1Introduction. identicallywhenthesurfacehasbasepoints{thatis,parametervalues(s0;t0)forwhich



Similar documents
Themethodofmovingcurvesandmovingsurfacesisanew,eectivetoolfor Abstract



Rouch, Jean. Cine-Ethnography. Minneapolis, MN, USA: University of Minnesota Press, p 238

The Variance of Sample Variance for a Finite Population

Stirling s formula, n-spheres and the Gamma Function

Perpendicular and Parallel Line Segments Worksheet 1 Drawing Perpendicular Line Segments

Figure2:Themixtureoffactoranalysisgenerativemodel. j;j z

Jacobi s four squares identity Martin Klazar


1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, p i.

Mathematical Induction. Lecture 10-11

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

4.6 Linear Programming duality

National Awarding Committee (NAC) for EuroPsy in Lithuania: Overview. Introduction

Packet TDEV, MTIE, and MATIE - for Estimating the Frequency and Phase Stability of a Packet Slave Clock. Antti Pietiläinen

Homework 2. Page 154: Exercise Page 145: Exercise 8.3 Page 150: Exercise 8.9

BLENDER INTRO BLENDER TIPS

PC Problems HelpDesk Service Agreement


SCHOOLOFCOMPUTERSTUDIES RESEARCHREPORTSERIES UniversityofLeeds Report95.4

IMPLEMENTATION OF P-PIC ALGORITHM IN MAP REDUCE TO HANDLE BIG DATA

2.1 The Present Value of an Annuity


On-line machine scheduling with batch setups

18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in Total: 175 points.

BINOMIAL DISTRIBUTION

PINPOINT: What and Where?

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Solving Linear Systems, Continued and The Inverse of a Matrix

Self Bill Premium Calculation

Homework 2 Solutions

Hadoop SNS. renren.com. Saturday, December 3, 11

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

1. Prove that the empty set is a subset of every set.

MATH 289 PROBLEM SET 4: NUMBER THEORY

THREE DIMENSIONAL GEOMETRY

TMA4213/4215 Matematikk 4M/N Vår 2013


STAT 830 Convergence in Distribution

Applications of Fermat s Little Theorem and Congruences

Secure Databases: Protection Against User Influence

Solutions to Homework 6

INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE

BOBS COURSES OVERVIEW

National Awarding Committee (NAC) for EuroPsy in [Greece]: Overview

Factoring - Greatest Common Factor

EVALUATING A POLYNOMIAL

TEXTURE AND BUMP MAPPING

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n

Investment Statistics: Definitions & Formulas

LINES AND PLANES CHRIS JOHNSON

Single machine parallel batch scheduling with unbounded capacity

LARGE CLASSES OF EXPERTS

Portfolio Construction with OPTMODEL

Exercise Set 3. Similar triangles. Parallel lines

SPRING UNIT 14. second half. Line symmetry and reflection. Measuring angles. Naming and estimating angles. Drawing angles

MATH ajajoo/math2433

Licensed to: Printed in the United States of America

Teoretisk Fysik KTH. Advanced QM (SI2380), test questions 1

(IF THERE IS NO RECOVERY OF MONEY FOR THE CLIENT, THEN CLIENT OWES ATTORNEYS NOTHING)

Section 1. Finding Common Terms

Attention windows of second level fixations. Input image. Attention window of first level fixation

IKEA Light Sources Technical Information

National Awarding Committee (NAC) for EuroPsy in [Name of country]: Overview

8 Modeling network traffic using game theory

THE PROVISION OF SPARE CABLE

Price List - Original HP Toner Supplies

Decision & Risk Analysis Lecture 6. Risk and Utility


2m + V ( ˆX) (1) 2. Consider a particle in one dimensions whose Hamiltonian is given by

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

Solving Systems of Linear Equations

Numerical Algorithms Group

Transcription:

OntheValidityofImplicitizationbyMovingQuadrics forrationalsurfaceswithnobasepoints DepartmentofMathematicsandComputerScience Amherst,MA,01002 dac@cs.amherst.edu AmherstCollege DavidCox DepartmentofComputerScience Houston,TX77025 rng@cs.rice.edu RiceUniversity RonGoldman DepartmentofComputerScience mzhang@cs.rice.edu Houston,TX77025 RiceUniversity MingZhang establishsucientpolynomialconditionsforthevalidityofimplicitizationbythe methodofmovingquadricsbothforrectangulartensorproductsurfacesofbi-degree (m;n)andfortriangularsurfacesoftotaldegreenintheabsenceofbasepoints. Techniquesfromalgebraicgeometryandcommutativealgebraareadoptedto Abstract

1Introduction istocomputethebivariateresultantofthethreepolynomials: equationofarationalsurface[sederberg&chen1995].theclassicalmethodfornding theimplicitequationofarationalparametricsurface Severalyearsago,TomSederbergintroducedanewtechniqueforndingtheimplicit Unfortunatelyformanyapplications,theresultantofthesethreepolynomialsvanishes x(s;t)?xw(s;t);y(s;t)?yw(s;t);z(s;t)?zw(s;t): x=x(s;t) w(s;t);y=y(s;t) w(s;t);z=z(s;t) identicallywhenthesurfacehasbasepoints{thatis,parametervalues(s0;t0)forwhich ExtensiveexperimentsrevealthatSederberg'stechniqueisgenerallyimpervioustobase points.thussederberg'smethod{whichhecalledthemethodofmovingquadrics(see complicatedperturbationtechniques[manocha&canny1992].sederberg'smethodof Section3){promisedtobeasubstantialimprovementoverclassicalmethodsbasedonresultants,whichcouldimplicitizerationalsurfaceswithbasepointsonlybyinvokingrather x(s0;t0)=0;y(s0;t0)=0;z(s0;t0)=0;w(s0;t0)=0: iscorrectintheory.noristhereanysystematicanalysisofpreciselyunderwhatconditions themethodmightfailorhowtorecovergracefullywhenitdoes. movingquadricsfrequentlyworksinpractice,thereisnorigorousproofthatthemethod {andasanaddedbonusrepresentstheimplicitequationasthedeterminantofamatrix movingquadricsusesonlyelementarylinearalgebra{solvingasystemoflinearequations one-fourththesizeoftheclassicalresultant. Sederbergtondtheimplicitequationofarationalcurve,andherethetheoreticalanalysis ismuchmorecomplete.infact,threepapershavebeenpublishedthatdemonstratethe Acomparabletechnique{calledthemethodofmovingconics{wasalsointroducedby Nevertheless,althoughthereissubstantialempiricalevidencethatthemethodof validityofthismethod.resultantsareusedin[sederbergetal1997]toshowthatthe methodofmovingconicsworkswheneverthereisnomovinglineoflowdegreethat followsthecurve(seesection3).sincetheexistenceofsuchamovinglineoflowdegree Bothoftheseproofsinvokeresultants.AttemptsbyChionhandtwooftheauthorsof a?basiswasintroducedin[coxetal1998].bytakingtheresultantofthe?basis,the foralmostallrationalcurves.toextendthemethodtoallrationalcurves,thenotionof isrepresentedbyapolynomialcondition,thisresultestablishesthatthemethodworks authorswereabletoprovethatthemethodofmovingconicsworksforallrationalcurves. thispaper(goldmanandzhang)toextendtheseresultantproofstosurfacesfailed.the 2

