Size: px
Start display at page:

Download ""

Transcription

1 AClassofLinearAlgorithmstoProcessSetsofSegments GonzaloNavarroRicardoBaeza-Yates DepartmentofComputerScience BlancoEncalada2120 UniversityofChile Santiago-Chile currentsolutionstooperatesegmentsfocusonsingleoperations(e.g.insertionorsearching), weareinterestedinset-orientedoperations(e.g.union,dierenceandothersmorespecicto tomanipulatesetsofnelements.weshowthatawideclassofoperationscaninfactbe segments).inthosecases,extendingthecurrentapproachesleadstoo(nlogn)timecomplexity performedino(n)time,i.e.inaconstantamortizedcostperprocessedsegment.wepresent thegeneralframeworkandshowanumberofoperationsofthatkind,depictingandanalyzing Weaddresstheproblemofecientlyperformingoperationsonsetsofsegments.While Abstract ThisworkhasbeensupportedinpartbyFONDECYTgrants and thealgorithms.finally,weshowsomeapplicationsofthistechnique.

2 1Introduction Inmanypracticalapplicationstheproblemofmanipulatingsegmentsarisesunderdierentforms. modelswithconstraints[9,8]andstructuredtextsearch[13,10]. Typicalexamplesarecomputationalgeometry[14,11,6,3],temporaldatabases[7,2],database studied[14,5].alltheseapproachesfocuson\single"operations,inwhichasinglesegmentis behaviorfortheseoperations. operatedagainstasetofsegments.examplesare:searchingforasegment,insertinganewsegment structuredtextortemporaldatabases.examplesoftheoperationsthatarecommonlyperformedin intotheset,removingasegmentfromtheset,etc.in[5],itisshownhowtoachieveo(logn) oriented"operationsareneeded.thisisthecase,forexample,ofset-orientedquerylanguagesfor Becauseofthissituation,theproblemofmanipulatingasetofsegmentshasbeenextensively theseapplicationsareretrievingsegmentsincludingothersegments(e.g.allchapterscontainingat leastfourgures,instructuredtextsearch),orallsegmentsfromasetshortlyprecedingasegment scene,inatemporaldatabasedescribingmovies). fromanotherset(e.g.allmusicalsceneswhereagivenactorappearsthatshortlyprecedeacolorful However,forsomeapplications,thattypeofoperationsarelessimportant,whilemore\set- nonestingisallowed,thesegmentsaretriviallylinearlyordered,anditiseasytodeveloplinear solutionsfornelements.ouraimistoshowthatunderquitegeneralassumptions,muchbetter withamorecomplexdatastructure,andanalyzeunderwhichsituationstheideaworks. solutionscanbefound. segments,thusleadingtoo(n)algorithms.therefore,weextendthissimplemechanismtodeal Animportantconsiderationisthatwesupportnestinginthesegmentsformingaset,sinceif Weshowthatinmanycases,asolutionsimilartolistmerging[1]canbeappliedtosetsof AtrivialextensionofthecurrentapproachestodealwiththeserequirementsleadstoO(nlogn) wefoundlinearalgorithms.insection5weshowsomecomplexoperationsforwhichwefound algorithms[4]. moreexpensivesolutions.insection6weshowsomeapplicationsusingthesealgorithms.finally, weexplainthegeneralschemeofoursolution.insection4weshowanumberofproblemsforwhich retrievalcanbefoundin[12,13]. case.anearlierbutmoredetailedversionofpartofthisworkanditsapplicationtostructuredtext O(n)amortizedtime,whilethecostofanindividualoperationisknowntobe(logn)intheworst Thispaperisorganizedasfollows.Insection2weexplainourmodelofoperation.Insection3 ThemaincontributionofthispaperisasimpletechniquetoperformO(n)setoperationsin andtohx;yi=y.asegmenta=hx;yiissaidtocontainanotheroneb=hx0;y0i(andwedenote 2Preliminaries itasaborba)ixx0^y0y.ifasegmentcontainsanotheronewesaythattheynest. Asegmentisapairhx;yi,wherexandyarerealnumbersandxy.WedeneFromhx;yi=x insection7wepresentourconclusionsandfutureworkdirections. intheother).iftwosegmentsdonotnestandarenotdisjointwesaythattheyoverlap.finally, ab^a6=b. Thesegmentsaresaidtobedisjointiy<x0_y0<x(wesaya<bintherstcaseanda>b weusetheequalsignbetweensegmentswiththeobviousmeaning,andaborbatodenote

3 AandBinsomeway,inO(jAj+jBj)time. operations: Eachsetmustformahierarchy,i.e.nooverlapsareallowedbetweenanytwosegmentsof Toachievethatgoal,weimposetwofurtherrestrictions,oneonthesetsandoneontheprocessing Ourgeneralproblemis:giventwosetsofsegmentsAandB,obtainanewsetCbyprocessing Weareinterestedinset-orientedoperations,towhichweimposetheadditionalrestriction ofoperatingwithproximalsegments.proximalitymeansthatthepresenceorabsenceofa thanoverlapping,soweareinterestedinprovidingnesting. However,insomeapplications(e.g.structuredtextsearch)nestingcanbemoreimportant triviallyorderedbytheirrstorlastextreme,andthenormallistmergingalgorithmswork[4]. agivenset.thisisbecausetheonlywaywecouldobtainlinearalgorithmsforsetswith givensegmentinthenalresultmustbedenedintermsofrelativelyclosesegmentsinthe overlappingsegmentswaspreventingnestinginsidetheset.inthiscasethesegmentscanbe resultdoes.thatis,ouralgorithmsworkalsoifsegmentsfromdierentargumentsoverlap. Observethatwedonotneedthattheunionofbothoperandsformsahierarchy,aslongasthe arguments.thisisbecauseweplantotraversetheargumentsinsynchronizationtoproduce Weuseatreedatastructuretoarrangethesegmentsofeachset.Sincetherearenooverlaps, Ourapproachtothesolutioncanbedenedingeneraltermsasfollows: theresults. Toobtainthesolutionset(whichisalsoarrangedinatree),wearegoingtotraverseboth wedenethetreebythecontainmentrelationsbetweensegments. Wearenotinterestedinhowthesetsarebuiltintherstplace,andhowtheyarenally used.ourschemeisnotsoecienttobuildthetreesbyconsecutiverandominsertions,but ontreesandselectelementsundermorecomplexcriteria.tobeabletogeneratethewhole segments.allthealgorithmsconsistofvariationsofthisidea. solutionbytraversingtheoperandsjustonce,itisnecessarytheassumptionofproximal operandtreessimultaneously,inasynchronizedway,whilewegeneratethesolutiontreeat intheapplicationsweareinterestedin,thoseproblemsaresolvedinanad-hocway(weshow thesametime.theideaistogeneralizethelistmergingalgorithms,tomakethemoperate 3ASolutionScheme 3.1DataStructure Inwhatfollows,wedescribemoreindetailourdatastructureandalgorithmicscheme. anexampleinsection6). asegmentadescendsfromanotheronebinthetreeiab.althoughforclaritywedonotallow repetitions,thealgorithmsareeasilymodiedtoaccountforthis. Assaid,wearrangethesetofsegmentsinatree.Thecriteriontodenethetreeisstraightforward:

4 AformaldenitionofourtypeTreefollows: Segm=fhx;yi=x;y2R^xyg Subtree=SegmTree Tree=Subtree associatedsegment.ourtreescanbeseeninfactasforestswithorderamongtheirtrees. whereristhesetofrealnumbers.asitcanbeseen,therootofourtreedoesnothavean node:subtree!segmandsubtree:subtree!treeareselectors,i.e.ifs=(s;((s1;t1);:::; Wedenesomefunctionstoaccessthistreetype: 8(s;((s1;t1);:::;(sk;tk)))2Subtree;8i21::k;ssi (sk;tk)))2subtree,thennode(s)=sandsubtree(s)=((s1;t1);:::;(sk;tk)). 8(s1;t1);:::;(sk;tk)2Tree;8i21::k?1;si<si+1 head:subtree+!subtreereturnstherstelementofthelist,i.e.head(fl1;:::;lkg)=l1. tail:subtree+!subtreeeliminatestherstelement,i.e.tail(fl1;:::;lkg)=fl2;:::;l;lkg. 2Treedenotesanemptytree. operation,wemoveinoneorbothtrees,goingtothenextnodeorjumpingdirectlytothenext allowecientcomputationoftheseaccessfunctions. 3.2AlgorithmicScheme Ateachstep,thecurrentnodesofbothtreesarecompared,anddependingontheresultsandthe Thegeneralformofouralgorithmsconsistsoftraversingbothtrees,normallyinpreorpostorder. Althoughwedonotconsideranyparticularrepresentation,thedatastructureforourtreesmust sibling(thusskippingthecurrentsubtree).eachparticularcaseisavariationofthisgeneralidea. Weshowanumberofexamplesinthenextsection. fromthenalsolution(almostallusefuloperationsselectelementsfromonlyoneoperand).this selectorrejectthemarkednodes.somealgorithmscanbesolvedwithoutmarking,though. goodabstraction,sincewedonotdetailhowwecollectmarkedordeleteunmarkednodes.moreover, themarkingalgorithmcanbeusedfortwocomplementaryoperations,dependingonwhetherwe markingcanbeasimplebooleanmarkoritmayhaveamorecomplexmeaning.thisprovidesa Thuswearegoingtodescribethealgorithmsbymarkingnodesthatmustbeselectedorrejected traversal,whichistrivial,weusetwotypesoftraversaloperationshere,oneto\goright"andother storepointerstoparents,wekeepexplicitstackstoimplementthesetwotraversals. to\godown"inthetree.sinceseveraltreesaretraversedatthesametimeanditiswastefulto Atthebeginningofeachalgorithm,weinitializeanemptystackforeachargument.This Wedescribenowanimportantabstractionrelatedtothewaywetraversethetrees.Unlikelist Afterinitializingthestack,ifthetreeisnotempty,wepushthersttop-levelnodeofthetree operationspush,pop,emptyandtoponthestacks intothestack. stackholdspointerstotrees,andisreferredtoashargumenti:stack.weusethenormal

5 Thealgorithmsaccessonlythetopofthestacksandterminatewhenastackisempty.Argumenttreenamesareuppercaseletters.Theirlowercaseversiondenotesthetopnodesoftheir h1;1i(where1=1,1>x;8x2r,and1+x=1;8x2r). does,wepushitsrstchildintothestack.ifitdoesnot,weperforma\goright"operation. Togodowninthetree,wetestwhetherthecurrenttopofthestackhaschildrenornot.Ifit correspondingstacks,e.g.p=head(top(p:stack)).ifp:stackisempty,pisassumedtobe brace).figure1showsthebasicalgorithmsfortreetraversal. Togoright,wereplacethecurrenttopofthestackbyitsnextsibling.Ifthereisnonext Weuseapseudocodenotationforouralgorithms.Weincludeacase-likeinstruction(abigleft sibling,wepopthecurrenttopandretrytheoperationwiththeparent.weeventuallyempty thestackinthisway. Infact,goingdownmeans\processrstthechildrenandthenthesiblings". Init(P) Empty(P:stack). If(subtree(p)6=)Push(P:stack;subtree(p)) While(:Empty(P:stack)^tail(Top(P:stack))=)Pop(P:stack). elseright(p). If(P6=)Push(P:stack;P). If(:Empty(P:stack))Top(P:stack) Down(P) X,hXistheheightofitstree(intheworstcaseitcanbenX)anddXisthemaximumdegreeof itstree(itcanalsobenxinaattree).wealsousen,dandhasthemaximumcorresponding Weusethefollowingnumbersintheanalysis:nXisthesizeofthesetcorrespondingtooperand Figure1:Basicoperationsfortreetraversal. tail(top(p:stack)). valuebetweenalloperands(therearenormallytwooperands). ItshouldbeclearthateithercollectingmarkedordeletingunmarkednodesisO(n)time, Twoobservationsabouttheanalysis: simplewiththeseprimitives. AlthoughaparticularoperationoftreetraversalcanworkuptoO(h),wenotethatthewhole Wearenowinpositiontodescribeanumberofexamplealgorithms.Theirdescriptionisvery wherenisthenumberofnodesofthetree. thantwice.so,theamortizedcostoftreetraversalsisalwayslinearwiththesizeofthetree. traversal,evenbyusingdown,iso(n).thisisbecausenoedgeofthetreeistraversedmore

