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency
Introduction to IQ-demodulation of RF-data
Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced
EGPRS Test: Meeting the Challenge of 8PSK Modulation
EGPRS Test: Meeting the Challenge of 8PSK Modulation Application Note T Time Table of Contents Overview......................................................2 GMSK and 8PSK Modulation......................................3
PCM Encoding and Decoding:
PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth
VCO Phase noise. Characterizing Phase Noise
VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which
The continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
Performance Improvement of DS-CDMA Wireless Communication Network with Convolutionally Encoded OQPSK Modulation Scheme
International Journal of Advances in Engineering & Technology, Mar 0. IJAET ISSN: 3-963 Performance Improvement of DS-CDMA Wireless Communication Networ with Convolutionally Encoded OQPSK Modulation Scheme
Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:
Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional
Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D.
Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D. Abstract: The definition of a bit period, or unit interval, is much more complicated than it looks. If it were just the reciprocal of the data
T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
Chap#5 (Data communication)
Chap#5 (Data communication) Q#1: Define analog transmission. Normally, analog transmission refers to the transmission of analog signals using a band-pass channel. Baseband digital or analog signals are
Duobinary Modulation For Optical Systems
Introduction Duobinary Modulation For Optical Systems Hari Shanar Inphi Corporation Optical systems by and large use NRZ modulation. While NRZ modulation is suitable for long haul systems in which the
APPLICATION NOTE BUILDING A QAM MODULATOR USING A GC2011 DIGITAL FILTER CHIP
SLWA022 APPLICATION NOTE BUILDING A QAM MODULATOR USING A GC2011 DIGITAL CHIP October 6, 1994 1.0 INTRODUCTION This report describes how one can use the GC2011 Digital Filter chip to build digital modulators
Example/ an analog signal f ( t) ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency.
1 2 3 4 Example/ an analog signal f ( t) = 1+ cos(4000πt ) is sample by f s = 5000 Hz draw the sampling signal spectrum. Calculate min. sampling frequency. Sol/ H(f) -7KHz -5KHz -3KHz -2KHz 0 2KHz 3KHz
2 The wireless channel
CHAPTER The wireless channel A good understanding of the wireless channel, its key physical parameters and the modeling issues, lays the foundation for the rest of the book. This is the goal of this chapter.
AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz
AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2
Implementing Digital Wireless Systems. And an FCC update
Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz
Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs
Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in
DVB-T. The echo performance of. receivers. Theory of echo tolerance. Ranulph Poole BBC Research and Development
The echo performance of DVB-T Ranulph Poole BBC Research and Development receivers This article introduces a model to describe the way in which a single echo gives rise to an equivalent noise floor (ENF)
Modulation and Demodulation
16 Modulation and Demodulation 16.1 Radio Broadcasting, Transmission and Reception 16. Modulation 16.3 Types of Modulation 16.4 Amplitude Modulation 16.5 Modulation Factor 16.6 Analysis of Amplitude Modulated
Time and Frequency Domain Equalization
Time and Frequency Domain Equalization Presented By: Khaled Shawky Hassan Under Supervision of: Prof. Werner Henkel Introduction to Equalization Non-ideal analog-media such as telephone cables and radio
Revision of Lecture Eighteen
Revision of Lecture Eighteen Previous lecture has discussed equalisation using Viterbi algorithm: Note similarity with channel decoding using maximum likelihood sequence estimation principle It also discusses
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of
Bachelor of Technology (Electronics and Communication Engineering)
A Project Report on Synchronization Techniques for OFDM In partial fulfillment of the requirements of Bachelor of Technology (Electronics and Communication Engineering) Submitted By Govind Singh Parihar
Title: Low EMI Spread Spectrum Clock Oscillators
Title: Low EMI oscillators Date: March 3, 24 TN No.: TN-2 Page 1 of 1 Background Title: Low EMI Spread Spectrum Clock Oscillators Traditional ways of dealing with EMI (Electronic Magnetic Interference)
AN INTRODUCTION TO DIGITAL MODULATION
AN INTRODUCTION TO DIGITAL MODULATION This article provides readers a simple overview of the various popular methods used in modulating a digital signal. The relative merits of each of these modulation
chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective
Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything
Design of FIR Filters
Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 68 FIR as
How To Understand The Theory Of Time Division Duplexing
Multiple Access Techniques Dr. Francis LAU Dr. Francis CM Lau, Associate Professor, EIE, PolyU Content Introduction Frequency Division Multiple Access Time Division Multiple Access Code Division Multiple
Selection of data modulation techniques in spread spectrum systems using modified processing gain definition
HAIT Journal of Science and Engineering, Series: Engineering 2 (1), pp. xxx-xxx Copyright c 2004 Holon Academic Institute of Technology Selection of data modulation techniques in spread spectrum systems
Analog and Digital Signals, Time and Frequency Representation of Signals
1 Analog and Digital Signals, Time and Frequency Representation of Signals Required reading: Garcia 3.1, 3.2 CSE 3213, Fall 2010 Instructor: N. Vlajic 2 Data vs. Signal Analog vs. Digital Analog Signals
Digital Transmission (Line Coding)
Digital Transmission (Line Coding) Pulse Transmission Source Multiplexer Line Coder Line Coding: Output of the multiplexer (TDM) is coded into electrical pulses or waveforms for the purpose of transmission
7. Beats. sin( + λ) + sin( λ) = 2 cos(λ) sin( )
34 7. Beats 7.1. What beats are. Musicians tune their instruments using beats. Beats occur when two very nearby pitches are sounded simultaneously. We ll make a mathematical study of this effect, using
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier
LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.
