Themethodofmovingcurvesandmovingsurfacesisanew,eectivetoolfor Abstract
|
|
|
- Clifford Carter
- 10 years ago
- Views:
Transcription
1 OnaRelationshipbetweentheMovingLineand MovingConicCoecientMatrices DepartmentofComputerScience Houston,Texas77005 RiceUniversity MingZhang DepartmentofInformationSystemsandComputerScience NationalUniversityofSingapore KentRidge,Singapore Eng-WeeChionh DepartmentofComputerScience Houston,Texas77005 RonaldN.Goldman RiceUniversity tweenthemovinglinecoecientmatrixandthemovingconiccoecientmatrixfor implicitizingrationalcurvesandsurfaces.hereweinvestigatearelationshipbe- Themethodofmovingcurvesandmovingsurfacesisanew,eectivetoolfor Abstract Keywords:Implicitization;MovingLine;MovingConic rationalcurves.basedonthisrelationship,wepresentanewproofthatthemethod ofmovingconicsalwaysproducestheimplicitequationofarationalcurvewhen therearenolowdegreemovinglinesthatfollowthecurve.
2 1Introduction Foreachrationalcurve wherex(t);y(t);w(t)aredegreenpolynomialsintandgcd(x(t);y(t);w(t))=1,there existsauniqueirreducibledegreenpolynomialf(x;y)suchthatf(x;y)=0represents thesamecurveas(1).theequationsx=x(t)=w(t),y=y(t)=w(t)arecalledthe parametricformofthecurve,whereastheequationf(x;y)=0iscalledtheimplicit formofthesamecurve.surfacestoohaveparametricandimplicitforms.parametric w(t); w(t); representationsareconvenientforrenderingcurvesandsurfaces,whiletheimplicitforms areusefulforcheckingwhetherornotapointliesonacurveorsurface.implicitization istheprocessofndingtheimplicitrepresentationsforcurvesorsurfacesfromtheir parametricrepresentations. curvesandsurfaceswithbasepoints(sederbergetal1994;sederbergetal1997). ofmovingalgebraiccurvesandsurfacestosolvetheimplicitizationproblemforrational pointof(1)isaparametert0suchthatx(t0)=y(t0)=w(t0)=0.atabasepointthe rationalexpressionsforxandybothhavetheform0.sederbergintroducedthemethod identicallyinthepresenceofbasepoints(chionh1990;manocha&canny1992).abase surfaces(goldmanetal1984;demontaudouin&tiller1984).butresultantsvanish Resultantscanbeappliedtosolvetheimplicitizationproblemforrationalcurvesand Amovinglineofdegreed parametert.similarly,amovingconicofdegreed isaoneparameterfamilyofimplicitlydenedlines,withonelinecorrespondingtoeach Amongthealgebraiccurves,movinglinesandmovingconicsarethemostimportant. dxi=0(aix2+biy2+cixy+dixw+eiyw+fiw2)ti=0 dxi=0(aix+biy+ciw)ti=0 (2) isaoneparameterfamilyofimplicitlydenedconics.amovingline(2)oramoving conic(3)issaidtofollowarationalcurve(1)if dxi=0(aix(t)+biy(t)+ciw(t))ti0; (3) ordxi=0(aix2(t)+biy2(t)+cix(t)y(t)+dix(t)w(t)+eiy(t)w(t)+fiw2(t))ti0:(5) (4) zero,wegeneratealinearsystemwithunknownsfai;bi;ci;dig(orfai;;fig).any BysettingthecoecientsofallmonomialstiinEquation(4)(orEquation(5))to 2
3 (1).Themethodofmovinglines(movingconics)constructstheimplicitequationofa rationalcurvebytakingthedeterminantofthecoecientmatrixofasetofindependent movinglines(movingconics)thatfollowthecurve.hereindependencemeansnotjust solutionofthislinearsystemisamovingline(orconic)thatfollowstherationalcurve thelinearindependenceofthesolutionsofthelinearsystemgeneratedfromequation example,kmovinglines (4)(orEquation(5)),butratherindependenceofthemovinglines(orconics).Thus,for aresaidtobeindependentifthematrix lk(ak;0x+bk;0y+ck;0w)++(ak;dx+bk;dy+ck;dw)td=0 l1(a1;0x+b1;0y+c1;0w)++(a1;dx+b1;dy+c1;dw)td=0;. 264A1;0x+B1;0y+C1;0wAk;0x+Bk;0y+Ck;0w studied(sederbergetal1997),andcleverapplicationsofmovinglinesarepresentedin equationofarationalcurve(sederbergetal1997).movinglineshavebeenthoroughly isofrankk. Itisknownthatthemethodofmovinglinesalwayssuccessfullyproducestheimplicit A1;dx+B1;dy+C1;dwAk;dx+Bk;dy+Ck;dw (Coxetal1998;Chionhetal1998).However,themovinglinemethodrequirescomputing alargedeterminanttogeneratetheimplicitrepresentation.incontrasttothemethod anadvantageoverthemovinglinesmethod,sincethemethodofmovingconicscomputes ofmovinglines,themethodofmovingconicsdoesnotalwayssuccessfullyyieldthe implicitequationofarationalcurve.rather,themovingconicsmethodproducesthe