6 manipulation,segmentsincludingorincludedinothers,segmentsafterorbeforeothers,etc.inthis sectionweexplainindetailacoupleofthemandtheiranalysis. 4.1SetDierenceandIntersection Thereareanumberofinterestingproblemsthatadmitalinearimplementation,forexample:set 4LinearOperations isthatthetreesareunmarkedattherstplace,andwetraversebothtreesinsynchronization, Setdierenceandintersectionarecomplementaryversionsofasinglemarkingalgorithm.Theidea markingallnodesoftherstargumentthatarealsointhesecondone.thus,welaterimplement setdierencebycollectingunmarkednodesandsetintersectionbycollectingmarkednodes. Figure2showsthealgorithmtomarkthetree.PandQarethearguments. Whilemax(To(p);To(q))<1 Init(P).Init(Q). 8><>:p<q:Right(P). else:down(p). pq:down(q). p>q:right(q). p=q:markp.down(p). 4.2SegmentsIncludedinOthers time.itisalso(n)intheworstcase. beenalreadyshownlinear),andweworko(1)ateachstep.therefore,wehaveo(np+nq)=o(n) Thisalgorithmislinear,sinceasingletraversalisdoneoneachargument(thattraversalhas Figure2:Markingalgorithmforsetdierenceorintersection. Q,insynchronism.WhenanodeofPisincludedinatop-levelnodeofQ,thatsubtreeofPis toaccountforthis. marked.otherwisewediscardthatpnodeandcontinuewithitschildren. segmentofq. nodebutalsoitswholesubtreeisconsideredmarked.thecollectionalgorithmmustbemodied AnotherinterestingoperationisIn(P;Q),thatselectselementsfromPthatareincludedina renethisanalysisasfollows:eachtimewedoadown(p)isbecauseitcontainsanelementofqor ThisalgorithmisO(nP+nQ)=O(n),bythesameargumentsasbefore.Inthiscase,wecan Toavoidtoomuchmarkingoverhead,westatethatamarkinanodemeansthatnotonlythat ThealgorithmtosolveIn(P;Q)ispresentedinFigure3.WetraversethetoplevelsofPand becauseitoverlapswithanelementofq,thuseachextremeofeachsegmentof(thetop-levelof)q levelofthispath,theoperationcantakeusdpcomparisons,thusthecostiso(dqhpdp)=o(d2h). rstlevelinp,therelevantlistfromthetop-levelofqhasonlyoneelement(theoriginalq).ateach iscompared,atmost,withacompletepathofp(lengthhp).thatisbecauseoncewedescendthe takeso(logn)(atleasttodothemarking). Thatmeans,forexample,thatinanapplicationwithconstantdandbalancedtreestheoperation

7 Whilemax(To(p);To(q))<1 Init(P).Init(Q). 8><>:p<q:Right(P). p>q:right(q). pq:markp.right(p). else:down(p). 5ComplexOperations Then,thecomplexityofthisoperatorisO(min(nP+nQ;dQhPdP))=O(min(n;d2h)). Figure3:Markingalgorithmforsegmentsincludedinothers. includingksegments,andcomplexversionsof\after"and\before"aresomeexamples.weexplain Althoughmostoperationscanbeimplementedinlineartime,therearemorecomplexoperations thatseemnottohavealinearimplementation:segmentsincludedinotherswithpositions,segments indetailtherstone. 5.1SegmentsIncludedinOtherswithPositions slightlydierentalgorithms. consideringthemaximalsegmentsofpincludedinq,foreachq.ifasegmentofpoverlapswith q,thesegmentanditsdescendantsinparenotconsidered(seefigure4).othercriteriaproduce besegmentsincludedinqthatnestinp(e.g.sectionsinsidesections),wedene\position"byonly AnoperationthathappenstobeusefulforapplicationsistoselectsegmentsfromPthatareincluded ofpthatareincludedunderthesameq(e.g.thethirdsectionofeachchapter).sincetheremay insomesegmentqofqatagivenposition.thepositionisdenedintermsoftheothersegments node.wecanuse,e.g.rst,k-th,last,last?k,primepositions,etc.forthisalgorithmweusea genericpredicatetoavoidanyrestriction:sisanexpressiondenotingtheallowedpositions. WhenwendasetofnodesofPincludedinoneofQ,wemarkthes-thnodes,andthenwepass Figure4:Criteriontoparticipateininclusionwithpositions.Ellipsesindicateselectedsegments. Anotherconcerniswhichlanguagewillweusetodenotetheallowedpositionsofanincluded Thealgorithmrequiressimplebooleanmarking.Wetraversebothtreesinsynchronization. q P

8 againovertheincludedp-nodes,thistimecomparingthemwiththesubtreeoftheq-node.if, instead,thenodeofpincludesoneofq,wefollowthechildrenofthep-node.figure5showsthe algorithm. Whilemax(To(p);To(q))<1 Init(P).Init(Q). 8><>: else:down(p). p<q:right(p). p>q:right(q). pq:lp Figure5:Markingalgorithmforsegmentsincludedinothersatagivenposition. Whilehead(lp)q Down(Q). If(pos2s)Markhead(lp). Top(P:stack).pos tail(lp).pos pos+1. h2;ni;:::;hn;nig;s). bydoingatmosto(dp)work(whenpq),thusthealgorithmiso(np+nqdp).butalso thenalcollectionofnodesiso(np).observethateachelementofqisdeletedfromtheproblem O(min(nP+nQdP;nQ+nPhQ))=O(nmin(d;h)). algorithmisalsoo(nq+nphq).then,thealgorithmhasthebestfrombothcomplexities,namely observethateachelementofpcanbeworkedonbyatmostacompletepathofq,thusthe Toseethatitisalso(n2),considerthefollowingexample:In(fh1;1i;h2;2i;:::;hn;nig;fh1;ni; Toanalyzethisalgorithm,considerthatwecantraversebothPandQcompletely,andthat onlyrangeswecanimplementitino(nmin(h;klogd))wherekisthenumberofrangeswehave. considermanynodesofq,notjustone,andthereseemstobenobetterwaytodothat.ifthe 6SomeApplications languageofpositions(s)isrestrictedwecanobtainbettercomplexities,e.g.ifweallowtoexpress met.butobservethatinordertodeterminewhetherapnodeistobemarkedornot,wehaveto Thisnon-linearcomplexitymaybesurprising,sincetherequirementofproximalityseemstobe Ourtechniqueappliestoanumberofdissimilarapplications.Inthissectionwebrieydiscussa temporaldatabaseandexplainindetailastructuredtextsearchapplication.ouraimisnotonly toexposerealsituationswheretheproblemarises,butalsotoshowthepracticalperformanceof oneventsthatoccuratagivenpointorintervalintime.ifwehaveaset-orientedquerylanguage wewillbeinterestedinquestionssuchas\givemealltheevents(andtheirtimes)thatsatisfysome ouralgorithms. 6.1TemporalDatabases Temporaldatabases[7,2]canmanipulateinformationwithtemporalvalidity.Theirdataisbased constraint"(anexampleisgivenintheintroduction).

