Similar documents


A Social Mechanism of Reputation Management in Electronic Communities

portion,theso-calledserver,providesbasicservicessuchasdatai/o,buermanagementandconcurrency

M-RPC:ARemoteProcedureCallServiceforMobileClients. DepartmentofComputerScience. Rutgers,TheStateUniversityofNewJersey. Piscataway,NJ08855

Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:

MITIGATING!WASTE,!DELAY!AND!RISK!

Combined Virtual Mobile Core Network Function Placement and Topology Optimization with Latency bounds

A DIGITAL SOLUTIONS AGENCY Queen Anne Ave N. Ste. 337 Seattle WA,

CPUInheritance Scheduling. UniversityofUtah

API Q2 Specification for Quality Management System Requirements for Service Supply Organizations for the Petroleum and Natural Gas Industries

CSSE 372 Software Project Management: Earned Value Analysis (EVA) Exercises

Concentrations. Concentration Advising

Themethodofmovingcurvesandmovingsurfacesisanew,eectivetoolfor Abstract

OPTIMIZING THE USE OF VHA s FEE BASIS CLAIMS SYSTEM (FBCS)

Trust-based Service Management for Social Internet of Things Systems

Continuous Integration Optimizing Your Release Management Process

LINKS Tutorial #4: Forecasting. Katrina A. Zalatan & Randall G. Chapman

SkillSoft Services. Achieve Success with SkillSoft Services. Overview

Mathematics. ( : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)

Optimal Mail Sizing for Direct Marketing

WEATHERSTORM FORENSIC ACCOUNTING LONG-SHORT INDEX. External Index Methodology Document

A Dual Eigenvector Condition for Strong Lumpability of Markov Chains

SAMPLE SIZE CONSIDERATIONS

MAT 242 Test 3 SOLUTIONS, FORM A

Sybilproof Reputation Mechanisms

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

Trend Micro Healthcare Compliance Solutions

Joseph I. Lubin School of Accounting. MS Program

QUANTIFYING OPERATIONAL RISK Charles Smithson

1.3. DOT PRODUCT If θ is the angle (between 0 and π) between two non-zero vectors u and v,

Production Functions and Cost of Production

Resource-Efficiency Testing. Introduction to Resource Efficiency Testing

QUALITY MANAGEMENT PLAN


CSCMP Level One : Cornerstones of Supply Chain Management. Learning Blocks

Course Supply Chain Management: Inventory Management. Inventories cost money: Reasons for inventory. Types of inventory

HYPOTHESIS TESTING: POWER OF THE TEST

Parabolic Equations. Chapter 5. Contents Well-Posed Initial-Boundary Value Problem Time Irreversibility of the Heat Equation

Supply Chain Analysis Tools

How to Book a Clichefter With or Without Windows XP

Value Chain Analysis

Achieving Competitive Advantage Through Supply Chain Excellence. Jim Webb, Senior Vice President of Operations, Provista

Application-LayerAnycasting

Performance Analysis of a Telephone System with both Patient and Impatient Customers

Chapter 7: Dummy variable regression

Metric Spaces. Chapter Metrics

Thepurposeofahospitalinformationsystem(HIS)istomanagetheinformationthathealth

Risk Management Policy

Software Quality Assurance Plan

Estimating the random coefficients logit model of demand using aggregate data

Internet!of!Services! Project!IntroducMon!

Max M. Fisher College of Business The Ohio State University. MHR 802 Managerial Negotiations Winter, 1997


About the Whitman School of Management

Logic in general. Inference rules and theorem proving

Commercialization Life Cycle

Calculus with Parametric Curves

Software Testing Interview Questions

Chapter 7 Risk, Return, and the Capital Asset Pricing Model

6.2 Permutations continued

How Far is too Far? Statistical Outlier Detection

1 Solution of Homework

Electron-Muon Ranger (EMR)

Asymmetric Threat Assessment Tool (ATAT)

Subtitles on everything for everyone Enabling community subtitling and translation for every video on the net.