problemseemstobethatunlikeintheunivariatesetting,thereisnobivariateresultant oftherightsizeorthecorrectdegreeinthepolynomialcoecientstomodelthematrix athirdapproachforestablishingthevalidityofthemethodofmovingconicsbasedon Inthatpapertheauthorsexpressedthehopethatunliketheprevioustwoproofs,this generatedbythemethodofmovingquadrics.thereforethesethreeauthorsproposed newapproachcouldbeextendedtoananalysisofthemethodofmovingquadrics. factoringthedeterminantofthecoecientmatrixofthelinearsystem[zhangetal1999]. surfacehasnobasepoints,thenthemethodofmovingquadricswillsucceedprovided thatthereisnomovingplaneoflowdegreethatfollowsthesurface(seesection3). condition,thisresultestablishesthatthemethodofmovingquadricsworksforalmostall Sincetheexistenceofsuchamovingplaneoflowdegreeisrepresentedbyapolynomial rationalsurfaceswithoutbasepoints.aproofforsurfaceswherebasepointsarepresent isstillanopenproblem. Thispaperistherststepinsuchananalysis.Hereweshowthatiftherational relationshipsbetweenpolynomialfunctions.thealgebraicanalysisofsuchrelationships requiressophisticatedtoolsfromalgebraicgeometryandcommutativealgebra,includingcohen-macaulayrings,r-sequences,koszulcomplexes,andsheafcohomology.we Butforsurfacesweneedtostudysyzygiesofbivariatepolynomials{thatis,polynomial Forcurves,theproofrequiresonlysomestandardlinearalgebra,genericpropertiesofresultants,andafewsimplefactsaboutfactoringunivariatepolynomials[Zhangetal1999]. Evenintherelativelysimplesettingofnobasepoints,theproofisnotelementary. wanttoskipthedetails.onlythemeaningandvalidityofthetwomainpropositionsare presentanoverviewoftheseideasinsection2;themainresultsherearepropositions1 brieythemethodofmovingquadricsfortensorproductsurfaces.insection4.1we and2.thereadernotcomfortablewiththesetechniquesfromalgebraicgeometrymay requiredinordertounderstandtheremainderofthispaper. Proposition2ofSection2,butotherwisetheproofrequiresonlystraightforwardlinear weshowthatwhentherearenobasepointsthemovingquadriccoecientmatrixisnonsingularonlywhenthemovingplanecoecientmatrixisnon-singular.hereweinvoke Indeed,fromhereonthedetailsshouldbeeasytofollow.InSection3wereview introducethemovingplaneandmovingquadriccoecientmatrices,andinsection4.2 algebra.wethenusethisresulttoshowthatwhenthemovingplanecoecientmatrix fromtensorproductsurfacesofbi-degree(m;n)totriangularsurfacesoftotaldegreen. methodofmovingquadricsisguaranteedtosucceed.insection5weextendtheseresults FinallyweclosethispaperinSection6withafewopenquestionsforfutureresearch. isnon-singularthemethodofmovingquadricsisvalidfortensorproductsurfaces.we concludethatwhenthereisnomovingplaneoflowdegreethatfollowsthesurface,the 3

propositionsprovedherewillplayanimportantroleintheproofofourmaintheorems Thissectionwilldiscusssomeinterestingalgebraconnectedwithbivariateresultants.The laterinthepaper. 2ResultantsandSyzygies 2.1TriangularPolynomials whichhasthefollowingwellknowngeometricinterpretation:resultant(x;y;z)6=0ifand oftotaldegreen.inthissituation,wehavethemulti-polynomialresultantresultant(x;y;z), Webeginwiththreetriangularpolynomials onlyifitisimpossibletondapairofparameters(s0;t0)suchthat x(s;t)=nxi=0n?i Xj=0ai;jsitj;y(s;t)=nXi=0n?i Xj=0bi;jsitj;z(s;t)=nXi=0n?i Xj=0ci;jsitj(1) Moreprecisely,thismeansthatifwehomogenizex;y;zbyaddingathirdvariable,then thehomogenizedequationshavenocommonsolutionsinprojectivespace. whatisthealgebraicinterpretationofresultant(x;y;z)6=0?theanswerisgivenbythe followingproposition. Thisexplainsthegeometryoftheresultant,butwhatisthealgebra?Inotherwords, x(s0;t0)=y(s0;t0)=z(s0;t0)=0: (2) 0.Then,wheneverwehavepolynomialsA;B;C2C[s;t]satisfying Proposition1:Supposethatx;y;zaredenedasinEquation(1)andthatResultant(x;y;z)6= therearepolynomialsh1;h2;h32c[s;t]suchthat B=?h2x+h3z; C=?h1x?h3y: A=h1z+h2y; Ax+By+Cz=0; Furthermore,ifkisthemaximumdegreeofA;B;C,thenh1;h2;h3canbechosensothat theyhavedegreeatmostk?n. AnequationAx+By+Cz=0iscalledasyzygyonx;y;z.Ifwethinkofasyzygyasa Beforebeginningtheproof,let'smakesomecommentsonwhatthispropositionsays. 4

columnvector(a;b;c)t,thenwehavethreeobvioussyzygies: andthenaddingthemtogether,wegetthesyzygy Furthermore,multiplyingtherstofthesebyh1,thesecondbyh2,andthethirdbyh3, (y;?x;0)tcomingfromyx+(?x)y+0z=0; (z;0;?x)tcomingfromzx+0y+(?x)z=0; Thepropositiontellsusthatwhentheresultantdoesn'tvanish,allsyzygiesonx;y;zare h1(z;0;?x)t+h2(y;?x;0)t+h3(0;z;?y)t=(h1z+h2y;?h2x+h3z;?h1x?h3y)t: (0;z;?y)Tcomingfrom0x+zy+(?y)z=0: ProofofProposition1:Sincex;y;zhavenocommonzeros,theNullstellensatzimplies thattheygeneratetheunitidealinc[s;t].therstpartofthepropositionthenfollows generatedfromtheobviousonesinthisway. thematrices homogeneouspolynomialsofdegreeninthepolynomialringr=c[s;t;u].nowconsider fromtheargumentoflemma1ofsection2of[2].however,gettingthedegreebound willrequiremorework. Byhomogenizingwithrespecttoathirdvariableu,thepolynomialsx;y;zgenerate M0=?xyz NotethattheproductsM1M2andM0M1arezero.>FromM0;M1;M2,wegetmaps M1=0@zy0 M2=0@y?z?x0?y1A?x1A: 0?xz 0?!RM2?!R3M1?!R3M0?!R (4) (3) calledthekoszulcomplexofx;y;z. providedweregardelementsofr3ascolumnvectorsofpolynomials.thissequenceis (A;B;C)T2R3,wehave thata;b;candh1;h2;h3arealsohomogeneous,whicheasilyimpliesthedesireddegree NotethatexactnessbetweenM1andM0impliesthatAx+By+Cz=0ifandonlyif A;B;Cisofthedesiredform.Furthermore,sincex;y;zarehomogeneous,wecanassume WesaythattheKoszulcomplexisexactbetweenM1andM0ifforeveryv= bound. M0v=0()v=M1wforsomew=(h1;h2;h2)T2R3: 5

algebraimplythatthekoszulcomplexisexact. zerosetofx;y;zhasco-dimension3inc3.fromhere,standardfactsincommutative ofx(s;t;u)=y(s;t;u)=z(s;t;u)=0inc3is(s;t;u)=(0;0;0).inotherwords,the exact,meaningitisexactbetweeneverytwomaps(includingbetween0andm2).with thisgoalinmind,werstnotethatresultant(x;y;z)6=0impliesthattheonlysolution Unfortunately,thedetailsrequireCohen-Macaulayrings,R-sequencesanddepth,all Itremainstoproveexactness.Theideaistoprovethattheentiresequence(4)is ofwhichrequiresubstantialexplanation.forreadersfamiliarwiththeseconcepts,the proofconsistsofthefollowingsteps: Sincex;y;zisanR-sequence,thesequence(4)isexact(Theorem16.5of[8]). Sincedepth(I)=3,x;y;zisanR-sequence(CorollarytoTheorem16.8of[8]). x;y;z2rgenerateanidealiwheredepth(i)=codim(i)(theorem18.7of[4]). codim(i)=3since,asnotedabove,thezerosetofx;y;zhasco-dimension3inc3. R=C[s;t;u]isaCohen-Macaulayring(Proposition18.9of[4]). Thiscompletestheproofoftheproposition. Wenowturnourattentiontotensorproductpolynomials.Considerthepolynomials 2.2TensorProductPolynomials theirzerosetincnhasco-dimensionk,thenthekoszulcomplexoff1;:::;fkisexact. Thisresultistruemoregenerally:iff1;:::;fkarepolynomialsint1;:::;tnsuchthat ofbi-degree(m;n).forthesepolynomials,thedixonresultantresultant(x;y;z)is nonzeroifandonlyifitisimpossibletond(s0;t0)suchthat Intheprojectiveplane,theseequationsalwayshavem2solutionsats=1andn2 x(s;t)=mxi=0nxj=0ai;jsitj;y(s;t)=mxi=0nxj=0bi;jsitj;z(s;t)=mxi=0nxj=0ci;jsitj(5) thenanysyzygy(a;b;c)tonx;y;zwouldhavetheform solutionsatt=1.sowhenwesaythat(6)hasnosolutions,wemeanthatthereareno additionalsolutions. Inthissituation,theanalogofProposition1wouldstatethatifResultant(x;y;z)6=0, x(s0;t0)=y(s0;t0)=z(s0;t0)=0: (A;B;C)T=h1(z;0;?x)T+h2(y;?x;0)T+h3(0;z;?y)T; 6