9 hastomanageanumberofquantitativefacts(i.e.eventsthatareknowntohavehappenedat time(e.g.ahappenedbeforeb,withoutknowingwhen).wejustwanttoshowthatifadatabase knowntimes),itmaybeinterestingforitsback-endtoperformset-orientedoperationsonthese facts.thesealgorithmswouldbeapartofamoregeneralinferenceengine,beinganecientway toselectrelevantfactstoworkon. Infact,temporaldatabasesaremuchmorecomplex,sincetheyalsodealwithuncertaintyin restrictionweimposeontheapplicabilityofourmodeltotemporaldatabases. wecannothandleresults(nalorintermediate)havingsegmentoverlapping.therefore,thisisa sequentialprocessescanbehierarchicallystructured. tions,althougheachanswerandintermediateresultisasubsetofsomesequentialprocess.those intoasetofsequentialprocesses,andsubsetsofdierentprocessescanbecombinedintoopera- Inmosttemporaldatabases,thetimeintervalscanoverlapandnest.Asexplainedearlier, Moderntextualdatabasesareagoodexampleofhierarchicalstructuring.Wedescribehereaspecic 6.2StructuredTextSearch Thisdoesnotmeanthattherecannotbeoverlapsinthedatabase.Wecandividetheknowledge modelhasmotivatedthisworkonecientalgorithmstoevaluatequeries,althoughsomeoperations modeltoquerystructuredtextdatabases,calledproximalnodes[13,12].thedevelopmentofthis dierslightlyfromthoseexposedhere. matchingexpressions.eachstructuralcomponent(e.g.chapters,gures,pages)ispreindexed,so tobeasubsetofagivenhierarchy. are:chapter/section/paragraphandfascicle/page/line.inthiscase,itmakesfullsenseforanswers componentsofthedatabase(e.g.chapters,pages,etc.).examplesofhierarchicalviewsofthetext ofindependenthierarchicalstructuresbuiltonthetext.eachhierarchyisstrict,althoughthere maybeoverlapsbetweendierenthierarchies.thenodesofthehierarchiesarethestructural Theleavesofthequerysyntaxtreesarenamesofstructuralcomponentsandtextpattern- Inthismodel,atextualdatabaseisseenasatext(asequenceofsymbols)plusanumber thesetofallelementsofagiventypecanberetrievedinatimeproportionaltothesizeofthe retrievedset.pattern-matchingusesanotherindextoreturnalistofsegmentsofthetextthat matchedthepattern.theselistsareconsideredtobepartofaspecialhierarchy.thisishowthe queryingfacilitiesbutahighexecutionoverhead. possibilitiesandthequerylanguageofthedatabaseandthosewhichhaverichstructuringand goodtradeobetweenthemodelswhichachievehigheciencybystronglyrestrictingthestructuring setsarebuiltintherstplace.allinternalnodesofquerysyntaxtreescorrespondtooperations betweensegmentsoftheoperands,andtheyarefurtherrestrictedtooperateonlyonproximal segments. theimplementation(usingthealgorithmsweexposehere)isveryecient.themodelconstitutesa Iwanttextparagraphsinitalicswhicharebefore(butinthesamepage)agurethatsays Someexamplesofqueriesare: Itisshownthatthequerylanguageobtainedundertheserestrictionshasgoodexpressivity,while GivemeallreferencestoKnuth'sbooksinchapters2-4. Iwantaparagraphprecedinganotherparagraphwheretheword\Computer"appearsbefore somethingabouttheearth. (at10symbolsorless)theword\science".bothparagraphsmustbeinthesamepage.

10 neededforthenalresult(thussavingalotofworkwhenprocessingtheintermediateresults). top-leveloftheresulttreeandaskstoexpandonlysomenodes.inthiscase,wesavetheworkof Thismechanismcanalsobeusedtoimplementanavigationalinterface,inwhichtheuserseesthe computingnodesthatarenottobeseen.althoughtheworst-casecomplexityofthelazyoperations isworsethanthatof\full"operations,therealtimesarebetter,sincelessnodesareprocessedin Iwantallsectionswithmathematicalformulasthatarenotappendices. practice. Wealsoimplementedalazyversionofthealgorithms,thatonlyprocessesthenodesthatare dierent.wetestedeachoperationondierentoperandsofsizes(i.e.numberofnodes)ranging gorithms.weusedadatabaseofcprogramsandlatexdocuments,whosestructuringisquite from100to10000.wealsotestedanumberofmorecomplexqueries,tocomparethefullandlazy versionsonrealqueries. correspondtoasunsparcclassicofapproximatelyspecmark26and16mbofram.fromthe testsweextractthefollowingconclusions(theymaydierforotherapplications): Aprototypehasbeenimplementedforthismodel,totesttheaverageperformanceoftheal- Figure6showsatypicalexampleofthetimesofanalgorithm(i.e.asingleoperation).They 1.0 seconds 0.5 full lazy 0.1 Thefullversionsofthealgorithmsarealllinearinpractice,sincethesituationsunderwhich 0.05 Thefullversionshaveverylowvariance,beingtheirtimeshighlypredictable,proportionalto Figure6:Typicaltimesforequal-sizedoperands.Observethatweusealogarithmicscale. theyarenotareveryunlikelytooccurinstructuredtextdatabases(e.g.averydeeptree) nodesprocessedpersecondperoperator. thesumofthesizesofallintermediateresults.theconstantforourmachineisapproximately 0.01 operand size

11 7ConclusionsandFutureWork Weanalyzedtheproblemofmanipulatingasetofsegmentswhenweareinterestedinset-oriented Thelazyversionisnormallybetterthanthefulloneinpractice,despitetheworsecomplexities, operations.classicalsolutionsprovidesimpleoperationswitho(logn)complexity,whichleadsto verylargevariance,though. especiallyforcomplexqueries.thisisbecauselessnodesareexpanded.lazyalgorithmshave O(nlogn)solutionsforset-orientedoperations. formedinlineartime.theseassumptionsare:theoperandsandtheresultmustnothaveoverlapping segmentsinside,andtheoperationsmustworkonproximalsegments. However,weshowthat,undersomegeneralassumptions,set-orientedoperationscanbeper- includeaveragetimesofarealimplementationofthealgorithms. operationsbecauseoftheamortizedcost,i.e.itsperformanceforsingleoperationsisnotgood. adaptedtoanumberofapparentlydissimilarproblems.thistechniqueworkswellforset-oriented merge-likeoperations,andappliedtheframeworktosolveinlineartimeanumberofset-oriented exampleoperationsonsegments.theaimwastoshowthattheframeworkisexibleenoughtobe Thereareanumberoffutureworkdirectionsrelatedtothiswork.Themostimportantare: Finally,wepresentedsomeapplicationstowhichthistechniquecouldbeapplied.Wealso Wedevelopedaframeworkorientedtotreetraversalthatgeneralizestheideaoflisttraversalfor Findatechniquethatkeepsthesegoodresultswhileimprovingtheperformanceforsingle Extendtheseideastoallowoverlapsintoaset,sincethiswillopenawealthofnewpossibilities toapplythistechnique. Extendtheframeworktoaccountformoredimensions,e.g.manipulatinghypercubesinstead Studyadisk-basedimplementation,tryingtominimizeseektimes.Someworkonthisdirectionhasalreadybeendone. speciallybylookingatapplicationsthatcanbenetfromthiswork. operations. Searchformoreoperationsthatcanbeimplementedinlineartimebyusingthisframework, Acknowledgments WethankClaudiaMedeirosandNinaEdelweissfortheirhelpontemporaldatabases.Wealso Studyaparallelimplementation,sinceouralgorithmsseemtobehighlyparallelizable. incomputationalgeometryandinmapprocessing(e.g.ingeographicinformationsystems). ofjustone-dimensionalsegments.thismayopenanumberofopportunitiesofapplications References thankthehelpfulcommentsofthereferees. [1]A.Aho,R.Sethi,andJ.Ullman.Compilers:Principles,TechniquesandTools.Addison- Wesley,1986.