HP Cyber Security Control Cyber Insight & Defence

Transcription:

ASocialMechanismofReputationManagement inelectroniccommunities 446EGRC,1010MainCampusDrive BinYuandMunindarP.Singh? DepartmentofComputerScience NorthCarolinaStateUniversity fbyu,mpsinghg@eos.ncsu.edu Raleigh,NC27695-7534,USA Abstract.Trustisimportantwhereveragentsmustinteract.Weconsidertheimportantcaseofinteractionsinelectroniccommunities,whernesses.Weproposeasocialmechanismofreputationmanagement,which theagentsassistandrepresentprincipalentities,suchaspeopleandbusinismscomplementhardsecuritytechniques(suchaspasswordsanddigitalcerticates),whichonlyguaranteethatapartyisauthenticatedand aimsatavoidinginteractionwithundesirableparticipants.socialmecha- whentrustedthirdpartiesarenotavailable.ourspecicapproachto thatisdesirabletoothers.socialmechanismsareevenmoreimportant authorized,butdonotensurethatitexercisesitsauthorizationinaway 1Introduction helpeachotherweedoutundesirableplayers. reputationmanagementleadstoadecentralizedsocietyinwhichagents communityprovideservicesaswellasreferralsforservicestoeachother.our Theworldwideexpansionofnetworkaccessisdrivinganincreaseininteractions munityasasetofinteractingparties(peopleorbusinesses).themembersofa notionofservicesisgeneralinthattheyneednotbebusinessservicesprovided amongpeopleandbetweenpeopleandbusinesses.wedeneanelectroniccom- sense,e.g.,justcompanionshiporlivelydiscussion. forafee,butmaybevolunteerservices,ornoteven\services"inthetraditional participants'reputationsbothforexpertise(providinggoodservice)andhelpfulness(providinggoodreferrals).thesocialnetworkismaintainedbypersonal decidingwhetherorhowtorespondtoarequest.theagentsassisttheirusers agentsassistingdierentusers.agentsandtheirusershavefullautonomyin Wemodelanelectroniccommunityasasocialnetwork,whichsupportsthe inevaluatingtheservicesandreferralsprovidedbyothers,maintainingcontact lists,anddecidingwhomtocontact.inthismanner,theagentsassisttheirusers?thisresearchwassupportedbythenationalsciencefoundationundergrantiis- 9624425(CareerAward).Weareindebtedtotheanonymousreviewersforhelpful comments.

inndingthemosthelpfulandreliablepartiestodealwith.therecommendationsbythepersonalagentsarebasedonarepresentationofhowmuchtheother partiescanbetrusted.theagentsbuildandmanagetheserepresentationsof Hardsecurityapproacheshelpestablishthatthepartyyouaredealingwithis trust.todoso,theagentsnotonlytakeintoaccountthepreviousexperiencesof authenticatedandauthorizedtotakevariousactions.theydon'tensurethat theirusers,butalsocommunicatewithotheragents(belongingtootherusers). thatpartyisdoingwhatyouexpectanddeliveringgoodservice.inotherwords, thehardsecurityapproachessimplyplacealowhurdleoflegalitythatsomeone Thenotionoftrustcomplementshardsecurity,e.g.,throughcryptography. accountableevenforthelegalactionsthattheyperform. reputationmanagement.section3presentssomenecessarybackgroundonhow mustcrossinordertoparticipate,whereastrustmanagementmakespeople toestablishanelectroniccommunity.section4introducesourapproach,giving thekeydenitionsanddiscussingsomeinformalpropertiesoftrust.section5 presentsourexperimentalmodelandsomebasicresultsthatwehaveobtained. Thispaperisorganizedasfollows.Section2presentssomerelatedworkin forfutureresearch. Section6concludesourpaperwithadiscussionofthemainresultsanddirections 2RelatedWork OnSaleExchangeandeBayareimportantpracticalexamplesofreputationmanagement.OnSaleallowsitsuserstorateandsubmittextualcommentsabout sellers.theoverallreputationofaselleristheaverageoftheratingsobtained someoneratesthem,whileonebaytheystartwithzerofeedbackpoints.both approachesrequireuserstoexplicitlymakeandrevealtheirratingsofothers.as fromhiscustomers.inebay,sellersreceivefeedback(+1,0,?1)fortheirreliabilityineachauctionandtheirreputationiscalculatedasthesumofthoseratings overthelastsixmonths.inonsale,thenewcomershavenoreputationuntil aresult,theuserslosecontroltothecentralauthority. andkasbah[2,12]requirethatusersgivearatingforthemselvesandeitherhave usestheseratingstocomputeaperson'soverallreputationorreputationwith Acentralsystemkeepstrackoftheusers'explicitratingsofeachother,and acentralagency(directratings)orothertrustedusers(collaborativeratings). Someprototypeapproachesarerelevant.Yenta[3],weavingaweboftrust[4], suchrelationshipsandhowtheratingspropagatethroughthiscommunity. inelectronicmarketplaces.however,ttpismostappropriateforclosedmarketplaces.inlooselyfederated,opensystemsattpmayeithernotbeavailable TrustedThirdParties(TTP)[7]actasabridgebetweenbuyersandsellers amongtheusersoftheirelectroniccommunity.itisnotclearhowtoestablish respecttoaspecicuser.thesesystemsrequirepreexistingsocialrelationships orhavelimitedpowertoenforcegoodbehavior. controlthroughreputation[6].insoftsecurity,theagentspolicethemselves Rasmusson&Jansonproposedthenotionofsoftsecuritybasedonsocial