asinproposition1,andfurthermore,ifa;b;chadbi-degreeatmost(k;l),thenh1;h2;h3 couldbechosentohavebi-degreeatmost(k?m;l?n).unfortunately,thedegreebound polynomialsdonotvanishsimultaneously,sotheirdixonresultantisnon-vanishing.now considerthesyzygy canfailinthetensorproductcase.hereisasimpleexampletoshowwhatcangowrong. Example1:Letx=st,y=st+s+tandz=st+1.Oneeasilychecksthatthese Thepolynomialsx;y;zgeneratetheunitidealinC[s;t],sothatasabove,Lemma1of Section2of[2]implies forsomeh1;h2;h3.however,(?s2+s+1;?s;s2)thasbi-degree(2;0)andx;y;zhave (?s2+s+1;?s;s2)t=h1(z;0;?x)t+h2(y;?x;0)t+h3(0;z;?y)t (?s2+s+1)st+(?s)(st+s+t)+s2(st+1)=0: bi-degree(1;1),sothath1;h2;h3cannothavebi-degree(2;0)?(1;1)=(1;?1). However,thecrucialobservationisthatitdoesholdforcertainspecialbi-degrees,which isasyzygyonx;y;zofbi-degree(2m?1;2n?1).thentherearepolynomials(h1;h2;h3) suchthatthedixonresultantresultant(x;y;z)isnonzero.alsoassumethat(a;b;c)t ofbi-degreeatmost(m?1;n?1)suchthat areexactlytheoneswewilluselaterinthepaper.hereisthepreciseresultwewillneed. Proposition2:Supposethatx;y;zaretensorproductpolynomialsofbi-degree(m;n) ThisexampleshowsthatProposition1doesnotholdinthetensorproductcase. Proof:AsinProposition1,weneedtohomogenize,butherewehomogenizesandt separatelyusingnewvariablesuandv.thusx=x(s;t)becomes B=?h2x+h3z; C=?h1x?h3y: A=h1z+h2y; havebi-degree(0;1). ofbi-degree(m;n)since,asindicatedbythesemicolon,s;uhavebi-degree(1;0)andt;v andsimilarlyforyandz.hencex;y;zarebi-homogeneouspolynomialsins=c[s;u;t;v] IfP1istheprojectiveline,then(s;u;t;v)arehomogeneouscoordinatesforapointin x(s;u;t;v)=mxi=0nxj=0aijsium?itjvn?j; P1P1provided(s;u)6=(0;0)and(t;v)6=(0;0).Notealsothat (s;u;t;v)and(s;u;t;v) 7

givethesamepointinp1p1foranynonzero;2c. andtheintrinsicmeaningofresultant(x;y;z)6=0isthattheequationsx=y=z=0 havenosolutionsinp1p1. Proposition1wouldimplythattheKoszulcomplexofx;y;zwouldbeexact.Butsince inproposition1nolongerapply.wehavepolynomialsx;y;z2c[s;u;t;v].ifthezero setofx=y=z=0inc4hadco-dimension3,thentheremarkfollowingtheproofof Foranybi-homogeneousf2C[s;u;t;v],theequationf=0makessenseinP1P1, xisbi-homogeneousins;u;t;v,itvanisheswhenevers=u=0.thesameistruefory andz,sothattheplanes=u=0inc4liesinthezerosetofx;y;z.itfollowsthatthe zerosetcannothaveco-dimension3.henceweneedsomenewideas. Beforegivingtheproofoftheproposition,weshouldexplainwhythetechniquesused thewholering(aswedidinproposition1).letsk;ldenotethesetofallbi-homogeneous polynomialsofbi-degree(k;l).algebraicgeometryhastoolsforstudyingthesepieces, thoughitrequiresthelanguageofsheavesandsheafcohomology.standardreferencesare [5]and[6].WhatfollowsisabrieftutorialonhowsheaftheoryprovesProposition2. OnewaytoapproachtheproblemistoconcentrateonpiecesoftheringSratherthan alsou=t=1,s=v=1ands=t=1.thesecorrespondtofoursubsetsofp1p1, arefourwaystodehomogenizeit.thestandardwayistosetu=v=1,butthereare eachofwhichlookslikeacopyofc2,thoughwithdierentvariablesineachcase.we canwritethesesubsetsandthepolynomialfunctionsonthemasfollows: Webeginbynotingthatgivenabi-homogeneouspolynomialf2C[s;u;t;v],there inp1p1as(s;1;1;t?1).comparingthisto(s;1;1;v),weobtainv=t?1. ToseewhyweidentifyC[s;v]andC[s;t?1]inU2,notethat(s;1;t;1)givesthesamepoint U1=f(s;1;t;1)2P1P1g;andfunctionsonU1areC[s;t]; U2=f(s;1;1;v)2P1P1g;andfunctionsonU2areC[s;v]=C[s;t?1]; Inasense,thefourpolynomialringsandtherelationsbetweenthemgivenin(7) U3=f(1;u;t;1)2P1P1g;andfunctionsonU3areC[u;t]=C[s?1;t]; U4=f(1;u;1;v)2P1P1g;andfunctionsonU4areC[u;v]=C[s?1;t?1]:(7) tellusaboutthepolynomialfunctionsonp1p1.theremarkablefactisthatthereis onemathematicalobject,thestructuresheafo=op1p1,whichkeepstrackofallof thissimultaneously.intermsofthesheafo,(7)givesthesectionsofooverthesets U1;U2;U3;U4.OnealsohastheglobalsectionsofO,denotedby BesidesthesheafO,therearealsosheavesO(k;l)=OP1P1(k;l),whichhavetheproperty ThesearetheglobalpolynomialfunctionsonP1P1,whicharejusttheconstantsC. H0(P1P1;O): 8

thattheirglobalsectionsarethespacessk;lofbi-homogeneouspolynomialsofbi-degree (k;l).inotherwords, H0(P1P1;O(k;l))=Sk;l: (8) AcarefuldenitionofthesesheavescanbefoundinExercise5.6of[6,Ch.III](notethat whathartshornecallsqisthesameasp1p1byexercise2.15of[6,ch.i]). Forourpurposes,theimportantfactisthatthematricesM0;M1;M2from(3)give mapsofsheaves 0?!O(?1;?1)M2?!O(m?1;n?1)3M1?! O(2m?1;2n?1)3M0?!O(3m?1;3n?1)?!0: (9) Furthermore,thissequenceisexactbetweeneverypairofmaps,includingthezeromaps atthetwoends.toseewhythisisso,werstworkoveru1,wherethesequencebecomes 0?!C[s;t]M2?!C[s;t]3M1?!C[s;t]3M0?!C[s;t]?!0: ThissequenceistheKoszulcomplexofthedehomogenizedx;y;z.Thesepolynomials generatetheunitidealofc[s;t]sincetheydon'tvanishsimultaneously,andthekoszul complexofsuchpolynomialsisalwaysexact.anelementaryproofofthiscanbegiven alongthelinesoflemma1ofsection2of[2].ageneralproofcanbefoundin[4, Prop.17.14]. Similarly,oneseesthat(9)becomesexactoverU2,U3andU4sincethedehomogenized polynomialshavenocommonroots.sincep1p1istheunionofu1;u2;u3;u4,itfollows that(9)isexact. Wenextexplorehowtheexactnessof(9)relatestoglobalsections.Thisiswheresheaf cohomologycomesin.aintroductiontosheavesandsheafcohomologycanbefoundin [5,pp.34{41].TherststepistoemploythestrategyexplainedinExercise7of[1, Ch.6,x1]ofbreakingup(9)intotwoshorterexactsequences: 0?!O(?1;?1)M2?!O(m?1;n?1)3?!K?!0; 0?!K?!O(2m?1;2n?1)3M0?!O(3m?1;3n?1)?!0 suchthat=m1.eachoftheseshortexactsequencesgivesalongexactsequencein sheafcohomologywhich,using(8),canbewritten?!(sm?1;n?1)3?!h0(p1p1;k)?!h1(p1p1;o(?1;?1))?!;(10) 0?!H0(P1P1;K)?!(S2m?1;2n?1)3M0?!S3m?1;3n?1?!: (11) Below,wewilldiscussthemeaningofH1(P1P1;O(?1;?1)).Fornow,letusassume thatthissheafcohomologygroupvanishes.thishasthefollowingniceconsequence. 9