12 [4]C.Clarke,G.Cormack,andF.Burkowski.Schema-independentretrievalfromheterogeneous [2]J.Allen,J.IIendler,andA.Tate,editors.ReadingsinPlanning.MorganKaufmann,1990. [5]T.Cormen,C.Leiserson,andR.Rivest.IntroductiontoAlgorithms.TheMITPress,1990. [3]J.Bentley.AlgorithmsforKlee'srectangleproblems.Dept.ofComputerScience,Carnegie- [6]H.Edelsbrunner.Dynamicdatastructuresfororthogonalintersection.TechnicalReportF59, structuredtext.inprocs.ofthe4thannualsymposiumondocumentanalysisandinformation Retrieval,Apr MellonUniv.Unpublishednotes.,1977. [9]P.Kanellakis,S.Ramaswamy,D.Vengro,andJ.Vitter.Indexingfordatamodelswithconstraintsandclasses.TechnicalReportCS-93-21,Dept.ofComputerScience,BrownUniversity, [7]A.T.etal.TemporalDatabases:Theory,DesignandImplementation.BenjaminCummings, [8]P.KanellakisandD.Goldin.Constraintprogramminganddatabasequerylanguages.Technical ReportCS-94-31,Dept.ofComputerScience,BrownUniversity,June Tech.Univ.Graz,InstitutefurInformationsverarbeitung,1980. [10]A.Loeen.Textdatabases:Asurveyoftextmodelsandsystems.ACMSIGMODConference. [11]E.McCreight.Prioritysearchtrees.TechnicalReportCSL-81-5,XeroxPARC,1981. [12]G.Navarro.Alanguageforqueriesonstructureandcontentsoftextualdatabases.Master'sthe- ACMSIGMODRECORD,23(1):97{106,Mar May1993. [13]G.NavarroandR.Baeza-Yates.Alanguageforqueriesonstructureandcontentsoftextual [14]F.PreparataandM.Shamos.ComputationalGeometry.Springer-Verlag,2ndedition,1988. sis,dept.ofcomputerscience,univ.ofchile,apr.1995.ftp://sunsite.dcc.uchile.cl/- pub/users/gnavarro/thesis95.ps.gz. databases.inproc.acmsigir'95,pages93{101,1995.ftp://sunsite.dcc.uchile.cl/- pub/users/gnavarro/sigir95.ps.gz.

Data Structures and Algorithms V22.0102. Otávio Braga

Data Structures and Algorithms V22.0102. Otávio Braga Data Structures and Algorithms V22.0102 Otávio Braga We use a stack When an operand is read, output it When an operator is read Pop until the top of the stack has an element of lower precedence Then push

More information

Improving Regional PCE Estimates Using Credit Card Transaction Data

Improving Regional PCE Estimates Using Credit Card Transaction Data Improving Regional PCE Estimates Using Credit Card Transaction Data Abe Dunn Ledia Guci Mahsa Gholizadeh Bryn Whitmire June 10 th 2016 Data and coverage Exploratory work with First Data/Palantir Aggregate

More information

Chapter 11, Testing, Part 2: Integration and System Testing

Chapter 11, Testing, Part 2: Integration and System Testing Object-Oriented Software Engineering Using UML, Patterns, and Java Chapter 11, Testing, Part 2: Integration and System Testing Overview Integration testing Big bang Bottom up Top down Sandwich System testing

More information

Themethodofmovingcurvesandmovingsurfacesisanew,eectivetoolfor Abstract

Themethodofmovingcurvesandmovingsurfacesisanew,eectivetoolfor Abstract OnaRelationshipbetweentheMovingLineand MovingConicCoecientMatrices DepartmentofComputerScience Houston,Texas77005 [email protected] RiceUniversity MingZhang DepartmentofInformationSystemsandComputerScience

More information

Natural Language Processing. Today. Logistic Regression Models. Lecture 13 10/6/2015. Jim Martin. Multinomial Logistic Regression

Natural Language Processing. Today. Logistic Regression Models. Lecture 13 10/6/2015. Jim Martin. Multinomial Logistic Regression Natural Language Processing Lecture 13 10/6/2015 Jim Martin Today Multinomial Logistic Regression Aka log-linear models or maximum entropy (maxent) Components of the model Learning the parameters 10/1/15

More information

GarbageCollectioninObjectOriented DatabasesUsingTransactionalCyclic PrasanRoy1 ReferenceCounting S.Sudarshan1 S.Seshadri1S.Ashwin1 AviSilberschatz2 fprasan,seshadri,[email protected] 1IndianInstituteofTechnology,

More information

X12 Implementation. Guidelines. For. Transfer Version 3030. (996o)

X12 Implementation. Guidelines. For. Transfer Version 3030. (996o) X12 Implementation Guidelines For Outbound ss File Transfer Version 3030 (996o) 996_3030 (003030) 1 April 29, 2003 996 File Transfer Functional Group ID=FT Introduction: This Draft Standard for Trial Use

More information

The world s most adaptive enterprise- level digital marketing system

The world s most adaptive enterprise- level digital marketing system The world s most adaptive enterprise- level digital marketing system UNIQUE CAPABILITY UNMATCHED INTELLIGENCE SURPRISING FLEXIBILITY The world-class Taguchi digital marketing system was invented and developed

More information

portion,theso-calledserver,providesbasicservicessuchasdatai/o,buermanagementandconcurrency

portion,theso-calledserver,providesbasicservicessuchasdatai/o,buermanagementandconcurrency DynamO:DynamicObjectswithPersistentStorage JiongYang,SilviaNittel,WeiWang,andRichardMuntz UniversityofCalifornia,LosAngeles DepartmentofComputerScience intensiveapplications,e.g.,datamining,scienticcomputing,imageprocessing,etc.inthispaper,we