withoutreadyrecoursetoacentralauthority.softsecurityisespeciallyattractive inopensettings,andmotivatesourapproach. Work(SIF)[8].InSIF,anagentevaluatesthereputationofanotheragentbased considersonlyanagent'sownexperiencesanddoesn'tinvolveanysocialmechanisms.hence,agroupofagentscannotcollectivelybuildupareputationfor others.amorerelevantcomputationalmethodisfromsocialinteractionframe- Marshpresentsaformalizationoftheconceptoftrust[5].Hisformalization describehowtondsuchwitnesses,whereasintheelectroniccommunities,deals arebrokeredamongpeoplewhoprobablyhavenevermeteachother. ondirectobservationsaswellthroughotherwitnesses.however,sifdoesnot approachforreputationmanagement:howto(1)givefullcontroltotheusersin termsofwhentorevealtheirratings;(2)helpanagentndtrustworthyagents (veritablestrangers)evenwithoutpriorrelationships;and,(3)speedupthe propagationofinformationthroughthesocialnetwork.oursocialmechanism Challenges.Thefollowingaresomeimportantchallengesforanyagent-based amongagents,evenacrosssub-communities.therefore,undesirableagentscan seekstoaddresstheabovechallenges.inparticular,ratingsareconveyedquickly quicklyberuledout. 3ElectronicCommunities adeal.thepayosinthegamearesuchthatbothagentswouldbenetifboth withtwoagents.theagentshavetodecidewhethertocooperateordefectfrom cooperate.however,ifoneagentweretotrytocooperatewhentheotherdefects, Tobetterunderstandthenotionoftrustincommunities,let'sdiscussthefamous prisoners'dilemma[1].theprisoner'sdilemmaarisesinanon-cooperativegame foreachagenttodefect,therebyleadingtoaworsepayoforbothagentsthan theonehand,iftheplayerstrusteachother,theycanbothcooperateandavert ifbothweretocooperate. thecooperatorwouldsuerconsiderably.thismakesthelocallyrationalchoice buildupinasettingwheretheplayershavetorepeatlyinteractwitheachother. amutualdefectionwherebothsuer.ontheotherhand,suchtrustcanonly Ourobservationisthatareputationmechanismsustainsrationalcooperation, Theprisoner'sdilemmaisintimatelyrelatedtotheevolutionoftrust.On becausethegoodplayersarerewardedbysocietywhereasthebadplayersare penalized.boththerewardsandpenaltiesfromasocietyaregreaterthanfrom socialnetworkforinformationgathering[10,11].inourarchitecture,eachuseris anindividual. associatedwithapersonalagent.usersposequeriestotheiragents.thequeries whomtosendthequery.afterconsultationwiththeuser,theagentsendsthe bytheuserarerstseenbyhisagentwhodecidesthepotentialcontactsto Theproposedapproachbuildson(andappliesin)ourworkonconstructinga querytotheagentsforotherlikelypeople.theagentwhoreceivesaquerycan decideifitsuitsitsuserandlettheuserseethatquery.inadditiontoorinstead