theimplicitequationofarationalcurvebytakingadeterminantofmuchsmallersize followingthecurve(sederbergetal1997).nevertheless,themovingconicsmethodhas thanthedeterminantgeneratedbythemethodofmovinglines. implicitequationofarationalcurveifandonlyiftherearenolowdegreemovinglines ofthemethodofmovingconicsforrationalcurvesisessentialtoextendingboththe movingsurfaces,wherebasepointsplayamorefundamentalrole.aclearunderstanding methodandtheproofstorationalsurfaces(c.f.section4). conics.forarationalcurvex=x(t) Ourultimategoalistogeneralizethemethodofmovingcurvestothemethodof Thispaperpresentsanewperspectiveonthemethodsofmovinglinesandmoving matrix.inparticularweshallshowthatformovinglinesandmovingconicsofdegree aremovinglines(movingconics)thatfollowtherationalcurve.wecallthecoecient matrixofthislinearsystemthemovinglinematrix(movingconicmatrix).thegoalof equatingthecoecientsofallmonomialsinttozero.thesolutionsofthislinearsystem generatedbysubstitutingx(t);y(t);w(t)intothemovingline(4)(movingconic(5))and thispaperistoderivearelationshipbetweenthemovinglinematrixandthemovingconic w(t),y=y(t) w(t)ofdegree2m,considerthelinearsystem m?1,thedeterminantofthemovinglinematrixactuallyfactorsasub-determinantof 3
4 in(sederbergetal1997),thisnewproofseemstogeneralizenaturallytothemethodof movingquadricsforrationalsurfaces. conicssuccessfullyproducestheimplicitequationoftherationalcurve.unlikethework therearenolowdegreemovinglinesfollowingarationalcurve,themethodofmoving themovingconicmatrix.basedonthisobservation,wepresentanewproofthatwhen matrixnotation,andinsection3weintroducethemovinglineandmovingconicmatrices. Section4establishestherelationshipbetweenthemovinglineandmovingconicmatrices torationalcurvesofodddegrees,andbrieydiscusspossiblegeneralizationstorational movingconicssuccessfullygeneratestheimplicitequationofarationalcurvewhenthere isnolowdegreemovinglinethatfollowsthecurve.insection5,weextendtheseresults forrationalcurvesofevendegrees,andusesthisrelationshiptoprovethatthemethodof Therestofthispaperisorganizedinthefollowingway.InSection2wexsome surfaces. by1;t;;td.thatis, denotethe(d+1)kcoecientmatrixofthepolynomialspi(t)whoserowsareindexed degreedi,andletd=max(d1;d2;;dk).weshallwritehp1(t)p2(t)pk(t)icto 2Notation Forconvenience,weadoptthefollowingnotation:Letpi(t),1ik,bepolynomialsof Forexample,h(1+2t)(1+2t)t3(4+5t+6t2)iC= p1(t);;pk(t)=(1td)hp1(t)p2(t)pk(t)ic: Ifhp1(t)p2(t)pk(t)iCisasquarematrix,wedenoteitsdeterminantby 205 p1(t)pk(t): : InSections3and4,wewillstudyonlyrationalcurveswithevendegreesandnobase 3MovingLineandMovingConicMatrices points.considerthenadegree2mrationalcurveinhomogeneousformx(t):y(t):w(t), 4
5 andgcd(x(t);y(t);w(t))=1.thecartesiancoordinatesofpointsonthecurvearegiven where x(t)=2mxi=0aiti;y(t)=2mxi=0biti;w(t)=2mxi=0citi; X=x(t) w(t); Y=y(t) w(t): (6) generatedbyequatingthecoecientsofallmonomials(int)inequation(4)tozero.we Thecoecientmatrixhx;y;w,,tdx;tdy;tdwiCisofsize(2m+d+1)(3d+3). canwritethissystemas Tondadegreedmovinglinethatfollowscurve(6),weconsiderthelinearsystem Similarly,tonddegreedmovingconicsthatfollowcurve(6),weconsiderthelinear systemgeneratedbyequatingthecoecientsofallmonomials(int)inequation(5)to zero.wecanwritethissystemas hx;y;w;;tdx;tdy;tdwic[a0;b0;c0;;ad;bd;cd]t0: hx2;y2;xy;xw;yw;w2;;tdxw;tdyw;tdw2ic[a0;b0;c0;;dd;ed;fd]t0:(8) (7) Thecoecientmatrixhx2;y2;xy;xw;yw;w2,,tdxw;tdyw;tdw2iCisofsize(4m+d+ 1)(6d+6). degreem?1thatfollowthecurveandthengeneratestheimplicitrepresentationfrom inx;y.themethodofmovingconicsndsasetofmindependentmovingconicsof thedeterminantofthecoecientmatrixofthissetofmovingconics.considerthenm independentmovingconicsofdegreem?1thatfollowthecurve: Itiswellknownthattheimplicitformofcurve(6)isapolynomialofdegree2m whereci;j(x;y;w),0i;jm?1,arequadraticinx;y;w.itisknownthatsuch independentconicsexistandthat pm?1(x;y;w;t)=cm?1;0(x;y;w)+cm?1;1(x;y;w)t++cm?1;m?1(x;y;w)tm?1; p0(x;y;w;t)=c0;0(x;y;w)+c0;1(x;y;w)t++c0;m?1(x;y;w)tm?1; c0;0(x;y;w)cm?1;0(x;y;w). istheimplicitequationofcurve(6),whentherearenomovinglinesofdegreem?1 thatfollowthecurve(sederbergetal1997).wewillthereforeconsiderthecasewhere d=m?1inequations(7)and(8).then[x;y;w,,tdx;tdy;tdwicisasquarematrix c0;m?1(x;y;w)cm?1;m?1(x;y;w)=0... 5