More information

Artwork master Inspection and touch up Production phototools Inspection and touch up. development of outer layers

Artwork master Inspection and touch up Production phototools Inspection and touch up. development of outer layers AutomaticPCBInspectionAlgorithms:ASurvey UniversityofMissouri-Rolla,Rolla,MO65401 MadhavMoganti1 DepartmentofComputerScience FikretErcal2 UniversityofMissouri-Rolla,Rolla,MO65401 DepartmentofEngineeringManagement

More information

ASocialMechanismofReputationManagement inelectroniccommunities 446EGRC,1010MainCampusDrive BinYuandMunindarP.Singh? DepartmentofComputerScience NorthCarolinaStateUniversity fbyu,[email protected] Raleigh,NC27695-7534,USA

More information

Towards an automated testing framework to manage variability using the UML Testing Profile

Towards an automated testing framework to manage variability using the UML Testing Profile Automation of Software Test (AST 09) May 18, Vancouver, Canada Towards an automated testing framework to manage variability using the UML Testing Profile Beatriz Pérez Lamancha Software Testing Centre

More information

NP-completeproblemstractable Copyingquantumcomputermakes MikaHirvensalo February1998 ISBN952-12-0158-4 TurkuCentreforComputerScience ISSN1239-1891 TUCSTechnicalReportNo161 superpositions,weshowthatnp-completeproblemscanbesolvedprobabilisticallyinpolynomialtime.wealsoproposetwomethodsthatcould

More information

MUNIS Chart of Accounts Spreadsheet Definition

MUNIS Chart of Accounts Spreadsheet Definition Worksheet Name Setup Segment Object Code Character Code Project Code Mast-Org- LONGACCT MUNIS Chart of Accounts Spreadsheet Definition MUNIS Screen Description G/L Parameter This worksheet indicates the

More information

City University of Hong Kong. Information on a Course offered by the Department of Management Sciences with effect from Semester A in 2012 / 2013

City University of Hong Kong. Information on a Course offered by the Department of Management Sciences with effect from Semester A in 2012 / 2013 City University of Hong Kong Information on a Course offered by the Department of Management Sciences with effect from Semester A in 2012 / 2013 Part I Course Title: Customer Relationship Management with

More information

CSE373: Data Structures & Algorithms Lecture 14: Hash Collisions. Linda Shapiro Spring 2016

CSE373: Data Structures & Algorithms Lecture 14: Hash Collisions. Linda Shapiro Spring 2016 CSE373: Data Structures & Algorithms Lecture 14: Hash Collisions Linda Shapiro Spring 2016 Announcements Friday: Review List and go over answers to Practice Problems 2 Hash Tables: Review Aim for constant-time

More information

DATA OBFUSCATION. What is data obfuscation?

DATA OBFUSCATION. What is data obfuscation? DATA OBFUSCATION What data obfuscation? Data obfuscations break the data structures used in the program and encrypt literals. Th method includes modifying inheritance relations, restructuring arrays, etc.

More information

Attention windows of second level fixations. Input image. Attention window of first level fixation

Attention windows of second level fixations. Input image. Attention window of first level fixation HandSegmentationUsingLearning-BasedPredictionand VericationforHandSignRecognition DepartmentofComputerScience YuntaoCuiandJohnJ.Weng mentationschemeusingattentionimagesfrommultiple Thispaperpresentsaprediction-and-vericationseg-

More information

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1 Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints

More information

Reslogg: Mobile app for logging and analyzing travel behavior

Reslogg: Mobile app for logging and analyzing travel behavior Reslogg: Mobile app for logging and analyzing travel behavior Clas Rydergren, Linköping University [email protected] Agenda Background Data collection using GPS in mobile phones Earlier research Description

More information

Software Classification Methodology and Standardisation

Software Classification Methodology and Standardisation Software Classification Methodology and Standardisation 07 March 2003 1/10 Table of Contents 1. INTRODUCTION a Galileo system overview Ε b Master schedule Ε 2. GALILEO SAFETY CASE APPROACH Ε 3. SYSTEM

More information

BIG DATA: IT MAY BE BIG BUT IS IT SMART?

BIG DATA: IT MAY BE BIG BUT IS IT SMART? BIG DATA: IT MAY BE BIG BUT IS IT SMART? Turning Big Data into winning strategies A GfK Point-of-view Цифровая революция и digital стратегии в бизнесе AMР 27.05.2015 Москва 1 Big Data is complex?#! %&

More information

Project Information Dissemination Service (PIDS) CORDIS

Project Information Dissemination Service (PIDS) CORDIS Project Information Dissemination Service (PIDS) CORDIS INTRODUCTION Main objective of PIDS: Collect FP6 Result! 2004 2005 2006 2007 2008 FP4 179 73 0 0 0 FP5 1408 1471 3568 1387 301 FP6 0 0 0 23 8 FP

More information

DistributedSharedMemorySystems? AdaptiveLoadBalancinginSoftware CompilerandRun-TimeSupportfor SotirisIoannidisandSandhyaDwarkadas fsi,[email protected] DepartmentofComputerScience Rochester,NY14627{0226

More information

Agile Approach and MDA in Software Development Process

Agile Approach and MDA in Software Development Process Agile Approach and MDA in Software Development Process JaroslavaKniežová, Ing. PhD. Associate Professor Comenius University Faculty of Management Department of Information Systems Bratislava, Slovakia

More information

AggregateFunctions,Conservative Extension,andLinearOrders DepartmentofComputerandInformationScience LeonidLibkin UniversityofPennsylvania LimsoonWong However,themannerinwhichaggregatefunctionswereintroducedinthese

More information

Dinopolis Java Coding Convention

Dinopolis Java Coding Convention Dinopolis Java Coding Convention Revision : 1.1 January 11, 2001 Abstract Please note that this version of the Coding convention is very much based on IICM s internal Dino coding convention that was used

More information

Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

More information

Microfinance and Technology

Microfinance and Technology Microfinance and Technology Frankfurt School of Finance and Management July 2013 Julia Abakaeva CGAP s Contribution to Evolving Field 1995 Microcredit Proof of concept for microcredit Sustainability in

More information

Bachelor of Applied Information Science (Information Systems Security)

Bachelor of Applied Information Science (Information Systems Security) Sheridan College Institute of Technology and Advanced Learning Bachelor of Applied Information Science (Information Systems Security) Victor Ralevich, Ph.D. Professor and Program Coordinator Sheridan College