ofjustforwardingthequerytoitsuser,theagentmayrespondwithreferralsto otherusers. alimitonthenumberofreferralsrequested.aresponsemayincludeananswer incomingquery.areferraldependsonthequeryandonthereferringagent's orareferral,orboth,orneither(inwhichcasenoresponseisneeded).an agentanswersonlyifitisreasonablycondentthatitsexpertisematchesthe Aqueryincludesthequestionaswellastherequester'sIDandaddressand modelofotheragents;areferralisgivenonlyifthereferringagentplacessome itsmodeloftheexpertiseoftheansweringagent,anditsmodelsofanyagent evaluatingtheexpertiseoftheagentwhogavetheanswer.thisevaluationaects itup.whentheagentreceivesananswer,itusestheanswerasabasisfor trustintheagentbeingreferred. whomayhavegivenareferraltothisansweringagent.ingeneral,theoriginating Whentheoriginatingagentreceivesareferral,itdecideswhethertofollow agentmaykeeptrackofmorepeersthanhisneighbors.periodicallyhedecide 4ReputationRatingandPropagation whichpeerstokeepasneighbors,i.e.,whichareworthremembering. Inourapproach,agentAassignsaratingtoagentBbasedon(1)itsdirect A'sratingofthoseneighbors.Thesecondaspectmakesourapproachasocialone observationsofbaswellas(2)theratingsofbasgivenbyb'sneighbors,and andenablesinformationaboutreputationstopropagatethroughthenetwork. sources.however,suchapproachesdonotconsiderthereputationsofthewitnessesthemselves.clearly,theweightassignedtoaratingshoulddependon thereputationoftherater.moreover,reputationratingscannotbeallowedto asimplisticapproachthatdirectlycombinestheratingsassignedbydierent Traditionalapproacheseitherignorethesocialaspectsaltogetheroremploy Denition1.Ti(j)tisthetrustratingassignedbyagentitoagentjattime increaseadinnitum.toachievetheabove,werstdeneanagent'sratingof t.werequirethat?1<ti(j)t<1andti(j)0=0. anotheragent.initially,theratingiszero. Cooperationbytheotheragentgeneratesapositiveevidenceanddefection anegativeevidence.thus0and0.toprotectthosewhointeract reputations,meaningthatreputationsshouldbehardtobuildup,buteasyto withanagentwhocheatssomeofthetime,wetakeaconservativestancetoward Eachagentwilladaptitsratingofanotheragentbasedonitsobservation. teardown.thiscontrastswithmarsh[5],whereanagentmaycheatasizable fraction(20%)ofthetimebutstillmaintainamonotonicallyincreasingreputation.wecanachievethedesiredeectbyrequiringthatjj<jj.weusea simpleapproachtocombineinevidencefromrecentinteractions. bythefollowingtableanddependsontheprevioustrustrating. Denition2.Afteraninteraction,theupdatedtrustratingTi(j)t+1isgiven