impliesthatv=(u)forsomeu2h0(p1p1;k).sinceh1(p1p1;o(?1;?1))=f0g, Supposethatv=(A;B;C)Tisasyzygyonx;y;z.ThenM0v=0,whichby(11) forsomew=(h1;h2;h3)t2(sm?1;n?1)3.then,usingm1=,weconcludethat ThisgivesthedesiredformulasforA;B;C,andsinceh1;h2;h3havebi-degree(m?1;n?1), itfollowsthat(u)=0in(10).sincethissequenceisalsoexact,wemusthaveu=(w) thepropositionfollows. onelearnshowtocomputethesheafcohomologyonpr,itisnothardtoshowthatthis particularsheafcohomologygroupvanishes.forexample,thisisdoneinpart(a)(2)of However,westillneedtoshowH1(P1P1;O(?1;?1))=f0g.Fortunately,once (A;B;C)T=v=(u)=((w))=M1w=M1(h1;h2;h3)T: Exercise5.6of[6,Ch.III].ThiscompletestheproofofProposition2. allsyzygiesonx;y;zofbi-degree(2m?1;2n?1).ifweletudenoteaparticularsyzygy, [5,pp.34{41]doesagoodjobofexplaininghowelementsinH1(X;F)canbeinterpreted thenwecandehomogenizeuinfourways,correspondingtothesetsu1;u2;u3;u4in(7). asobstructionstopatchingtogetherlocaldataintoaglobalobject. thoughneitherisparticularlyintuitiveatrstglance.thepreviouslymentionedreference Toseehowthisappliestooursituation,notethat(11)showsthatH0(P1P1;K)gives Sheavesandtheircohomologyareanimportantpartofmodernalgebraicgeometry, giveabi-homogeneous(h1;h2;h3)t?theobstructiontodoingsoistheelement inthefourringslistedin(7).butcanthesefourrepresentationsbepatchedtogetherto Since(9)isexact,wethengetfourrepresentationsofuintermsofpolynomialsh1;h2;h3 existenceoftherequiredbi-homogeneous(h1;h2;h3)t. groupvanishes,sodoeseveryobstruction(u),andthentheexactnessof(10)impliesthe sothatwecouldn'tndabi-homogeneous(h1;h2;h3)t.butsincetheentirecohomology whereisthemapin(10).if(u)werenonzero,theobstructionwouldbenon-vanishing, (u)2h1(p1p1;o(?1;?1)); thatis,rationalparametricsurfacesx(s;t) 3TheMethodofMovingSurfaces NowletusreviewbrieySederberg'smethodofmovingsurfaceswithparticularemphasis onmovingplanesandmovingquadrics.herewefocusonrationaltensorproductsurfaces w(s;t);y(s;t) 10w(s;t);z(s;t) w(s;t),where

Triangularsurfaces thatis,surfacesoftotaldegreen willbediscussedinsection5. x(s;t)=mxi=0nxj=0ai;jsitj; z(s;t)=mxi=0nxj=0ci;jsitj; y(s;t)=mxi=0nxj=0bi;jsitj; Wewillonlyconsidersurfaceswithoutbasepoints.Abasepointforsurface(12)isa w(s;t)=mxi=0nxj=0di;jsitj: (12) pairofparameters(s0;t0)suchthat Itiswellknownthatinprojectivespacethebi-degreepatch(12)alwayshasm2base pointsats=1andn2basepointsatt=1.sowhenwesaysurface(12)hasnobase points,wemeanthatthesurfacedoesnothaveanyadditionalbasepoints. Amovingplaneofbi-degree(1;2)isanimplicitequationoftheform x(s0;t0)=y(s0;t0)=z(s0;t0)=w(s0;t0)=0: Xi=02 Similarly,amovingquadricofbi-degree(1;2)isanimplicitequationoftheform Foreachxedvalueofsandt,Equation(13)istheimplicitequationofaplaneinC3. Xj=0(Ai;jx2+Bi;jy2+Ci;jz2+Di;jxy+Ei;jxz+Fi;jyz+Gi;jxw+Hi;jyw+Ii;jzw+Ji;jw2)sitj=0: Xi=02 Xj=0(Ai;jx+Bi;jy+Ci;jz+Di;jw)sitj=0: Again,whens;tarexed,Equation(14)istheimplicitequationofaquadricinC3. Themovingplane(13)ormovingquadric(14)issaidtofollowsurface(12)if Xi=02 1Xj=0(Ai;jx(s;t)+Bi;jy(s;t)+Ci;jz(s;t)+Di;jw(s;t))sitj0; (15) (14) ByequatingthecoecientsofallthemonomialssitjinEquations(15)or(16)tozero, or weobtainasystemoflinearequationsintheindeterminatesfai;j;bi;j;ci;j;di;jgor Xi=02 1Xj=0(Ai;jx2(s;t)+Bi;jy2(s;t)++Ji;jw2(s;t))sitj0: 11 (16)

fai;j;bi;j;ci;j;di;j;ei;j;fi;j;gi;j;hi;j;ii;j;ji;jg,0i1,0j2.solvingthis systemgivesusacollectionofmovingplanesormovingquadricsthatfollowsurface(12). Forcertainspecialvaluesof1;2,itturnsoutthatwecannd(1+1)(2+1)linearly independentmovingplanesormovingquadrics.themethodofmovingplanes(ormoving quadrics)thenconstructstheimplicitequationoftheparametricsurface(12)bytaking thedeterminantofthecoecientmatrixofthe(1+1)(2+1)linearlyindependent movingplanes(ormovingquadrics)thatfollowtheparametricsurface(12). Specically,formovingplanes,wecanchoose1=2m?1,2=n?1.Then fromequation(15)weobtainahomogeneouslinearsystemof6mnequationswith8mn unknowns.thissystemhasatleast2mnlinearlyindependentsolutions: L12m?1 Xi=0n?1 Xj=0(A1i;jx+B1i;jy+C1i;jz+D1i;jw)sitj=0;. L2mn2m?1 Xi=0n?1 Xj=0(A2mn i;jx+b2mn i;jy+c2mn i;jz+d2mn i;jw)sitj=0: Eachofthesesolutionsisamovingplanethatfollowssurface(12).Thedeterminantof thecoecientsofsitjofthese2mnmovingplanes,i.e. A10;0x+B10;0y+C10;0z+D10;0wA12m?1;n?1x++D12m?1;n?1w...... A2mn 0;0x+B2mn 0;0y+C2mn 0;0z+D2mn 0;0wA2mn 2m?1;n?1x++D2mn 2m?1;n?1w vanisheswhenever(x;y;z;w)liesonthesurface.henceifthisdeterminantdoesnot vanishidentically,thenthisdeterminantisamultipleoftheimplicitequationofsurface (12).Moreover,thedegreeinx;y;z;wofthisdeterminantis2mn,whichisthegeneric degreeofsurface(12).therefore,thisdeterminantisagoodcandidatefortheimplicit equationofsurface(12). Formovingquadrics,wecanchoose1=m?1,2=n?1.Thenweobtaina homogeneouslinearsystemof9mnequationswith10mnunknownsfromequation(16). Thissystemhasatleastmnlinearlyindependentsolutions Q1m?1 Xi=0n?1 Xj=0(A1i;jx2+B1i;jy2++J1i;jw2)sitj=0;. Qmnm?1 Xi=0n?1 Xj=0(Amn i;jx2+bmn i;jy2++jmn i;jw2)sitj=0: 12