More information

Network Segmentation. June 30, 2015 12:00 Noon Eastern

Network Segmentation. June 30, 2015 12:00 Noon Eastern Network Segmentation June 30, 2015 12:00 Noon Eastern Agenda Presenters Housekeeping About Conexxus Network Segmentation Presetation Q& A Presenters Carl Bayer ([email protected]) Program Manager Conexxus

More information

Software Engineering

Software Engineering 1 Software Engineering Lecture 2: Software Life Cycles Stefan Hallerstede Århus School of Engineering 25 August 2011 2 Contents Naive Software Development Code & Fix Towards A Software Process Software

More information

OPEN SOURCE SOFTWARE in Italian schools a national survey

OPEN SOURCE SOFTWARE in Italian schools a national survey OPENSOURCESOFTWAREin Italianschools anationalsurvey GiovannaSissa OsservatorioTecnologico MinistryofEducationUniversityandResearch Italy IIOpenSourceWorldConference MALAGA 15thFebruary2006 OsservatorioTecnologico

More information

Figure2:Themixtureoffactoranalysisgenerativemodel. j;j z

Figure2:Themixtureoffactoranalysisgenerativemodel. j;j z TheEMAlgorithmforMixturesofFactorAnalyzers DepartmentofComputerScience ZoubinGhahramani GeoreyE.Hinton May21,1996(revisedFeb27,1997) TechnicalReportCRG-TR-96-1 Email:[email protected] Toronto,CanadaM5S1A4

More information

front unit 1 3 back unit

front unit 1 3 back unit GreedyApproximationsofIndependentSetsinLowDegree Magn sm.halld rsson GraphsKiyohitoYoshiharay lemincubicgraphsandgraphsofmaximumdegreethree.thesealgorithmiterativelyselect verticesofminimumdegree,butdierinthesecondaryruleforchoosingamongmanycandidates.westudythreesuchalgorithms,andprovetightperformanceratios,withthebest

More information

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0).

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

Setting up Dynamicweb for Load Balancing with Microsoft ARR for IIS8

Setting up Dynamicweb for Load Balancing with Microsoft ARR for IIS8 User manual Setting up Dynamicweb for Load Balancing with Microsoft ARR for IIS8 [SUBJECT] Preliminary version: [Version] 2015.03.24 English LEGAL INFORMATION Copyright 2015 Dynamicweb Software A/S. All

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

More information

Emory University RT to Bachelor of Medical Science Degree Medical Imaging

Emory University RT to Bachelor of Medical Science Degree Medical Imaging Emory University RT to Bachelor of Medical Science Degree Medical Imaging Courses: All RT-BMSc students must complete all of the program s core courses and the courses specific to their selected minor

More information

Parallel and Distributed Computing Programming Assignment 1

Parallel and Distributed Computing Programming Assignment 1 Parallel and Distributed Computing Programming Assignment 1 Due Monday, February 7 For programming assignment 1, you should write two C programs. One should provide an estimate of the performance of ping-pong

More information

Outline. Introduction. State-of-the-art Forensic Methods. Hardware-based Workload Forensics. Experimental Results. Summary. OS level Hypervisor level

Outline. Introduction. State-of-the-art Forensic Methods. Hardware-based Workload Forensics. Experimental Results. Summary. OS level Hypervisor level Outline Introduction State-of-the-art Forensic Methods OS level Hypervisor level Hardware-based Workload Forensics Process Reconstruction Experimental Results Setup Result & Overhead Summary 1 Introduction

More information

USE OF DATA MINING TO DERIVE CRM STRATEGIES OF AN AUTOMOBILE REPAIR SERVICE CENTER IN KOREA

USE OF DATA MINING TO DERIVE CRM STRATEGIES OF AN AUTOMOBILE REPAIR SERVICE CENTER IN KOREA USE OF DATA MINING TO DERIVE CRM STRATEGIES OF AN AUTOMOBILE REPAIR SERVICE CENTER IN KOREA Youngsam Yoon and Yongmoo Suh, Korea University, {mryys, ymsuh}@korea.ac.kr ABSTRACT Problems of a Korean automobile

More information

Chapter 6. The Graduate Program of Study

Chapter 6. The Graduate Program of Study Chapter 6. The Graduate Program of Study The Graduate College Handbook outlines the general requirements for completion of a graduate degree at ISU. Faculty in a major field have the responsibility for

More information

KITES TECHNOLOGY COURSE MODULE (C, C++, DS)

KITES TECHNOLOGY COURSE MODULE (C, C++, DS) KITES TECHNOLOGY 360 Degree Solution www.kitestechnology.com/academy.php [email protected] [email protected] Contact: - 8961334776 9433759247 9830639522.NET JAVA WEB DESIGN PHP SQL, PL/SQL

More information

INSTRUCTIONAL DESIGN ONE YEAR BY SEMESTER

INSTRUCTIONAL DESIGN ONE YEAR BY SEMESTER CTEIS Form 1.1 Semester INSTRUCTIONAL DESIGN ONE YEAR BY SEMESTER Identify which segments are delivered each semester Semester 1: Semester 2: 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12 7 8 9 10 11 12 Must

More information

Thomas Lerner. Mobile Payment. Springer

Thomas Lerner. Mobile Payment. Springer Thomas Lerner Mobile Payment Springer Table of Contents 1 History, Technology and Commerce 1 1.1 A Brief History of Money and Mobile Technologies 1 1.2 From Mobile Banking to Mobile Payment 4 1.3 The Development

More information

Deep Insights Smart Decisions Motionlogic

Deep Insights Smart Decisions Motionlogic Deep Insights Smart Decisions Motionlogic About Motionlogic Big Data business of Deutsche Telekom 100% subsidiary Analytics of people movement behavior and demographic indicators Using anonymized network

More information

Calculation Algorithm for Network Flow Parameters Entropy in Anomaly Detection

Calculation Algorithm for Network Flow Parameters Entropy in Anomaly Detection Calculation Algorithm for Network Flow Parameters Entropy in Anomaly Detection Theory, practice, applications Oleg Gudkov, BMSTU IT Security for the Next Generation International Round, Delft University

More information

Binary Search Trees. A Generic Tree. Binary Trees. Nodes in a binary search tree ( B-S-T) are of the form. P parent. Key. Satellite data L R

Binary Search Trees. A Generic Tree. Binary Trees. Nodes in a binary search tree ( B-S-T) are of the form. P parent. Key. Satellite data L R Binary Search Trees A Generic Tree Nodes in a binary search tree ( B-S-T) are of the form P parent Key A Satellite data L R B C D E F G H I J The B-S-T has a root node which is the only node whose parent