Ti(j)tCooperationbyj >0Ti(j)t+(1?Ti(j)t) <0(Ti(j)t+)=(1?minfjTi(j)tj;jjg)Ti(j)t+(1+Ti(j)t) Defectionbyj =0 (Ti(j)t+)=(1?minfjTi(j)tj;jj)g fortrust. Denition3.Foragenti:?1!i1and?1i1,where!ii. Ti(j)!iindicatesthatitrustsjandwillcooperatewithj;Ti(j)iindicates FollowingMarsh[5],wedeneforeachagentanupperandalowerthreshold thatimistrustsjandwilldefectagainstj;i<ti(j)<!imeansthatimust decideonsomeothergrounds. 4.1PropagationofReputationRating Eachagenthasasetofpotentiallychangingneighborswithwhomitmaydirectly interact.howanagentevaluatesthereputationsofotherswilldependinpart onthetestimoniesofitsneighbors.thisnaturallyleadstotheideaofareferral chain. Denition4.=hA0;:::;Aniisa(possible)referralchainfromagentA0to agentan,whereai+1isaneighborofai. Denition5.xy=if(x0^y0)thenxyelse?jxyj A0willuseareferralchaintoAntocomputeitsratingT0(n)towardsAn. chainisnegative.below,let=ha0;:::;anibeareferralchainfromagenta0 Wedeneatrustpropagationoperator,. toagentanattimet.wenowdenetrustpropagationoverareferralchain. Denition6.Foranyk,0kn,T0(k)t=T0(1)t:::Tk?1(k)t Inotherwords,theleveloftrustpropagatedoveranegativelinkinareferral agentsonthechain.forthisreason,wetermthepenultimateagentthewitness. denedase0(k)t=t0(k)ttk(k+1)t.herekisthewitnessofthistestimony. Denition7.Atestimonyforagent0fromagentkrelativetoachainis Thepenultimateagentonareferralchainhasdirectevidenceofthelast onlyifagentkistrusted,i.e.,t siderwitnessesreliableaslongastheyhaveapositivetrustrating. reliable.soastoallowtestimonyfromweakagentstobecombinedin,wecon- Denition8.Foragentiattimet,atestimonyfromagentkisreliableifand Testimonyfromawitnessisusedwhenthewitnessisconsideredsuciently case,wechooseareferralchainthatyieldsthehighesttrustratingfork. Denition9.Foragenti,atestimonyfromagentkwithrespecttoreferral Tworeferralchains1and2maypassthroughthesameagentk.Inthis i(k)t>0. chain1ismorereliablethanwithrespecttoreferralchain2ifandonlyif1 yieldsahighertrustratingforagentk,i.e.,t1 i(k)t2 i(k).

4.2IncorporatingTestimoniesfromDierentWitnesses theratingbyagivenagent.first,toeliminatedoublecountingofwitnesses,we Wenowshowhowtestimoniesfromdierentagentscanbeincorporatedinto distinctifandonlyifthewitnessesofalltestimoniesinearedistinct,i.e., jfe1w;:::;elwgj=l. denedistinctsetsoftestimonies.(ewreferstothewitnessoftestimonye). Denition10.AsetoftestimoniesE=fE1;:::;ELgtowardsagentnis fromthatwitness.noticethattheindividualwitnessesdonothavetobetrusted allthetrustabletestimonies,andforanywitness,itcontainsthebesttestimony greaterthan!ifortheirtestimonytobeused. Themaximallyreliabledistinct(MRD)subsetofasetoftestimoniescontains distinct,ve,and(8e:(e2e^te Denition11.VisaMRDsubsetofasetoftestimoniesEifandonlyifVis wecomputetheaverageoftestimoniesfromv:e=1=lpjvj Ew^TV GivenasetoftestimoniesEaboutAn,werstnditsMRDsubsetV.Next i(vw)te i(ew))). i(ew)>0))(9v:v2v^vw= agenta0willupdateitstrustratingofagentanasfollows(allratingsareat timetexceptwherespecied). when thent0(n)t+1= i=1vi.therefore, T0(n)andEarepositive oneoft0(n)andeisnegativet0(n)+e=(1?minfjt0(n)j;jejg) T0(n)andEarenegative T0(n)+E(1?T0(n)) 4.3Gossip T0(n)+E(1+T0(n)) IfanagentAencountersabadpartnerBduringsomeexchange,Awillpenalize BbydecreasingitsratingofBbyandinformingitsneighbors.Anagentwho receivesthisinformationcancombineitintoitstrustmodelofb. Denition12.SupposeagentireceivesamessageTk(n)(fromagentkabout isprocessedincrementally. propagatearumorwithouthavingbeenexplicitlyqueried.forthisreason,gossip Gossipisdierentfromtheusualreferralprocess,becauseanagentcan agentn).ifti(k)isnegative,theniignoresthemessage.ifti(k)ispositive, thenagentiupdatesitstrustratingofagentnasfollows. whenti(n)andtk(n)thenti(n)t+1= arebothpositive arebothnegative haveoppositesigns Ti(n)=Ti(n)+Ti(k)Tk(n)(1?Ti(n)) Ti(n)+Ti(k)Tk(n)(1+Ti(n)) (Ti(n)+Ti(k)Tk(n))=(1?minfjTi(n)j;jTi(k)Tk(n)jg)