Eachsolutionisamovingquadricfollowingsurface(12).Thedeterminant theimplicitequationofsurface(12)becausethisdeterminantvanisheswhenthepoint (x;y;z;w)liesonthesurfaceandthedegreeofthisdeterminantis2mninx;y;z;w. ofthecoecientsofsitjofthesemnmovingquadricsisagainagoodcandidatefor A10;0x2+B10;0y2++J10;0w2A1m?1;n?1x2++J1m?1;n?1w2 Example2(MovingPlanes):x(s;t)=st+1; Amn 0;0x2+Bmn 0;0y2++Jmn. 0;0w2Amn. m?1;n?1x2++jmn. m?1;n?1w2 Itiseasytondtwomovingplanesfollowing(17): w(s;t)=s+t+1: z(s;t)= y(s;t)= (w?x?2y?z)+s(w?y)=0: (w?x?y?z)+sz=0; t; (17) Thedeterminant Example3(MovingQuadrics):x(s;t)=s2t2+1; givestheimplicitequationforsurface(17). w?x?y?zz w?x?2y?zw?y=w2?wx?2wy+xy+y2?2wz+xz+3yz+z2 Choose1=2=1.UsingMathematicawendthattherearefourmovingquadricsof bi-degree(1;1)thatfollowsurface(18): Q1??3wy+3y2?wz+3xz+2yz?4z2+s?wz?4yz?2z2 w(s;t)=s2+t2+1: z(s;t)=t+1; y(s;t)=s2+s+1; (18) Q2??3w2+6wx+20wy?3xy?19y2?9wz?12xz?4yz+24z2 +t??3wy+3y2+4z2+st?2z2=0; +s?3wx?2wy?3xy+2y2?18wz+3xz+34yz+6z2 13

Q3??2wy+3y2+xz?2z2+s?wy?y2+wz?xz?4yz Q4??5w2+9wx+34wy?3xy?33y2?11wz?21xz?12yz+42z2 +t?18wy?18y2+3wz?6xz?8yz?12z2 +st(?3xz+2yz)=0; +t??2wy+3y2+2z2+st?wy?y2=0; +s??w2+6wx?2wy?6xy+3y2?31wz+6xz+60yz+12z2 3xz+2yz?4z2?3wy+3y2?wz+ stofthesefourmovingquadrics: Theimplicitequationisobtainedbytakingthedeterminantofthecoecientsof1,s,t, +t?30wy?30y2+5wz?9xz?12yz?24z2+st(wz?6xz)=0:?3w2+6wx+20wy??2wy+3y2+xz?2z2wy?y2+wz?xz?4yz?2wy+3y2+2z2 3xy?19y2?9wz? 12xz?4yz+24z2 wz?4yz?2z2 3wx?2wy?3xy+2y2? 18wz+3xz+34yz+6z218wy?18y2+3wz??3wy+3y2+4z2 6xz?8yz?12z2 2z2?5w2+9wx+34wy? 3xy?33y2?11wz? wy?y2?3xz+2yz 21xz?12yz+42z2 (Resultant(x(s;t)?xw(s;t);y(s;t)?yw(s;t);z(s;t)?zw(s;t)))aremovingplanes metricsurfacehasnobasepoints.infact,therowsofthedixonresultantmatrices [Dixon1908].Themethodofmovingquadricshasbeenshowntoworkempirically,correctlyimplicitizingawidevarietyofsurfacesinmanyexperiments[Sederberg&ChenantswithsizeonlyaquarterofthestandardDixonresultant.Forinstance,toimplicitize 1995].Themovingquadricmethodproducestheimplicitequationintermsofdetermi- atensorproductsurface(12)ofbi-degree(m;n),thedixonresultantcomputesadeterminantofsize2mn2mn,whilethemovingquadricmethodcomputesadeterminant ofsizemnmnorevensmaller.themovingquadricmethodalsooftenworksinthe presenceofbasepoints[sederberg&chen1995]wherethedixonresultantfails. purposeofthispaperistoprovideasucientconditionwhichguaranteesthatthemethod ofmovingquadricssucceeds. Exactlywhenthemethodofmovingquadricsworksisstillanunsolvedproblem.The Themethodofmovingplanesalwaysgeneratestheimplicitequationifthepara- 6xy+3y2?31wz+?w2+6wx?2wy? 6xz+60yz+12z2 9xz?12yz?24z2 30wy?30y2+5wz? wz?6xz 14

4.1MovingPlaneandMovingQuadricCoecientMatrices 4ImplicitizingTensorProductSurfacesbythe Considertherationaltensorproductsurface(12).LetMPbethecoecientmatrixof thepolynomialssitjx;sitjy;sitjz;sitjw,0im?1,0jn?1.thatis, MethodofMovingQuadrics thelinearsystemgeneratedbythemovingplanesofbi-degree(m?1;n?1)thatfollow ThenMPisasquarematrixoforder4mn.NotethatMPisthecoecientmatrixof therationalsurface(12). =[1t2n?1s2m?1s2m?1t2n?1]MP xyzwsm?1tn?1xsm?1tn?1ysm?1tn?1zsm?1tn?1w 0im?1,0jn?1.Thatis, ThenMQisamatrixofsize9mn10mn.Moreover,MQisthecoecientmatrix Similarly,letMQbethecoecientmatrixofthepolynomialssitjx2;sitjy2;;sitjw2, ofthelinearsystemgeneratedbythemovingquadricsofbi-degree(m?1;n?1)that followsurface(12).letmqwbethesubmatrixofmqwiththecoecientsofsitjw2 =[1t3n?1s3m?1s3m?1t3n?1]MQ: x2y2z2xyxzyzxwywzww2sm?1tn?1(x2w2) BelowweshallshowthattheconverseisalsotruewhenResultant(x;y;z)6=0. deleted;mqwisthenasquarematrixoforder9mn.whenmqwisnon-singular,the linearsystemofmovingquadricsofbi-degree(m?1;n?1)hasexactlymnlinearly pendenciesonthecolumnsofmpgeneratelineardependenciesonthecolumnsofmqw. independentsolutions. 4.2TheValidityoftheMethodofMovingQuadricsforTensor ItiseasytoseethatwhenjMPjvanishes,jMQwjalsovanishes,becauselinearde- Ifsurface(12)hasnobasepoints,thenforthepurposeofimplicitization,wecanassume thatresultant(x;y;z)6=0.thereasonisasfollows:ifresultant(x;y;z)=0,then x;y;zhaveacommonroot(eitheraneoratinnity);sincewdoesnotvanishatthis orinnite)forsomeconstantc.thusresultant(x+cw;y;z)6=0.theeectofsuch commonroot,thepolynomialsx+cw;y;zdonothaveacommonroot(eithernite ProductSurfaces atransformationisjustasimpletranslationofsurface(12).itiseasytoseethatnding 15

theimplicitequationoftheoriginalsurfaceisequivalenttondingtheimplicitequation non-zeroleadingterm,i.e.thecoecientofsmtnisnotzero.suppose,withoutlossof oftheshiftedsurface. generality,thatx(s;t)hasanon-zeroleadingcoecient;then allhavenon-zeroleadingcoecients.again,thesetransformationsonlyinducesimple translationsoftheoriginalsurface. y(s;t)+constantx(s;t);z(s;t)+constantx(s;t);w(s;t)+constantx(s;t) Moreover,ifResultant(x;y;z)6=0,thenatleastoneofx(s;t);y(s;t);z(s;t)hasa Proof:IfjMQwj=0,thenthecolumnsofMQwarelinearlydependent.Thusthereexist impliesjmpj=0. Theorem1:Forthetensorproductpatch(12),ifResultant(x;y;z)6=0,thenjMQwj=0 9mnscalarssuchthatthelinearcombinationofthe9mncolumnsofMQwwiththese andthatx(s;t);y(s;t);z(s;t);w(s;t)allhavenon-zeroleadingcoecients. Thereforebelow,wewillassume,withoutlossofgenerality,thatResultant(x;y;z)6=0 9mnscalarsisidenticallyzero.Wecanwritethislinearcombinationas ofthepolynomials: Eachpolynomialpi(s;t)isofbi-degree(m?1;n?1),sinceMQwconsistsofthecoecients whereeachofthepolynomialspi(s;t)consistsofthecoecientsofoneofx2;y2;;zw. x2;y2;z2;xy;xz;yz;xw;yw;zw;;sm?1tn?1(x2;y2;z2;xy;xz;yz;xw;yw;zw): p1x2+p2y2+p3z2+p4xy+p5xz+p6yz+p7xw+p8yw+p9zw0; (19) Ifp3(s;t)60orp9(s;t)60,wewanttoprovethat RewriteEquation(19)as thesepolynomialsash1andh3willsoonbecomeclear).toprovethis,notethatinthe forsomebi-degree(m?1;n?1)polynomialsh1(s;t);h3(s;t)(thereasonforlabeling (p1x+p4y+p5z+p7w)x+(p2y+p6z+p8w)y+(p3z+p9w)z0: p3z+p9w+h1x+h3y0; (20) terminologyofsection2,equation(20)isthesyzygyonx;y;zgivenby Furthermore,sinceeachpi(s;t)hasbi-degree(m?1;n?1),thissyzygyhasbi-degree therearepolynomialsh1;h3ofbi-degree(m?1;n?1)suchthat (2m?1;2n?1).SinceResultant(x;y;z)6=0,Proposition2ofSection2impliesthat (A;B;C)T=(p1x+p4y+p5z+p7w;p2y+p6z+p8w;p3z+p9w)T: C=?h1x?h3y: 16