6 oforder3m denotethis3m3mmatrixbyml.thematrixhx2;y2;xy;xw;yw;w2,,tdxw;tdyw;tdw2icisofsize5m6m denotethis5m6mmatrixbymc.our showthatthemethodofmovingconicsworkswhenevertherearenolowdegreemoving linesthatfollowthecurve. goalistondarelationshipbetweenmlandmc,andthentoapplythisrelationshipto MCw=hx2y2xyxwywtm?1x2tm?1y2tm?1xytm?1xwtm?1ywiC5m5m: 5m.Wedenotethis5m5msubmatrixbyMCw.Tosummarize: polynomialstkw2;k=0;;m?1.thisproceduregeneratesasquaresubmatrixoforder ToobtainasquaresubmatrixfromMC,wedeletethecolumnsthatrepresentthe ML=hxywtm?1xtm?1ytm?1wiC3m3m; fewpreliminarylemmas. Lemma1jMLjisirreducibleinthecoecientsofx(t);y(t);w(t)(Sederbergetal1997). 4jMLjFactorsjMCwj WearegoingtoshowthatjMCwj=constantResulant(x;y)jMLj2.Webeginwitha (Macaulay1916). Lemma3IfjMLj=0,thenjMCwj=0. Lemma2TheresultantRx(t);y(t)isirreducibleinthecoecientsofx(t);y(t) arelinearlydependent.therefore,jmcwj=0.2 thepolynomialstkx2,tky2,tkxy,tkxw;tkyw,k=0;;m?1.thusthecolumnsofmcw Proof.IfjMLj=0,thenthecolumnsinMLarelinearlydependent.Thatis,thereexist constantsi;i=1;;3m,suchthat MultiplyingbothsidesofEquation(9)byx(t)ory(t),wegetalinearrelationshipbetween 1x(t)+2y(t)+3w(t)++3m?2tm?1x(t)+3m?1tm?1y(t)+3mtm?1w(t)0:(9) Lemma4IftheresultantRx(t);y(t)=0,thenjMCwj=0. 6
7 commonroott0.therefore, Proof.WhentheresultantRx(t);y(t)=0,thetwopolynomialsx(t);y(t)havea =[x2(t0)y(t0)w(t0)tm?1 [1t0t5m?1 0]MCw Lemma5IfjMCwj=0,theneitherRx(t);y(t)=0orjMLj=0. ThustherowsofMCwarelinearlydependent,sojMCwj=0.2 =[00]15m: 0x2(t0)tm?1 0y(t0)w(t0)]15m Proof.IfjMCwj=0,thenthereexistconstantsi;i=1;;5msuchthat Collectthecoecientsofx2;y2;xy;xw;ywandrewriteEquation(10)as wherepi(t);i=1;;5arepolynomialsintofdegreem?1.equation(11)canalsobe writtenas 1x2(t)+2y2(t)+3x(t)y(t)++5m?1tm?1x(t)w(t)+5my(t)w(t)0:(10) p1(t)x+p3(t)y+p4(t)wx?p2(t)y?p5(t)wy: p1(t)x2+p2(t)y2+p3(t)xy+p4(t)xw+p5(t)yw0; (11) thanorequaltom?1suchthatq(t)x=?p2(t)y?p5(t)w.thatis, wecanassumedegree(x)=2m.therefore,thereexistsapolynomialq(t)ofdegreeless p1(t)x+p3(t)y+p4(t)w,andxmustdivide?p2(t)y?p5(t)w.withoutloseofgenerality, x(t)andy(t)donothaveacommonroot.therefore,fromequation(12),ymustdivide NowweshallprovethatifRx(t);y(t)6=0,thenjMLj=0.IfRx(t);y(t)6=0,then (12) p1(t);p3(t);p4(t),suchthatp1(t)x+p3(t)y+p4(t)w0 Ifp2(t)0andp5(t)0,thenbyEquation(12)thereexistnon-zeropolynomials MLarelinearlydependent,sincethedegreesofq(t);p2(t);p5(t)areallatmostm?1. Whenp2(t)orp5(t)arenotidenticallyzero,relationship(13)assertsthatthecolumnsof q(t)x+p2(t)y+p5(t)w0: (14) (13) jmlj=0.2 againassertsthatthecolumnsofmlarelinearlydependent.therefore,ineithercase, withthedegreesofp1(t);p3(t);p4(t)alllessthanorequaltom?1.thisrelationship Theorem6jMCwj=cRx(t);y(t)jMLj2,wherecissomenon-zeroconstant. Withallthispreparation,wecannownallyproveourmainresult. 7
8 Proof.FromLemma5,weconcludethatjMCwjhasonlytwonon-constantfactors: x(t);y(t);w(t).first,considerjmcwj.sinceeachcolumnofmcwcontainsentrieshomogeneousinthecoecientsofx(t);y(t);w(t),thedeterminantjmcwjisahomogeneous wherecissomenon-zeroconstant. polynomialinthesecoecients.specically,jmcwjishomogeneousofdegree4minthe Letusnowexaminethedegreesofeachofthesedeterminantsinthecoecientsof jmcwj=chr(x(t);y(t)ipjmljq: (15) R(x(t);y(t))andjMLj.Therefore,thereexistpositiveintegersp;qsuchthat coecientsofx(t)andy(t),andhomogeneousofdegree2minthecoecientsofw(t). Ontheotherhand,theresultantRx(t);y(t)ishomogeneousofdegree2minthecoecientsofx(t)andy(t),andjMLjishomogeneousofdegreeminthecoecientsof x(t);y(t);w(t). Comparingthehomogeneousdegreesinthecoecientsofx(t);y(t);w(t)onbothsides ofequation(15),wehavethefollowingequalities: Itiseasytoseethattheonlysolutiontotheseequalitiesisp=1andq=2.Theproof isthereforecomplete.2 