Wenowdescribeandformalizesomeimportantpropertiesoftrust. 4.4PropertiesofTrust 1.Symmetry Ingeneral,symmetrywillnothold,becauseanagentmaytrustanothermore thanitistrustedback.however,whentheagentsaretrustworthy,through 2.Transitivity haveforanytwoagentsaxanday,tx(y)tty(x)twhent!1. ifoneoftheagentsdoesn'tactinatrustworthymanner,theotheragent willbeforcedtopenalizeit,leadingtolowmutualtrust.forthisreason,we repeatedinteractions,theywillconvergetohighmutualtrust.conversely, 3.Self-reinforcement Trustisnottransitive,butthefollowingwillholdifxisarationalagent: Trustisself-reinforcing,becauseagentsactpositivelywiththosewhomthey (Tx(y)t>Tx(z)t)^(Tx(z)t>Tx(w)t))(Tx(y)t>Tx(w)t) trust.theconverseistrue,asbelowacertaintrust,individualstendto conrmtheirsuspicionsofothers[9].therstpartofthefollowingruleis basedontheideathatiftrustbetweentwoagentsisinitiallyabove!,then Between!and,anythingcanhappen[5]. willtendnottocooperatewitheachotherwhateverthesituation,thus thetrustbetweenthosetwoagentswillnotdecreasebelowthatthreshold. reinforcingtheother'sopinionaboutthemasnon-cooperativeandunhelpful. Theconverseistrue,sinceifbothagentstrusteachotherbelow,they {If(Tx(y)t>!x)^(Ty(x)t>!y)then 4.Propagation {If(Tx(y)t<x)^(Ty(x)t<y)then (Tx(y)t+1Tx(y)t)^(Ty(x)t+1Ty(x)t) notknowz.howmuchxtrustszshoulddependonhowmuchxtrustsy, Considerthreeagentsx,y,andz.Ifxknowsyandyknowsz,butxdoes (Tx(y)t+1Tx(y)t)^(Ty(x)t+1Ty(x)t) andhowmuchytrustsz.thefollowingrulewillholdifxisrational. Asimpleformulafordeterminingtrustthatsatisestheaboveconstraint,is (Tx(z)t+1Tx(y)t)^(Tx(z)t+1Ty(z)t) 5ExperimentsandResults Tx(z)t+1=Tx(y)tTy(z)t manyagentsknowthegivenagent,howmanyagentsitknows,whichcommunity Inoursimulatedsetup,eachagenthasaninterestvector,anexpertisevector, itbelongsto,andsoon.inourcase,theneighbormodelskeptbyanagentare andmodelsofseveralneighbors.ingeneral,theneighbormodelsdependonhow thegivenagent'srepresentationoftheotheragents'expertiseandreputation.

generatedasvectorsbyperturbingtheinterestvectorofthegivenagent.the dependingonitsinterests. motivationforthisistocapturetheintuitionthatanagentwillproducequeries Anagent'squeriesaregeneratedbasedonitsinterestvector.Thequeriesare vector,orrefertootheragentsitknows.theoriginatingagentcollectsallpossible referrals,andcontinuestheprocessbycontactingsomeofthesuggestedreferrals. Atthesametime,itchangesitsmodelsforotheragents. Whenanagentreceivesaquery,itwilltrytoansweritbasedonitsexpertise vectorsofdimension5.theagentssendqueries,referrals,andresponsestoone another,allthewhilelearningabouteachothers'interestandexpertisevectors. Theagentsarelimitedinthenumberofneighborstheymayhave inourcase thelimitis4. Ourexperimentsinvolvebetween20and60agentswithinterestandexpertise 5.1Metrics Wenowdenesomeusefulmetricsinwhichtointuitivelycapturetheresultsof ourexperiments. wherenisthenumberofagentswhoknowagentai.wesaythatagentak agentsisgivenbyr(ai):r(ai)=1=npnj=1tj(ai) Denition13.TheaveragereputationofanagentAifromthepointofother wherenisthetotalnumberofagents. Denition14.Theaveragereputationofallagentsis:R=1=NPNi=1r(Ai), knowsagentaiifandonlyifaiisaneighborofak. 5.2SelectionofRewardsandPenalties Figure1illustratesthechangeoftrustratingsdependingondierentvaluesof Thisaverageisametricfordeterminingthestabilizationofacommunity. and.partaappliestoanewagentwhoinitiallyhasatrustof0,butbuildsup whoisalreadywell-trusted;partcappliestoanuntrustedagentwhothrough theratingthroughpositiveinteractions;partbappliestoacooperativeagent repeatedpositiveinteractionsbecomestrusted;partdappliestoanewagent whoseratingfallsbecauseofnegativeinteractions;partedescribesatrusted untrustedagentwhobecomesfurtheruntrustedbecauseofdefections. agentwhobecomesuntrustedbecauseofdefections;and,partfappliestoan betheratiobetweenthenumberofcooperationsanddefections.byappropriatelyselectingtheratingsofand,wecanlet!1.assumetheinitial trustratingofagentaiis0:6.let=5;10;20.figure2displaysthechangeof trustrating.noticethattrustbuiltupthroughseveralpositiveinteractionsis Consideranagentwhocooperatesanddefectsondierentinteractions.Let lostthroughevenasingledefection.