Hence whichprovesthatthecolumnsofmparelinearlydependent.thereforejmpj=0. SinceResultant(x;y;z)6=0,x;ycannothaveanycommonfactor.Otherwise,x;y;z Ifp3(s;t)p9(s;t)0,thenEquation(20)becomes 0C+h1x+h3y=p3z+p9w+h1x+h3y; wouldhavecommonrootsotherthanthem2+n2rootsats=1andt=1andhence mustbeafactorofp2y+p6z+p8w.weexaminethefollowingtwocases: Resultant(x;y;z)=0contrarytoassumption.Therefore,ifp2y+p6z+p8w60,thenx Ifp260,orp660,orp860,thenEquation(21)impliesthat (p1x+p4y+p5z+p7w)x+(p2y+p6z+p8w)y0: (21) Otherwise,p2p6p80.ThenbyEquation(21), (m?1;n?1)ins;t. forsomepolynomialh(s;t).butbyassumption,xhasnon-zeroleadingcoecient, columnsofmparelinearlydependent,sincep2;p6;p8;hareallofbi-degree soitiseasytoseethath(s;t)isofbi-degree(m?1;n?1).itfollowsthatthe p2y+p6z+p8w=h(s;t)x; (m?1;n?1)followingsurface(12),wehavethefollowing SincejMPj6=0isequivalenttothefactthattherearenomovingplanesofbi-degree ofmparelinearlyindependent,sojmpj=0. wherep1;p4;p5;p7arenotallzeropolynomials.thisagainprovesthatthecolumns p1x+p4y+p5z+p7w=0; quadricscomputestheimplicitequationofsurface(12). planesofbi-degree(m?1;n?1)followingsurface(12).thenthemethodofmoving Theorem2:Supposethatsurface(12)hasnobasepoints,andthattherearenomoving Proof:AssumewithoutoflossofgeneralitythatResultant(x;y;z)6=0.Abi-degree (m?1;n?1)movingquadrichastheform Themovingquadric(22)followssurface(12)ifandonlyif m?1 Xi=0n?1 Xj=0?Ai;jx2(s;t)+Bi;jy2(s;t)+Ci;jz2(s;t)++Ji;jw2(s;t)sitj0:(23) Xi=0n?1 Xj=0?Ai;jx2+Bi;jy2+Ci;jz2+Di;jxy++Ji;jw2sitj=0: (22) 17

Thus(A0;0;;J0;0;;Am?1;n?1;;Jm?1;n?1)Tisasolutiontothelinearsystem RewriteEquation(24)as MQw0 MQ(A0;0;;J0;0;;Am?1;n?1;;Jm?1;n?1)T=0: (24) B @ Am?1;n?1 A I0;0. Im?1;n?1 1 CA=?Coe(w2;;sm?1tn?1w2)0@J0;0 0im?1,0jn?1.Thatis,movealltermsinvolvingJi;jonthelefthandside wherecoe(w2;;sm?1tn?1w2)consistsofthecoecientsofthepolynomialssitjw2, Jm?1;n?11A;. (25) (J0;0;;Jm?1;n?1)tothestandardunitvectorsek=(0;;0;1;0;;0),0k fromequation(25).thuswewillgetmnlinearlyindependentsolutionswhenweset isalsonon-singular.therefore,wecansolvefor(a0;0;;i0;0;;am?1;n?1;;im?1;n?1) mn?1. followingsurface(12).sinceresultant(x;y;z)6=0,weknowfromtheorem1thatmqw inequation(24)totherighthandsideofequation(25). Byassumption,jMPj6=0becausetherearenomovingplanesofbi-degree(m?1;n?1) whereq;correspondstosetting Q;=m?1 Nowmnmovingquadricscanbeconstructedfromthesemnsolutions: ThusQ;=w2st+termswithoutw2;0m?1;0n?1: Xi=0n?1 Xi=0A; i;jx2++j; (J0;0;;Jm?1;n?1)=en+: i;jw2sitj=0;0m?1;0n?1; ThereforethecoecientsofthemonomialsstfromthemovingquadricsQ;forman mnmnmatrixm=264w2+w2+...w2+ 18 3 75;

termw2.sincemcontainsw2onlyinthediagonalentries,jmjcontainsthetermw2mn. Sothisdeterminantisnotidenticallyzero.SinceeachentryinMisquadraticinx;y;z;w, Q;.Notethattheo-diagonalentriesarequadraticinx;y;z;wbutdonothavethe whereeachrowconsistsofthecoecientsofthemonomialssitjfromamovingquadric 0m?1,0n?1,representsamovingquadricthatfollowssurface(12),so thetotaldegreeofjmjis2mninx;y;z;w.moreover,byconstruction,eachrowq;, equationoftherationalsurface. forpointsonsurface(12).ontheotherhand,thedegreeofthe(irreducible)implicit 5ImplicitizingTriangularSurfacesbytheMethodof forpointsonthesurface,thecolumnsofmarelinearlydependent;hencejmjvanishes equationofsurface(12)is2mn[coxetal1998].therefore,jmjmustbetheimplicit surfacesoftotaldegreenwithnobasepoints. Inthissection,weestablishthevalidityofthemethodofmovingquadricsforimplicitizing Arationalsurfacex(s;t) MovingQuadrics x(s;t)=x w(s;t);y(s;t) i+jnai;jsitj; w(s;t);z(s;t) w(s;t)isoftotaldegreenif y(s;t)=x Justasinthetensorproductcase,weconsidermovingplanesandmovingquadricsthat z(s;t)=x i+jnci;jsitj; w(s;t)=x i+jnbi;jsitj; quadricsoftotaldegreen?1. followthistriangularsurface.hereweshallbeinterestedinmovingplanesandmoving i+jndi;jsitj: (26) Amovingplaneofdegreen?1 followssurface(26)ifitvanishesidenticallywhenthepolynomialsx(s;t),y(s;t),z(s;t), 5.1MovingPlaneandMovingQuadricCoecientMatrices w(s;t)aresubstitutedforx;y;z;winequation(27). i+jn?1(ai;jx+bi;jy+ci;jz+di;jw)sitj=0 X 19 (27)

i+jn?1.thatis, Notethatthenumberofmonomialssitj,wherei+jk,is?k+2 LetMPbethe(movingplane)coecientmatrixofthepolynomialssitj(x;y;z;w), =[1tst2n?1s2n?1]MP: [xyzwtn?1(xyzw)sn?1(xyzw)] and #columnsofmp=4n+1 #rowsofmp=2n+1 2=2n2+n: 2=2n2+2n 2.Therefore, parametricsurfaceoftotaldegreen. Thustherealwaysexistatleastnmovingplanesofdegreen?1thatfollowarational indiceswithjij=n.denempitobethecoecientmatrixofthepolynomials ToobtainasquaresubmatrixofMP,letIf(k;l)j0k+ln?1gbeasetof sitj(x;y;z);0i+jn?1; columnsandthesamenumberofrows.thereforempiisasquaresubmatrixofmpof has Thatis,toobtainMPI,weremovethencolumnssitjw,(i;j)2IfromMP.ThusMPI sitjw;(i;j)62i: order2n2+n. i+jn?1?ai;jx2+bi;jy2+ci;jz2+di;jxy+ei;jxz+fi;jyz+gi;jxw+hi;jyw+ii;jzw+ji;jw2sitj=0 XSimilarly,amovingquadricofdegreen?1 4n+1 2?n=2n2+n xy;xz;yz;xw;yw;zw;w2),i+jn?1.thatis, w(s;t)aresubstitutedforx;y;z;winequation(28). followssurface(26)ifitvanishesidenticallywhenthepolynomialsx(s;t),y(s;t),z(s;t), LetMQbethe(movingquadric)coecientmatrixofthepolynomialssitj(x2;y2;z2, x2y2w2tn?1(x2y2w2)sn?1(x2y2w2) (28) Then =1tst3n?1s3n?1MQ #columnsofmq=10n+1 202=10n2+10n 2