2mp+mq=4m; mq=2m:(inthecoecientsofw(t)) (inthecoecientsofx(t)) thecolumnsthatrepresentthepolynomialstkx2ortky2,0km?1,wecanobtain NotethatintheoriginalmovingconicmatrixMC(c.f.Equation(8)),ifwediscard (inthecoecientsofy(t)) similarresults: Corollary7Ifadegree2mrationalcurvex(t):y(t):w(t)doesnothavebasepoints, jmcxj=cry(t);w(t)jmlj2; andtherearenodegreem?1movinglinesthatfollowx(t):y(t):w(t),thenthemethod jmcyj=crw(t);x(t)jmlj2: ofmovingconicsalwayssucceedsinproducingtheimplicitequationforx(t):y(t):w(t). rootamongx(t);y(t);w(t).wecanthentranslatethecurvex(t):y(t):w(t)to x(t0)=0;y(t0)=0,weknowthatw(t0)6=0since,byassumption,thereisnocommon thesuccessofthemovingconicsmethod.infact,iftheresultantrx(t);y(t)=0, thenx(t)andy(t)haveatleastonecommonroot.butforanyparametert0suchthat Proof:FirstweobservethatthevanishingoftheresultantRx(t);y(t)doesnotaect 8
9 resultantrx(t);y(t)isnotzero. theimplicitequationoftheoriginalcurveisequivalenttondingtheimplicitequation ofthetranslatedcurve.thuswecanalwaysassume,withoutloseofgenerality,thatthe implicitequationofthetranslatedcurveisf(x+constant;y)=0.therefore,tond commonroots.iff(x;y)=0istheimplicitequationoftheoriginalcurve,thenthe x(t)+constantw(t):y(t):w(t)sothatx(t)+constantw(t)andy(t)donothave x(t):y(t):w(t),thenjmlj6=0.thereforebytheorem7,jmcwj6=0.writethe linearsystem(8)(whend=m?1)as Second,iftherearenodegreem?1movinglinesthatfollowtherationalcurve MCw2 6 4Am?1 A E0. 0 The5mmmatrix[w2tm?1w2]ContherighthandsideofEquation(16)has Em?1 3 75=?[w2tm?1w2]C264F0 fullrankm,becausethecolumnsofthismatrixarelinearlyindependent.therefore,the Fm?1375:. system(16)hasmlinearlyindependentsolutions.letpi,0im?1,bethesolution ofsystem(16)correspondingtosetting tries.hencethedeterminantjp0pm?1jcontainsthetermw2m.thus,thisdeter- minantdoesnotvanishidentically.sinceeachentryinthisdeterminantisquadraticin Thereforethecoecientmatrix[P0Pm?1]Ccontainsw2onlyinthediagonalen- 0j6=i: Then Pi=tiw2+termswithoutw2; Fj=(1j=i; x;y;w,thetotaldegreeofthisdeterminantisatmost2m.moreover,byconstruction, eachcolumnpi,0im?1,isamovingconicthatfollowsthecurve,soforpoints onthecurve,therowsarelinearlydependent;hencethisdeterminantiszeroforpoints 0im?1: m?1thatfollowsthecurve.2 x(t):y(t):w(t)isrepresentedbyauniqueirreducibledegree2mpolynomialequation. onthecurve.ontheotherhand,theimplicitequationofthedegree2mrationalcurve Therefore,thedeterminantjP0Pm?1jmustbetheimplicitequationoftherational curve,sothemethodofmovingconicssucceedswhenthereisnomovinglineofdegree 9
10 5GeneralizationsandExtensions 5.1RationalCurveswithOddDegrees InSections3and4,wediscussedarelationshipbetweenthemovinglineandmoving propositionshold. conicmatricesforrationalcurvesofevendegrees.forodddegreerationalcurves,similar isofsize(3m+2)(3m+3).togetasquaresubmatrix,discardthelastcolumnfrom ML,andwritetheresultingsubmatrixas Considerarationalcurvex(t):y(t):w(t)ofdegree2m+1.Themovinglinematrix MLw=[xywtmxtmy]C(3m+2)(3m+2): ML=[xywtmxtmytmw]C km,andtmxw;tmyw.theresultingsquaresubmatrixis isofsize(5m+3)(6m+6).deletethecolumnsthatrepresentthepolynomialstkw2;0 Themovingconicmatrix MC=[x2y2xyxwyww2tmx2tmy2tmxytmxwtmywtmw2]C wherecissomenon-zeroconstant.itfollowsfromthisequationbyanargumentanalogous ByananalysissimilartothatofSection4,wehave MCw=[x2y2xyxwywtmx2tmy2tmxy]C(5m+3)(5m+3): tothatintheproofofcorollary7thatwhentherearenobasepointsandwhenthere curvex(t):y(t):w(t),themethodofmovingconicssuccessfullygeneratestheimplicit existsonlyoneindependentmovinglineofdegreemthatfollowsthedegree2m+1 equationfortherationalcurve. jmcwj=cresultantx(t);y(t)jmlwj2; 5.2RationalSurfaces Forrationaltensorproductsurfaces,movinglinesandmovingconicsgeneralizetomovingplanesandmovingquadrics.Empiricalstudiesandnumericalexperimentsshowthat surface.moreover,usingthismethodtheimplicitequationofasurfaceofbidegree(m;n) themethodofmovingquadricsgenerallyproducestheimplicitequationforarational bytheusualresultantmethods(order2mn).furthermore,whenbasepointsarepresent, isrepresentedbyamuchmorecompactdeterminant(ordermn)thantheonegenerated 10