Part A. T 0 =0,α=0.05,0.1,0.2 1 Part B. T 0 =0.6,α=0.05,0.1,0.2 1 Part C. T 0 = 0.6,α=0.05,0.1,0.2 0.8 0.8 0.6 0.4 0.2 0.9 0.8 0.7 0.6 0.4 0.2 0 0.2 0.4 0 0 5 10 0.6 0 5 10 0.6 0 5 10 Part D. T 0 =0,β= 0.1, 0.2, 0.3 0 Part E. T 0 =0.6,β= 0.1, 0.2, 0.3 1 Part F. T 0 = 0.6,β= 0.1, 0.2, 0.3 0.6 0.2 0.5 0.7 Fig.1.Selectionofand,where=0:05(0?0),0:1(0?:0),0:2(0??0)and= 0.4?0:1(0x0),?0:2(0+0),?0:3(00) 0 0.8 0.6 0.5 0.9 0.8 5.3AvoidingUndesirableAgents 1 1 1 0 5 10 0 5 10 0 5 10 Ourmechanismquicklylowersthereputationsofselshagents.Considerthe agentsax,ay,andazknowhim.theirinitialratingstowardsaware0:4,0:5, followingexample.assumeagentawisanon-cooperativeagent,andonlythree and0:6,respectively. agentaxwilldisseminateitsobservationofagentawthroughoutthesocialnetwork.eventuallytheaveragereputationofagentawmaydecreasetoalowlevel. Thisisthepowerofreferrals.Figure3experimentallyconrmsourhypothesis. 1,agentAwdefectsagainstagentAx.Let=0:05and=?0:3.Accordingto theformulaforupdatingtrust,tx(w)=(0:4+(?0:3))=(1?minj0:4j;j?0:3j)= 0:1=0:7=0:1429.Thenewreputationoftheagentisr(Aw)=0:413.Moreover, SotheaveragereputationofagentAwattime0is0:5.However,sayattime continuallyintroduceandremovethemselvesfromthenetwork.toevaluatehow 5.4IntroducingNewAgents ourapproachaccommodateschangesofthisvariety,webeginwithastable Clearly,asocialnetworkwillnotremainstableforlong,becauseagentswill thenewagentwouldhavetokeepcooperatingreliablyorelsebeostracizedearly. networkandintroduceanewagentrandomlyintoit.thenewagentisgiven randomneighbors,andalloftheirtrustratingstowardsthisnewagentarezero. AssumeR=0:637attimet.Inordertobeembeddedintothesocialnetwork,