Thustherealwaysexistatleast(n2+7n)=2movingquadricsofdegreen?1thatfollow and #rowsofmq=3n+1 2=9n2+3n matrixoftheremainingpolynomials aparametricsurfaceoftotaldegreen. aswellasthe3ncolumnssitj(xw;yw;zw),(i;j)2i,anddenemqitobethecoecient TogetasquaresubmatrixofMQ,weremoveallthesitjw2columns,0i+jn?1, 2: columnsandthesamenumberofrows.therefore,mqiisasquaresubmatrixofmqof ThusMQIhas sitj(xw;yw;zw);(i;j)62i: sitj(x2;y2;z2;xy;xz;yz);0i+jn?1; order(9n2+3n)=2. 5.2TheMethodofMovingQuadricsforTriangularSurfaces 9n+1 2?3n=9n2+3n 2 movingquadrics.notice,however,thatthedegreeinx;y;z;wofthedeterminantofsuch matrixoforder(n2+n)=2,whoseentriesconsistofthecoecients(ofsitj)of(n2+n)=2 Thereare(n2+n)=2monomialssitj,0i+jn?1,intheexpressionforamoving insection4.2forrationaltensorproductsurfaces,wewouldneedtoconstructasquare triangularsurfacebythemethodofmovingquadricsinamannersimilartoourapproach an(n2+n)=2(n2+n)=2matrixisn2+nsinceeachentryisquadraticinx;y;z;w, quadricofdegreen?1.therefore,tocomputetheimplicitequationofadegreenrational movingplanesofdegreen?1thatfollowsurface(26),sincempisofsize(2n2+n) whereasthedegreeinx;y;z;woftheimplicitequationofsurface(26)isn2.therefore, (2n2+2n).Nowthis(n2+n)=2(n2+n)=2matrixconsistsofthecoecients(ofsitj) theentriesofthis(n2+n)=2(n2+n)=2matrixcannotallbethecoecientsofmoving movingplanes.fromsection5.1,weknowthattherealwaysexistnlinearlyindependent of(n2?n)=2movingquadricsandnmovingplanes.therefore,thedeterminantofthis squarematrixisofdegreen2=2(n2?n)=2+n1inx;y;z;w,whichisexactlywhat wedesire. Tolowerthedegreeofthisdeterminant,weshallreplacenmovingquadricsbyn planestomakesurethatthedeterminantisnotidenticallyzero.forexample,ifoneof Nevertheless,wemustbecarefulhowwechoosethesemovingquadricsandmoving 21

themovingplanesisp(x;y;z;w)=0andoneofthemovingquadricsisq(x;y;z;w) (26).Tillnowthesemovingplanesandmovingquadricshavebeenchoseninanadhoc xp(x;y;z;w)=0,thenthedeterminantwillvanishidentically.themethodofmoving quadricsassertsthat,ingeneral,itispossibletochoosethe(n2?n)=2movingquadrics manner.inthenextsection,wepresentasystematicwaytochoosetherightmoving 5.3TheValidityoftheMethodofMovingQuadricsforTriangularSurfaces quadricsandmovingplanes. andnmovingplanessothatthisdeterminantactuallyistheimplicitequationofsurface showhowtoexploitthisrelationshiptochoosetherightmovingquadricsandmoving Proceedinginamannersimilartoourapproachtotensorproductsurfaces,belowwerst explorearelationshipbetweenthetwocoecientmatricesmpiandmqi.thenweshall planestoimplicitizeatriangularsurface. ItiseasytoseethatifjMPIjvanishes,thenjMQIjalsovanishes,becauselinear impliesjmpij=0. Proof:SupposejMQIj=0.ThenasintheproofofTheorem1,thereexistpolynomials dependenciesonthecolumnsofmpigeneratelineardependenciesonthecolumnsof p1(s;t);;p9(s;t)suchthat Theorem3:Forthetriangularsurface(26),ifResultant(x;y;z)6=0,thenjMQIj=0 MQI.BelowweshallseethattheconverseisalsotruewhenResultant(x;y;z)6=0. wherep1;p2;p3;p4;p5;p6;p7;p8;p9areoftotaldegreen?1ins;t,buttheexponents ofthemonomialsinp7;p8;p9arenotintheindexseti. RewriteEquation(29)as p1x2+p2y2+p3z2+p4xy+p5xz+p6yz+p7xw+p8yw+p9zw=0; (p1x+p4y+p5z+p7w)x+(p2y+p6z+p8w)y+(p3z+p9w)z=0: (29) MPIarelinearlydependent;hencejMPIj=0. Sincetheexponentsofthemonomialsinp9arenotinI,itfollowsthatthecolumnsof Section2,thereexistpolynomialsh1;h3oftotaldegreen?1suchthat Ifp360orp960,thenEquation(30)isasyzygyonx;y;z.HencebyProposition1of Ifp3p90,butp260,orp660,orp860,thenasintheproofofTheorem1, p2y+p6z+p8w=h(s;t)x p3z+p9w=?h1x?h3y: 22

forsomepolynomialh(s;t).withoutlossofgenerality,wecanassumethatthetotal degreeofxisn;thereforeh(s;t)isoftotaldegreeatmostn?1.sincetheexponentsof themonomialsinp8arenotini,thisagainprovesthatthecolumnsofmpiarelinearly dependent,sojmpij=0. i.e.jmpij=0. whilep1;p4;p5;p7arenotallzeropolynomials.sincetheexponentsofthemonomialsin p7arenotini,theaboveequationshowsthatthecolumnsofmpiarelinearlydependent, Ifp3p90,andp2p6p80,thenbyEquation(30), IforwhichMPIisnon-singular. NextwearegoingtoshowthatifMPhasmaximalrank,thenthereisanindexset p1x+p4y+p5z+p7w=0; ofmparelinearlyindependent. Lemma1:Forthetriangularsurface(26),ifResultant(x;y;z)6=0,thenthecolumns polynomialsp1(s;t);p2(s;t);p3(s;t)oftotaldegreen?1ins;tsuchthat Proof:Supposethecolumnssitj(x;y;z)arelinearlydependent.Thenthereexistthree sitjx;sitjy;sitjz;0i+jn?1; SinceResultant(x;y;z)6=0,byProposition1ofSection2,theabovesyzygyimpliesthat p1x+p2y+p3z=0: forthreepolynomialsh1;h2;h3ofdegree?1.thush1=h2=h30.hencep1=p2= p30.therefore,thecolumnsp1=h1z+h2y; p2=?h2x+h3z; arelinearlyindependent. sitjx;sitjy;sitjz;0i+jn?1; p3=?h1x?h3z; Lemma2:IfResultant(x;y;z)6=0,andMPhasmaximalrank,thenthereexistsan indexseti,jij=n,suchthatmpiisnon-singular. Proof:ByLemma1,weknowthatsitj(x;y;z),0i+jn?1,arelinearlyindependent. Considerthefollowingalgorithm: 23