11 letmqbethemovingquadriccoecientmatrix.weconjecturethat veryusefultoknowexactlywhenthemethodofmovingquadricsworks. simpliesinthepresenceofbasepoints(sederberg&chen1995).therefore,itwouldbe standardresultantmethodseitherfail(becomeidenticallyzero)orbecomeverycomplicated,whereasthemethodofmovingquadricsstillgenerallysucceedsandindeedoften wheremqwisthesubmatrixofmqobtainedbydeletingthecolumnsrepresentingthe amongthecolumnsofmlgeneratestworelationsamongthecolumnsofmcw(multiplyingbyx(t)ory(t))[c.f.lemma3];hencejmljisadoublefactorofjmcwj.forthe bivariatecase,eachrelationamongthecolumnsofmpgeneratesthreerelationsamong jmqwj=cresultant(x(s;t);y(s;t);z(s;t))jmpj3; polynomialsthataremultiplesofw2.notethatintheunivariatesetting,eachrelation Inanalogywithrationalcurves,letMPbethemovingplanecoecientmatrix,and thecolumnsofmqw(multiplyingbyx(s;t),y(s;t)orz(s;t)).soweexpectjmpjshould surface. deedholdforrationalsurfaces.wehopetoprovethisassertioninafuturepaper,and beatriplefactorofjmqwj.numericalexperimentsshowthatthisrelationshipdoesin- Acknowledgments toapplythisresulttoshowthatthemethodofmovingquadricsalwayssuccessfullyimplicitizesarationalsurfacewhentherearenolowdegreemovingplanesthatfollowthe providedbybyu.mingzhangandrongoldmanarepartiallysupportedbynsfgrant CCR BrighamYoungUniversity.Hegreatlyappreciatesthehospitalityandfacilitiesgenerously Eng-WeeChionhissupportedbytheNationalUniversityofSingaporeforresearchat References [1]Chionh,E.W.,Zhang,M.,Goldman,R.N.(1998),ImplicitizationMatricesinthe [3]Goldman,R.N.,Sederberg,T.,Anderson,D.(1984),VectorElimination:ATech- [2]Cox,D.,Sederberg,T.W.,Chen,F.(1998),TheMovingLineIdealBasisforPlanar StyleofSylvesterwiththeOrderofBezout,submittedtoComputerAidedDesign. [4]Macaulay,F.S.(1916),TheAlgebraicTheoryofModularSystems,CambridgeUniversityPress. RationalCurves,ComputerAidedGeometricDesign,toappear. niquefortheimplicitization,inversion,andintersectionofplanarparametricratio- nalpolynomialcurves.computeraidedgeometricdesign1,
12 [5]Manocha,D.andCanny,J.F.(1992),AlgorithmsforImplicitizingRationalParametricSurfaces.ComputerAidedGeometricDesign9,25{50. [7]Sederberg,T.W.,Saito,T.,Qi,D.,Klimaszewski,K.(1994),CurveImplicitization [6]DeMontaudouin,Y.,Tiller,W.(1984),TheCayleyMethodinComputerAided UsingMovingLines.ComputerAidedGeometricDesign11, GeometricDesign.ComputerAidedGeometricDesign1,309{326. [8]Sederberg,T.W.,Chen,F.(1995),ImplicitizationUsingMovingCurvesandSurfaces,ProceedingsofSIGGRAPH, [9]Sederberg,T.W.,Goldman,R.N.,Du,H.(1997),ImplicitizingRationalCurvesby themethodofmovingalgebraiccurves,j.symboliccomp.23,153{
1Introduction. identicallywhenthesurfacehasbasepoints{thatis,parametervalues(s0;t0)forwhich
OntheValidityofImplicitizationbyMovingQuadrics forrationalsurfaceswithnobasepoints DepartmentofMathematicsandComputerScience Amherst,MA,01002 [email protected] AmherstCollege DavidCox DepartmentofComputerScience
Examples of Physical Quantities
8/17/2005 Examples of Physical Quantities.doc 1/6 Examples of Physical Quantities A. Discrete Scalar Quantities can be described with a single numeric value. Examples include: 1) My height (~ 6 ft.). 2)
FM 55-30 14 APRIL 2000 By Order of the Secretary of the Army: Official: ERIC K. SHINSEKI General, United States Army Chief of Staff Administrative Assistant to the Secretary of the Army 0005503 DISTRIBUTION:
AClassofLinearAlgorithmstoProcessSetsofSegments GonzaloNavarroRicardoBaeza-Yates DepartmentofComputerScience fgnavarro,[email protected] BlancoEncalada2120 UniversityofChile Santiago-Chile currentsolutionstooperatesegmentsfocusonsingleoperations(e.g.insertionorsearching),
Forecasting Methods. What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes?
Forecasting Methods What is forecasting? Why is forecasting important? How can we evaluate a future demand? How do we make mistakes? Prod - Forecasting Methods Contents. FRAMEWORK OF PLANNING DECISIONS....