1 0.8 0.6 0.4 Fig.2.Changeoftrustfor=5(0?0),10(0?:0),20(0?+0)when=0:05and=?0:3 0.2 0 0.2 0.4 0 2 4 6 8 12 14 16 18 20 Times interactions 0.5 0.45 Average reputation 0.4 0.35 Fig.3.AveragereputationofagentAwforN=30,=0:05and=?0:3 0.3 0.25 0.2 agents,thenewagentcanhaveitsaveragereputationincreasesteadily.figure4 0.15 0 20 40 60 80 100 120 140 160 180 200 conrmsthishypothesis. Itsinitialthresholdforcooperatingislow.Byfrequentlycooperatingwithother Numbers of messages 6Discussion Althoughwepresentourresultsinthecontextofelectroniccommunities,our oftheotheragents.theabilitytodealwithselsh,antisocial,orunreliable mentcanhelptheagentsnessetheirinteractionsdependingonthereputations agentsaretrustworthyandreliable.approachesforexplicitreputationmanage- approachappliestomultiagentsystemsingeneral.mostcurrentmultiagentsystemsassumebenevolence,meaningthattheagentsimplicitlyassumethatother agentscanleadtomorerobustmultiagentsystems.

0.35 0.3 Average reputation 0.25 0.2 Fig.4.AveragereputationofnewagentAnewforN=30,=0:05and=?0:3 0.15 0.1 0.05 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 bymaliciousagents.itreliesonlyontherebeingalargenumberofagentswho withothers.however,itdoesnotfullyprotectagainstspuriousratingsgenerated Ourpresentapproachadjuststheratingsofagentsbasedontheirinteractions Numbers of messages agents.thisisnotideal,butnotanyworsethandemocraticruleinhuman oerhonestratingstooverridetheeectoftheratingsprovidedbythemalicious societies.democraticsocietiescannotguaranteethatamaliciousrulerwon'tbe ofthepopulationintheratingprocess. elected,buttheyreducethechanceofsuchaneventbyengagingalargefraction aswellasofcommunityformation.wealsowanttostudytheevolutionary situationswheregroupsofagentsconsiderratingschemesforotheragents.the purposeisnotonlytostudyalternativeapproachesforachievingmoreecient communities,butalsototestifourmechanismisrobustagainstinvasionand, Infuturework,weplantostudythespecialproblemsoflyingandrumors hence,morestable. References 3.LennyFoner.Yenta:Amulti-agent,referral-basedmatchmakingsystem.InProceedingsofthe1stInternationalConferenceonAutonomousAgents,pages301{ sellinggoods.inproceedingsofthe1stinternationalconferenceonthepractical 1.RobertAxelrod.TheEvolutionofCooperation.BasicBooks,NewYork,1984. 2.AnthonyChavezandPattieMaes.Kasbah:Anagentmarketplaceforbuyingand ApplicationofIntelligentAgentsandMultiagentTechnology(PAAM'96),1996. 4.RohitKhareandAdamRifkin.Weavingaweboftrust.WorldWideWeb,2(3):77{ 5.P.StevenMarsh.FormalisingTrustasaComputationalConcept.PhDthesis, 307,1997. 6.LarsRasmussonandSverkerJanson.SimulatedsocialcontrolforsecureInternet 112,1997. DepartmentofComputingScienceandMathematics,UniversityofStirling,April commerce.inproceedingsoftheworkshoponnewsecurityparadigms,1996. 1994.

7.TimReaandPeterSkevington.Engenderingtrustinelectroniccommerce.British 8.MichaelSchilloandPetraFunk.Whocanyoutrust:Dealingwithdeception.In TelecommunicationsEngineering,17(3):150{157,1998. 10.BinYuandMunindarP.Singh.Anmultiagentreferralsystemforexpertiselocation.InWorkingNotesoftheAAAIWorkshoponIntelligentInformationSystems, 9.SusanP.Shapiro.Thesocialcontrolofimpersonaltrust.TheAmericanJournal ProceedingsoftheworkshopDeception,FraudandtrustinAgentSocietiesatthe ofsociology,93(3):623{658,1987. AutonomousAgentsConference,pages95{106,1999. 12.GiorgosZacharia,AlexandrosMoukas,andPattieMaes.Collaborativereputation 11.BinYu,MahadevanVenkatraman,andMunindarP.Singh.Anadaptivesocial pages66{69,1999. ticialintelligence,2000.toappear. mechanismsinelectronicmarketplaces.inproceedingsofthehicss-32minitrack networkforinformationaccess:theoreticalandexperimentalresults.appliedar- onelectroniccommercetechnology,1999.