More information

Master of Science in Sociology or Rural Sociology Department of Sociology, Iowa State University Updated May 2015

Master of Science in Sociology or Rural Sociology Department of Sociology, Iowa State University Updated May 2015 Master of Science in Sociology or Rural Sociology Department of Sociology, Iowa State University Updated May 2015 The M.S. degree provides advanced training for work in specialized public and private human

More information

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015 CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential

More information

Making Dynamic Memory Allocation Static To Support WCET Analyses

Making Dynamic Memory Allocation Static To Support WCET Analyses Making Dynamic Memory Allocation Static To Support WCET Analyses Jörg Herter Jan Reineke Department of Computer Science Saarland University WCET Workshop, June 2009 Jörg Herter, Jan Reineke Making Dynamic

More information

Static Program Transformations for Efficient Software Model Checking

Static Program Transformations for Efficient Software Model Checking Static Program Transformations for Efficient Software Model Checking Shobha Vasudevan Jacob Abraham The University of Texas at Austin Dependable Systems Large and complex systems Software faults are major

More information

User Manual. Enterprise Reporting Portal (EREP) User Manual. October 2010. Global Operations Education

User Manual. Enterprise Reporting Portal (EREP) User Manual. October 2010. Global Operations Education User Manual Enterprise Reporting Portal (EREP) User Manual October 2010 Global Operations Education What is Enterprise Reporting Portal (EREP)? Enterprise Reporting Portal (EREP) is browser-based tool

More information

NLP Programming Tutorial 5 - Part of Speech Tagging with Hidden Markov Models

NLP Programming Tutorial 5 - Part of Speech Tagging with Hidden Markov Models NLP Programming Tutorial 5 - Part of Speech Tagging with Hidden Markov Models Graham Neubig Nara Institute of Science and Technology (NAIST) 1 Part of Speech (POS) Tagging Given a sentence X, predict its

More information

Bachelor of Bachelor of Computer Science

Bachelor of Bachelor of Computer Science Bachelor of Bachelor of Computer Science Detailed Course Requirements The 2016 Monash University Handbook will be available from October 2015. This document contains interim 2016 course requirements information.

More information

Business Intelligence Osvaldo Maysonet VP Marketing & Customer Knowledge Banco Popular

Business Intelligence Osvaldo Maysonet VP Marketing & Customer Knowledge Banco Popular Business Intelligence Osvaldo Maysonet VP Marketing & Customer Knowledge Banco Popular Starting Questions How many of you have more information today and spend more time gathering and preparing the information

More information

Design Cycle for Microprocessors

Design Cycle for Microprocessors Cycle for Microprocessors Raúl Martínez Intel Barcelona Research Center Cursos de Verano 2010 UCLM Intel Corporation, 2010 Agenda Introduction plan Architecture Microarchitecture Logic Silicon ramp Types

More information

How To Protect Your Data From Being Stolen

How To Protect Your Data From Being Stolen DATA SECURITY & PCI DSS COMPLIANCE PROTECTING CUSTOMER DATA WHAT IS PCI DSS? PAYMENT CARD INDUSTRY DATA SECURITY STANDARD A SET OF REQUIREMENTS FOR ANY ORGANIZATION OR MERCHANT THAT ACCEPTS, TRANSMITS

More information

PCI COMPLIANCE FOR HIGHER EDUCATION BEST PRACTICES CHECKLIST. Presented By: The Treasury Institute for Higher Education.

PCI COMPLIANCE FOR HIGHER EDUCATION BEST PRACTICES CHECKLIST. Presented By: The Treasury Institute for Higher Education. PCI COMPLIANCE FOR HIGHER EDUCATION BEST PRACTICES CHECKLIST Presented By: The Treasury Institute for Higher Education & AmbironTrustWave Pg. 1 of 10 Executive Summary This checklist is intended to help

More information

Software Development Best Practices

Software Development Best Practices Software Development Best Practices Artifact Reuse Supported by Modern Team Communication Tools and Patterns Andrew Bose Principal (979) 777-1431 [email protected] Pariveda Solutions, Inc.

More information

Verifone Enhanced Zone Router

Verifone Enhanced Zone Router Verifone Enhanced Zone Router July, 2015 The Necessity of an Enhanced Zone Router FUNDAMENTAL PART OF PCI-DSS COMPLIANCE, ENSURING CONSISTENT SUPPORT OF VASC, HELPDESK, & SERVICES POS Environment Needs

More information

Operating Systems. Virtual Memory

Operating Systems. Virtual Memory Operating Systems Virtual Memory Virtual Memory Topics. Memory Hierarchy. Why Virtual Memory. Virtual Memory Issues. Virtual Memory Solutions. Locality of Reference. Virtual Memory with Segmentation. Page

More information

1 The Java Virtual Machine

1 The Java Virtual Machine 1 The Java Virtual Machine About the Spec Format This document describes the Java virtual machine and the instruction set. In this introduction, each component of the machine is briefly described. This

More information

Instruction scheduling

Instruction scheduling Instruction ordering Instruction scheduling Advanced Compiler Construction Michel Schinz 2015 05 21 When a compiler emits the instructions corresponding to a program, it imposes a total order on them.

More information

CUSTOMER RELATIONSHIP MANAGEMENT SYSTEMS IN THE SRI LANKAN HOSPITALITY INDUSTRY FOR SUSTAINED GROWTH AND DEVELOPMENT

CUSTOMER RELATIONSHIP MANAGEMENT SYSTEMS IN THE SRI LANKAN HOSPITALITY INDUSTRY FOR SUSTAINED GROWTH AND DEVELOPMENT CUSTOMER RELATIONSHIP MANAGEMENT SYSTEMS IN THE SRI LANKAN HOSPITALITY INDUSTRY FOR SUSTAINED GROWTH AND DEVELOPMENT MASTER OF BUSINESS ADMINISTRATION IN INFORMATION TECHNOLOGY S M Wijewansa Department

More information

... Schema Integration

... Schema Integration DataIntegrationTechniquesbasedon MichaelGertz DataQualityAspects DepartmentofComputerScience UniversityofCalifornia,Davis IngoSchmitt [email protected] Davis,CA95616,USA OneShieldsAvenue Otto-von-Guericke-UniversitatMagdeburg

More information

A Knowledge-Poor Approach to BioCreative V DNER and CID Tasks

A Knowledge-Poor Approach to BioCreative V DNER and CID Tasks A Knowledge-Poor Approach to BioCreative V DNER and CID Tasks Firoj Alam 1, Anna Corazza 2, Alberto Lavelli 3, and Roberto Zanoli 3 1 Dept. of Information Eng. and Computer Science, University of Trento,

More information