ASocialMechanismofReputationManagement inelectroniccommunities 446EGRC,1010MainCampusDrive BinYuandMunindarP.Singh? DepartmentofComputerScience NorthCarolinaStateUniversity fbyu,[email protected] Raleigh,NC27695-7534,USA
NP-completeproblemstractable Copyingquantumcomputermakes MikaHirvensalo February1998 ISBN952-12-0158-4 TurkuCentreforComputerScience ISSN1239-1891 TUCSTechnicalReportNo161 superpositions,weshowthatnp-completeproblemscanbesolvedprobabilisticallyinpolynomialtime.wealsoproposetwomethodsthatcould
Color Code Drug Doses L.A. County Kids
3 Kg 1. 3.0 Joules 3.0 Joules 12 Joules 12 Joules 0. 60 mg 0.0 3 meq Add 18 mg (.23mL) to a 100 ml bag of NS. adequate perfusion 6 ml 1. 0.0 0. 0. 60 ml 4 Kg 2 Joules 1 1 0. 80 mg 0.0 4 meq Add 2 (.3mL)
Nearestneighboralgorithmsforloadbalancingin ChengzhongXu parallelcomputers DepartmentofElectricalandComputerEngg. WayneStateUniversity,Detroit,MI48202 BurkhardMonien,ReinhardLuling [email protected]
Amadeus Virtual MCO User Guide
Amadeus Virtual MCO User Guide Introduction to Amadeus Virtual MCO The Automated Miscellaneous Charges Order (MCO) solution, enabling agent to Provide to the customer services in addition to the trip,
Probabilistic user behavior models in online stores for recommender systems
Probabilistic user behavior models in online stores for recommender systems Tomoharu Iwata Abstract Recommender systems are widely used in online stores because they are expected to improve both user
Attention windows of second level fixations. Input image. Attention window of first level fixation
HandSegmentationUsingLearning-BasedPredictionand VericationforHandSignRecognition DepartmentofComputerScience YuntaoCuiandJohnJ.Weng mentationschemeusingattentionimagesfrommultiple Thispaperpresentsaprediction-and-vericationseg-
ATT-72/94, SALT SIEVE ANALYSIS. This method describes the procedure for determining the gradation of salt.
1.0 Scope ATT-72/94, SALT SIEVE ANALYSIS 1.0 SCOPE This method describes the procedure for determining the gradation of salt. 2.0 EQUIPMENT sieves: 80 µm, 160 µm, 315 µm, 630 µm, 1 250 µm, 2 500 µm, 5
Standards. Interactive Media, July 2012, Page 1 of 6
Indiana Department of Education Academic Course Framework INTERACTIVE MEDIA Interactive Media prepares students for careers in business and industry working with interactive media products and services;
DistributedSharedMemorySystems? AdaptiveLoadBalancinginSoftware CompilerandRun-TimeSupportfor SotirisIoannidisandSandhyaDwarkadas fsi,[email protected] DepartmentofComputerScience Rochester,NY14627{0226
Programs Implementing Management System Elements AT&T Environment, Health and Safety Management System ISO 14001 EMS Element 4.1General 4.
Conformity with ISO 14001 Environmental Management Systems AT&T developed a combined Environment, Health and Safety (EH&S) Management System, which is designed to use elements of ISO 14001 EMS standard
Australian Santa Gertrudis Selection Indexes
Australian Santa Gertrudis Selection Indexes There are currently two different selection indexes calculated for Australian Santa Gertrudis animals. These are: Domestic Production Index Export Production
Tuition Reimbursement Program. Handbook
EMPLOY EE Tuition Reimbursement Program Handbook For Employees... Ed u c a t i o n m a d e a f f o r d a b l e! A t t h e E r n e s t O r l a n d o L a w r e n c e B e r k e l e y N a t i o n a l L a b
o Ivy Tech CONT 101 Introduction to Construction CONT 106 Construction Blueprint Reading BCOT 104 Floor and Wall Layout
Indiana Department of Education Academic Course Framework CONSTRUCTION TECHNOLOGY I Construction Technology I focuses on classroom and laboratory experiences involving the formation, installation, maintenance,
o Ivy Tech DESN 105- Architectural Design I DESN 113- Intermediate CAD o Vincennes University ARCH 221- Advanced Architectural Software Applications
Indiana Department of Education Academic Course Framework ARCHITECHTURAL DRAFTING AND DESIGN II Architectural Drafting and Design II presents a history and survey of architecture and focuses on the creative
Power Rating Simulation of the new QNS connector generation
Power Rating Simulation of the new QNS connector generation IMS Connector Systems is an international, technology driven company specialized in development and production of high frequency connections.
Figure2:Themixtureoffactoranalysisgenerativemodel. j;j z
TheEMAlgorithmforMixturesofFactorAnalyzers DepartmentofComputerScience ZoubinGhahramani GeoreyE.Hinton May21,1996(revisedFeb27,1997) TechnicalReportCRG-TR-96-1 Email:[email protected] Toronto,CanadaM5S1A4
VALUATION OF DEBT CONTRACTS AND THEIR PRICE VOLATILITY CHARACTERISTICS QUESTIONS See answers below
VALUATION OF DEBT CONTRACTS AND THEIR PRICE VOLATILITY CHARACTERISTICS QUESTIONS See answers below 1. Determine the value of the following risk-free debt instrument, which promises to make the respective