Analysis of Immunity by RF Wireless Communication Signals
64 PIERS Proceedings, Guangzhou, China, August 25 28, 2014 Analysis of Immunity by RF Wireless Communication Signals Hongsik Keum 1, Jungyu Yang 2, and Heung-Gyoon Ryu 3 1 EletroMagneticwave Technology
LTE System Specifications and their Impact on RF & Base Band Circuits. Application Note. Products: R&S FSW R&S SMU R&S SFU R&S FSV R&S SMJ R&S FSUP
Application Note Dr. Oliver Werther/Roland Minihold 04.2013 1MA221_1E LTE System Specifications and their Impact on RF & Base Band Circuits Application Note Products: R&S FSW R&S SMU R&S SFU R&S FSV R&S
Understanding and Enhancing Sensitivity in Receivers for Wireless Applications
Understanding and Enhancing Sensitivity in Receivers for Wireless Applications Edited by Matt Loy Wireless Communication Business Unit Abstract This technical brief provides an overview of communication
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
APPLICATION NOTE. RF System Architecture Considerations ATAN0014. Description
APPLICATION NOTE RF System Architecture Considerations ATAN0014 Description Highly integrated and advanced radio designs available today, such as the Atmel ATA5830 transceiver and Atmel ATA5780 receiver,
Modulation and Demodulation
MIT 6.02 DRAFT Lecture Notes Last update: April 11, 2012 Comments, questions or bug reports? Please contact {hari, verghese} at mit.edu CHAPTER 14 Modulation and Demodulation This chapter describes the
Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage
Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport
Lock - in Amplifier and Applications
Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o
Signal Detection C H A P T E R 14 14.1 SIGNAL DETECTION AS HYPOTHESIS TESTING
C H A P T E R 4 Signal Detection 4. SIGNAL DETECTION AS HYPOTHESIS TESTING In Chapter 3 we considered hypothesis testing in the context of random variables. The detector resulting in the minimum probability
Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP
Products: Spectrum Analyzer FSP Measurement of Adjacent Channel Leakage Power on 3GPP W-CDMA Signals with the FSP This application note explains the concept of Adjacent Channel Leakage Ratio (ACLR) measurement
Ralph L. Brooker, Member, IEEE. Andrew Corporation, Alexandria, VA 22314, USA
Spectral-Null Pulse Waveform For Characterizing Gain and Phase Distortion in Devices with Uncorrelated Frequency Translation or Limited CW Power Capability Ralph L. Brooker, Member, IEEE Andrew Corporation,
MATRIX TECHNICAL NOTES
200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR
SIMULATION OF RADIOWAVE PROPAGATION USING PROPAGATION MODELS
SIMULATION OF RADIOWAVE PROPAGATION USING PROPAGATION MODELS Yelena Chaiko Transport Communications and Information Systems professor group Riga Technical University Institute of Railway Transport Indrika,
Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201
Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem
Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal
Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal 2013 The MathWorks, Inc. 1 Outline of Today s Presentation Introduction to
The Fourier Analysis Tool in Microsoft Excel
The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier
Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers
Understanding the Effect of Uncorrelated Phase Noise on Multi-channel RF Vector Signal Generators and Analysers David A. Hall, Product Marketing Manager Andy Hinde, RF Systems Engineer Introduction With
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. 4y Springer Contents Preface xiii Chapter 1. Introduction 1 1.1. Wireless Systems 1 1.1.1. Mobile Communications
Introduction to Complex Numbers in Physics/Engineering
Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The
Analysis/resynthesis with the short time Fourier transform
Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis
RECOMMENDATION ITU-R BO.786 *
Rec. ITU-R BO.786 RECOMMENDATION ITU-R BO.786 * MUSE ** system for HDTV broadcasting-satellite services (Question ITU-R /) (992) The ITU Radiocommunication Assembly, considering a) that the MUSE system
RADIO FREQUENCY INTERFERENCE AND CAPACITY REDUCTION IN DSL
RADIO FREQUENCY INTERFERENCE AND CAPACITY REDUCTION IN DSL Padmabala Venugopal, Michael J. Carter*, Scott A. Valcourt, InterOperability Laboratory, Technology Drive Suite, University of New Hampshire,
Co-channel and Adjacent Channel Interference Measurement of UMTS and GSM/EDGE Systems in 900 MHz Radio Band
74 F. GLEISSNER, S. HANUS, CO-CHANNEL AND ADJACENT CHANNEL INTERFERENCE MEASUREMENT... Co-channel and Adjacent Interference Measurement of UMTS and GSM/EDGE Systems in 900 MHz Radio Band Filip GLEISSNER,
ISI Mitigation in Image Data for Wireless Wideband Communications Receivers using Adjustment of Estimated Flat Fading Errors
International Journal of Engineering and Management Research, Volume-3, Issue-3, June 2013 ISSN No.: 2250-0758 Pages: 24-29 www.ijemr.net ISI Mitigation in Image Data for Wireless Wideband Communications
MPEG Unified Speech and Audio Coding Enabling Efficient Coding of both Speech and Music
ISO/IEC MPEG USAC Unified Speech and Audio Coding MPEG Unified Speech and Audio Coding Enabling Efficient Coding of both Speech and Music The standardization of MPEG USAC in ISO/IEC is now in its final