=fsitj(x;y;z)j0i+jn?1g; I=(emptyset);?=fsitjwj0i+jn?1g; IfMPhasmaximalrank2n2+n,then2n2+noutofthe2n2+2ncolumnsinMPare while?6= linearlyindependent.thatis,theabovealgorithmterminateswithjj=2n2+nand Otherwise,add(i;j)toI. Ifsitjwislinearlyindependentfromthecolumnsin,thenadd Selectacolumnsitjwfrom?,andremoveitfrom?; jij=n.nowbydenitionmpiconsistsofthecolumnsin,andbyconstructionthese columnsarelinearlyindependent.therefore,mpiisnon-singular. sitjwto; themethodofmovingquadricssuccessfullyimplicitizestriangularsurfaces. MQIisnon-singular.Thenexttheoremshowsthatthesetwoconditionsguaranteethat linearlyindependentmovingplanesofdegreen?1thatfollowsurface(26).thenthe Theorem4Supposethatsurface(26)hasnobasepointsandthatthereareexactlyn methodofmovingquadricscomputestheimplicitequationofsurface(26). FromTheorem3,itfollowsthatwhenMPIisnon-singularandResultant(x;y;z)6=0, jmpij6=0forsomeindexsetjij=n.hencebytheorem3,mqiisnon-singular. (26)hasexactlynlinearlyindependentmovingplanesofdegreen?1isequivalentto Proof:Since,byassumption,oursurfacehasnobasepoints,wecanassume,without lossofgenerality,thatresultant(x;y;z)6=0.bylemma2,theconditionthatsurface SincejMQIj6=0,wecansolveforAi;j,Bi;j,Ci;j,Di;j,Ei;j,Fi;j,i+jn?1andGi;j, Hi;j,Ii;j,(i;j)2I. Hi;j,Ii;j,(i;j)62I,intermsoftheundeterminedcoecients:Ji;j,i+jn?1;Gi;j, Thelinearsystemgeneratedfromthedegreen?1movingquadrics[Equation(28)]is (31)canbewrittenas Inparticular,setGi;j=Hi;j=Ii;j=Ji;j=0for(i;j)2I.Thenthelinearsystem MQ[Ai;jBi;jIi;jJi;j]T=0: (31) MQI264. Ai;j Ii;j.375=?Coe?sitjw2ji+jn?1;(i;j)62I264.. 24.375; (32)

wherecoe(sitjw2ji+jn?1;(i;j)62i)isthecoecientmatrixofthepolynomialssitjw2,(i;j)62i.setting(;ji;j;),(i;j)62i,tothestandardunitvectors (0;;0;1;0;;0)inC(n2?n)=2,weobtain(n2?n)=2linearlyindependentsolutions. Thesesolutionsgenerate(n2?n)=2movingquadrics: manner,nmovingplanes Ontheotherhand,sinceMPIisnon-singular,wecanalsond,inananalogous Pi;j=wsitj+termsnotinvolvingwsktlwith(k;l)2I;(i;j)2I: Qi;j=w2sitj+termswithoutw2; (i;j)62i: thecoecientsofthesemovingquadricsandmovingplanes,weobtainthematrix Altogetherwenowhave(n2?n)=2movingquadricsandnmovingplanes.Collecting 264w2+...w2+w+...w+ movingplanespi;j,(i;j)2i.notethatherethecolumnsareindexedby wheretherst(n2?n)=2rowsconsistofthecoecients(ofsitj)ofthe(n2?n)=2moving quadricsqi;j,(i;j)62i,andthelastnrowsconsistofthecoecients(ofsitj)ofthen 3 75; Thedeterminantofthismatrixhasthetermwn2,whichshowsthatthisdeterminantis notidenticallyzero.moreover,itiseasytoseethatthisdeterminantvanisheswhenever thepoint(x;y;z;w)liesontheoriginalsurface(26),becauseeachrowrepresentsamoving planeoramovingquadricthatfollowssurface(26).sincethisdeterminantisoftotal 1;t;s;t2;st;s2;;sitj;tn?1;;sn?1 {z };sitj (i;j)2i: {z} 6OpenQuestions Someimportantquestionsregardingthemethodofmovingquadricsstillremainopen. degreen2,whichisthetotaldegreeoftheimplicitequationofsurface(26)[coxetal Belowwedescribethethreemostimportantunresolvedissues. 1998],thisdeterminantisindeedtheimplicitequationofsurface(26). 25

Throughoutthispaperwehaveassumedthatourrationalsurfaceshavenobase pointsinordertoprovethetheoremsinsections4and5.whathappensifthe presenceofbasepoints,somemovingquadricscanbereplacedbymovingplanes surfacesdohavebasepoints?eachbasepointwill,ingeneral,lowerthedegreeof tocorrectlycomputetheimplicitequation.itisstillnotclearhowtomakethese theimplicitequationbyone.experiments[sederbergetal1995]showthatinthe replacementssystematicallywhensurfaceshavebasepoints.moreover,ifthereare Forrationalcurves,thedeterminantofthemovingconiccoecientmatrix(MCw) movingquadricsormovingplanes.whatdegreesshouldweuseandhowcanwe maketheadjustmentautomatically? oftheimplicitequationislessthanmn.thuswecannotusebi-degree(m?1;n?1) example,whenabi-degree(m;n)surfacehasmorethanmnbasepoints,thedegree toomanybasepoints,weneedtomodifythemethodofmovingquadrics.for canbefactoredintermsofthedeterminantofthemovinglinecoecientmatrix (ML)andtheresultantoftwocoordinatepolynomials[Zhangetal1999].Indeed, jmpij)andtheresultantofthreecoordinatepolynomials?inparticular,isittrue CanwefactorthedeterminantjMQwj(orjMQIj)similarlyintermsofjMPj(or thatjmqwj=jmpj3resultant(x;y;z)(fortensorproductsurfaces),(33) jmcwj=jmlj2resultant(x;y): boththelefthandsideandtherighthandsideofequations(33)and(34)have Webelievethatthesefactorizationsarecorrectforthefollowingtworeasons:First, thusjmljisadoublefactorofjmcwj.forrationalsurfaces,eachlinearrelation univariatesetting,eachlinearrelationamongthecolumnsofmlgeneratestwo linearrelationsamongthecolumnsofmcw(multiplyingtherelationbyx(t);y(t)); thesamedegreesinthecoecientsofx(s;t);y(s;t);z(s;t);w(s;t).second,inthe jmqij=jmpij3resultant(x;y;z)(fortriangularsurfaces)?(34) betweenthecolumnsofmp(ormpi)generatesthreelinearrelationsbetween TheproofsofTheorems2and4relyonTheorems1and3,which,inturn,depend haveyettosucceedinestablishingsucharesult. isanirreduciblepolynomialinthecoecientsofx(s;t);y(s;t);z(s;t);w(s;t).we MQI).However,arigorousproofwouldrequireustoshowthatjMPj(orjMPIj) Therefore,weconjecturethatjMPj(orjMPIj)isatriplefactorofjMQwj(or thecolumnsofmqw(ormqi)(multiplyingtherelationbyx(s;t);y(s;t);z(s;t)). uponthetwopropositionsinsection2,andtheproofsofthesetwopropositions 26

requireadvancedknowledgeinalgebraicgeometryandcommutativealgebra.is thereanelementaryprooffortheorems2and4?willthefactorizationdiscussed Acknowledgments Wehopethatweshallbeabletoanswerthesequestionsinfuturepapers. inthepreviousparagraphleadtosuchastraightforwardproof? References RonGoldmanandMingZhangarepartiallysupportedbyNSFgrantCCR-9712345. formanystimulatingdiscussionsduringajanuary1999visittobrighamyounguniversity. DavidCoxandRonGoldmanwouldliketothankTomSederbergandZhengJianmin [1]D.Cox,J.Little,D.O'Shea.UsingAlgebraicGeometry.Springer-VerlagNewYork, [2]D.Cox,T.W.Sederberg,F.Chen.TheMovingLineIdealBasisofPlanarRational [3]A.L.Dixon.TheEliminantofThreeQuanticsinTwoIndependentVariables.Proc. Inc.,1998. [4]D.Eisenbud.CommutativeAlgebra.Springer-VerlagNewYork,Inc.,1995. Curves.ComputerAidedGeometricDesign,15:803{827,1998. [6]R.Hartshorne.AlgebraicGeometry.Springer-VerlagNewYork,Inc.,1977. [5]P.Griths,J.Harris.PrinciplesofAlgebraicGeometry.JohnWiley&Sons,1978. LondonMathematicsSociety,6:49{69,473{492,1908. [7]D.ManochaandJ.F.Canny.AlgorithmsforImplicitizingRationalParametricSurfaces.ComputerAidedGeometricDesign,9:25{50,1992ceedingsofSIGGRAPH,301-308,1995. MethodofMovingAlgebraicCurves,JournalofSymbolicComputation,23:153{175, 1997. [10]T.W.Sederberg,R.N.Goldman,H.Du.ImplicitizingRationalCurvesbythe [8]H.Matsumura,CommutativeRingTheory.CambridgeUniversityPress,1986. [9]T.W.Sederberg,F.Chen.ImplicitizationUsingMovingCurvesandSurfaces,Pro- 27

[11]M.Zhang,E.W.Chionh,R.N.Goldman.OnaRelationshipbetweentheMoving LineandMovingConicCoecientMatrices,toappearinComputerAidedGeometric Design,1999. 28