Fundamentals of Electromagnetic Fields and Waves: I
Fundamentals of Electromagnetic Fields and Waves: I Fall 2007, EE 30348, Electrical Engineering, University of Notre Dame Mid Term II: Solutions Please show your steps clearly and sketch figures wherever
SUBJECT: Army Information Technology Service Management (ITSM) Policy
DEPARTMENT OF THE ARMY OFFICE OF THE SECRETARY OF THE ARMY 107 ARMY PENTAGON WASHINGTON DC 20310-0107 Office, Chief Information Officer/G-6 SAIS-PR MEMORANDUM FOR SEE DISTRIBUTION SUBJECT: Information
A mixture model for random graphs
A mixture model for random graphs J-J Daudin, F. Picard, S. Robin [email protected] UMR INA-PG / ENGREF / INRA, Paris Mathématique et Informatique Appliquées Examples of networks. Social: Biological:
Computer Tech Support, July 2012, Page 1 of 5
Indiana Department of Education Academic Course Framework COMPUTER TECH SUPPORT Computer Tech Support allows students to explore how computers work. Students learn the functionality of hardware and software
Fall Protection Safe Work Plan Fall Distance of 7.5M or More
Department of Facilities Management Occupational Health and Safety Fall Protection Safe Work Plan Fall Distance of 7.5M or More When employees are involved in jobs with a risk of falling they must: Shop:
Fire Science One-Year Certificate 2013-2014
Fire Science One-Year Certificate 2013-2014 Name Anticipated Graduation Date Developmental Courses Original placement in developmental education courses is determined by ACT, ASSET, Compass, or SAT test
Wealth Management Formula
AP = WE + WT +WP + CG RM = CRM + ENRM WE = Wealth Enhancement (tax and cashflow planning) Historical Portfolio Performance Analysis Risk Evaluations Asset Allocation Investment Policy Statement Building
Scalars, Vectors and Tensors
Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector
Study Kit No 9. Aura Lee (Love Me Tender)
Study Kit No 9 Aura Lee (Love Me Tender) Reharmonization Study Kit No. 9 Aura Lee Author: Rosablanca Suen Web: www.learnpianowithrosa.com Email: [email protected] Cover Design: Raymond Suen Copyright
Curriculum Vitae. Wayne Loucas. Education University of South Florida, Tampa, FL Master of Fine Arts in Photography
Curriculum Vitae WayneLoucas RichlandCollege ProfessorofPhotography 12800AbramsRoad SchoolofHumanities, Dallas,TX75243 FineandPerformingArts Office:972 238 6078 [email protected] Education UniversityofSouthFlorida,Tampa,FL
Matrix Differentiation
1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have
Thispapersurveysthecontributionsofvemathematicians Eugenio Beltrami(1835{1899),CamilleJordan(1838{1921),JamesJoseph
DepartmentofComputerScience UniversityofMaryland InstituteforAdvancedComputerStudies CollegePark TR{92{31 TR{2855 SingularValueDecomposition OntheEarlyHistory G.W.Stewarty ABSTRACT March1992 ofthe Thispapersurveysthecontributionsofvemathematicians
Chords and More Chords for DGdg Tenor Banjo By Mirek Patek
Chords and More Chords for DGdg Tenor Banjo By Mirek Patek This tenth article about the fingerstyle tenor banjo in DGdg tuning will be focused on banjo accompaniment, i.e. on playing chords. The goal is
AMATH 352 Lecture 3 MATLAB Tutorial Starting MATLAB Entering Variables
AMATH 352 Lecture 3 MATLAB Tutorial MATLAB (short for MATrix LABoratory) is a very useful piece of software for numerical analysis. It provides an environment for computation and the visualization. Learning
... Schema Integration
DataIntegrationTechniquesbasedon MichaelGertz DataQualityAspects DepartmentofComputerScience UniversityofCalifornia,Davis IngoSchmitt [email protected] Davis,CA95616,USA OneShieldsAvenue Otto-von-Guericke-UniversitatMagdeburg
DIGITAL ALARM CLOCK RADIO
DIGITAL ALARM CLOCK RADIO INSTRUCTION MANUAL For information and support, www.lenco.eu CR3302 LENCO ENG FM ONLY IM 98 x1 1 11/5/2009 9:14:35 CAUTION RISK OF ELECTRIC SHOCK DO NOT OPEN WARNINGS ATTENTION
Approved BLS/CPR and ACLS Education for EMS Provider Certification November 2013
Approved BLS/CPR and ACLS Education for EMS Provider Certification November 2013 The Colorado EMTS section has evaluated BLS/CPR and ACLS education programs for satisfaction of Colorado EMS provider certification/recertification
Foundation Course. Study Kit No 1. Away In A Manger
Foundation Course Study Kit No 1 Away In A Manger Reharmonization Study Kit No. 1 Away In A Manger Author: Rosablanca Suen Web: www.learnpianowithrosa.com Email: [email protected] Cover Design:
TheSymbolicDataBenchmarkProblems CollectionofPolynomialSystems http://www.symbolicdata.org [email protected] DepartmentofComputerScience UniversityofLeipzig,Germany Hans-GertGrabe Authorsofsoftwareorevenpackagesormodulescapableofspecialsymbolic
CBE 6333, R. Levicky 1. Tensor Notation.
CBE 6333, R. Levicky 1 Tensor Notation. Engineers and scientists find it useful to have a general terminology to indicate how many directions are associated with a physical quantity such as temperature
Option Pricing. Chapter 12 - Local volatility models - Stefan Ankirchner. University of Bonn. last update: 13th January 2014
Option Pricing Chapter 12 - Local volatility models - Stefan Ankirchner University of Bonn last update: 13th January 2014 Stefan Ankirchner Option Pricing 1 Agenda The volatility surface Local volatility
Technology - A Brief Summary
CORBA-BasedRun-TimeArchitecturesforWorkow J.A.Miller,A.P.Sheth,K.J.KochutandX.Wang LargeScaleDistributedInformationSystemsLab DepartmentofComputerScience ManagementSystems ABSTRACT email:@cs.uga.edu
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
DIPLOMA IN SECURITY MANAGEMENT. Term-End Examination December, 2011 BSEI-007 : TRAIN THE TRAINERS
No. of Printed Pages : 12 BSEI-007 CY) rn CD CD DIPLOMA IN SECURITY MANAGEMENT Term-End Examination December, 2011 BSEI-007 : TRAIN THE TRAINERS Time : 3 hours Maximum Marks : 100 Note : Question No. 1
How To Determine Chords for Mountain Dulcimer Playing (How The Person Who Wrote the Chord Book Figured It Out)
How To Determine Chds f Mountain Dulcimer Playing (How The Person Who Wrote the Chd Book Figured It Out) by Roger Huffmaster Did you ever wonder how the person who wrote the mountain dulcimer chd chart
Functions. MATH 160, Precalculus. J. Robert Buchanan. Fall 2011. Department of Mathematics. J. Robert Buchanan Functions
Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: determine whether relations between variables are functions, use function
You Could Have Invented Spectral Sequences
You Could Have Invented Spectral Sequences Timothy Y Chow Introduction The subject of spectral sequences has a reputation for being difficult for the beginner Even G W Whitehead (quoted in John McCleary
How To Improvise a Solo A Workshop for Beginners
1 How To Improvise a Solo A Workshop for Beginners 10:00-10:30 am Arrival, Setup and Performance 10:30 to 12:00 pm Interactive Workshop 12:00 to 12:30 Lunch 12:30 to 2:00 pm Workshop 2:00 tp 3:30 pm Open
The Secret Weapon for Bar Chords
Created by BCM The Secret Weapon for Bar Chords This handy device will make it much easier to form bar chords on your guitar. It is an effective tool that will give you immediate results. No more hours
Lesson 3. Numerical Integration
Lesson 3 Numerical Integration Last Week Defined the definite integral as limit of Riemann sums. The definite integral of f(t) from t = a to t = b. LHS: RHS: Last Time Estimate using left and right hand
Coloured stained glass & bevelled designs
Coloured stained glass & bevelled designs Add, value, elegance and authenticity to windows, doors and conservatories Colour Designs for conservatories & bay windows CET CF1 CET CF2 CET CF3 CET CF4 CET
Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B)
Amplifier for Small Magnetic and Electric Wideband Receiving Antennas (model AAA-1B) 1. Description and Specifications Contents 1.1 Description 1.2 1.2 Specifications 1.3 1.3 Tested parameters in production
Energy Management System based on the PN-EN ISO 50001 - implementation in Dzierzoniów
Energy Management System based on the PN-EN ISO 50001 - implementation in Dzierzoniów 50000 and 1 SEAPs Integrating energy action planning and energy management systems Barcelona, 1 st October 2014 Dzierżoniów
b 9 œ nœ j œ œ œ œ œ J œ j n œ Œ Œ & b b b b b c ÿ œ j œ œ œ Ó œ. & b b b b b œ bœ œ œ œ œ œbœ SANCTICITY
SANCTICITY ohn Scofield guitar solo from the live CD im Hall & Friends, Live at Town Hall, Volumes 1 & 2 azz Heritage CD 522980L Sancticity, a tune by Coleman Hawkins, is based on the same harmonic progression
Practical Approaches to Principal Component Analysis in the Presence of Missing Values
Journal of Machine Learning Research () 957- Submitted 6/8; Revised /9; Published 7/ Practical Approaches to Principal Component Analysis in the Presence of Missing Values Alexander Ilin Tapani Raiko Adaptive
b.a.b-technologie gmbh Control W Dokumentation
b.a.b-technologie gmbh Control W Dokumentation Date: 24. May 2013 EN Table of Contents Dokumentation Control W b.a.b technologie gmbh im INHOUSE Dortmund Rosemeyerstr. 14 44139 Dortmund [email protected]
thek-aryn-cubestructure. 1
DDE:AModiedDimensionExchangeMethod forloadbalancingink-aryn-cubes StateUniversityofNewYorkatBualo DepartmentofComputerScience Min-YouWuandWeiShu algorithmforthehypercubestructure.ithasbeengeneralizedtok-aryn-cubes.however,the
Phasors. Phasors. by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department. ^ V cos (wt + θ) ^ V sin (wt + θ)
V cos (wt θ) V sin (wt θ) by Prof. Dr. Osman SEVAİOĞLU Electrical and Electronics Engineering Department EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1 Vector
Navigating Family Medicine. Urban Residency Training Program Department of Family Medicine University of Calgary
Navigating Family Medicine Urban Residency Training Program Department of Family Medicine University of Calgary Policies and Procedures http://www.ucalgary.ca/familymedicine/ Username: FMResident Password:
Basic Guitar Chords. By Tomas Michaud
Basic Guitar Chords By Tomas Michaud 2 Basic Guitar Chords - Lesson 1 Basic Guitar Chords - Lesson 2 Basic Guitar Chords - Lesson 3 Basic Guitar Chords - Lesson 4 Basic Guitar Chords - Lesson 5 More Exercises:
EVOLUTION OF NETWORK AND SERVICE MANAGEMENT
EVOLUTION OF NETWORK AND SERVICE MANAGEMENT Prof. Janusz Filipiak, CEO Comarch Dr Paweł Łopata, Head of OSS Technical Consulting Piotr Machnik, EVP Product Management & Strategy Michał Mędrala, OSS R&D
Recognition Based CPIT(Service Management) Peter Miao, Chairman of itsmf (HK Chapter)
Recognition Based CPIT(Service ) Peter Miao, Chairman of itsmf (HK Chapter) ITIL (IT infrastructure library) is a widely accepted approach to IT Service (ITSM), which has been adopted by individuals and
Review Questions 1. Why is it important to arrange records by location?
1. Why is it important to arrange records by location? Some types of information, especially in specialized activities, are more easily accessed based on location within a facility, a locality, a state
Practical Application Fly Line Recommendations Freshwater
Practical Application Recommendations Freshwater Trout Small, rivers, streams, lakes 12 28 dry flies, small nymphs Calm, Delicate taper trout line, WF or DT floating, 2-5 wt. Trout Large rivers, streams,
Thrashing: Its causes and prevention
Thrashing: Its causes and prevention by PETER J. DENNING Princeton University* Princeton, New Jersey INTRODUCTION A particularly troublesome phenomenon, thrashing, may seriously interfere with the performance
