Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition



Similar documents
Global Positioning System

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson Chalmers University of Technology, 2013

How To Monitor Sea Level With Satellite Radar

Prof. Ludovico Biagi. Satellite Navigation and Monitoring

Trimble CenterPoint RTX Post-Processing Services FAQs

Gravity Field and Dynamics of the Earth

The IGS: A Multi-GNSS Service

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM

AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS

Satellite Altimetry Missions

Evolving a new Geodetic Positioning Framework: An Australian Perspective

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento

NASA Earth System Science: Structure and data centers

The goals, achievements, and tools of modern geodesy

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model

The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA)

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager

Introduction into Real-Time Network Adjustment with Geo++ GNSMART

European Geodetic Status European Geodetic Reference Systems

Prospects for an Improved Lense-Thirring Test with SLR and the GRACE Gravity Mission

GPS Precise Point Positioning with a Difference*

GNSS permanent stations as the part of integrated geodetic system in Estonia

GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System

Time and frequency distribution using satellites

International Global Navigation Satellite Systems Service

Post Processing Service

Perspective of Permanent Reference Network KOPOS in Kosova

Bi-Directional DGPS for Range Safety Applications

Revolution in Geodesy, Navigation, and Surveying

MASTER S PROGRAMME IN GEOINFORMATICS / ACADEMIC YEAR

Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF.

Orbital Mechanics and Space Geometry

CDMA Technology : Pr. S. Flament Pr. Dr. W. sk On line Course on CDMA Technology

Congreso Internacional Geomática Andina y 5 de junio, Bogotá, D. C., Colombia

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP)

AMENDMENT 1 3 January DEPARTMENT OF DEFENSE WORLD GEODETIC SYSTEM 1984 Its Definition and Relationships with Local Geodetic Systems

The NASA Global Differential GPS System (GDGPS) and The TDRSS Augmentation Service for Satellites (TASS)

Marine route optimization. Jens Olaf Pepke Pedersen Polar DTU / DTU Space

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA

Program Learning Objectives

GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME

GNSS FIELD DATA COLLECTION GUIDELINES

CryoSat Product Handbook

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices

GNSS integrity monitoring for the detection and mitigation of interference

Springer. Berlin Heidelberg New York Barcelona Budapest HongKong London Milan Paris Singapore Tokyo

Alfons-Goppel-Str. 11, D München

GNSS Reflectometry at GFZ: ocean altimetry and land surface monitoring

Guidelines for RTK/RTN GNSS Surveying in Canada

DIN Department of Industrial Engineering School of Engineering and Architecture

Synthetic Aperture Radar: Principles and Applications of AI in Automatic Target Recognition

Non-parametric estimation of seasonal variations in GNSS-derived time series

GNSS satellite attitude characteristics during eclipse season

Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2

Doc 9849 AN/457. Approved by the Secretary General and published under his authority. First Edition International Civil Aviation Organization

Robot Perception Continued

GGOS Bureau for Networks and Commuications Michael Pearlman Harvard-Smithsonian Center for Astrophysics Cambridge MA USA

Introduction to Optics

Real-Time GNSS in Routine EPN Operations Concept

Status, Development and Application

Radio Technical Commission for Maritime Services. GPS Update. Bob Markle RTCM Arlington, VA USA. NMEA Convention & Expo 2010

10th Czech-Polish Workshop. Andrzej Araszkiewicz, Janusz Bogusz, Mariusz Figurski

European Space Agency EO Missions. Ola Gråbak ESA Earth Observation Programmes Tromsø, 17 October 2012

Active and Passive Microwave Remote Sensing

Clocks/timers, Time, and GPS

A new look at planet Earth: Satellite geodesy and geosciences

Laser Ranging to Nano-Satellites

Chapter Contents Page No

THE CURRENT EVOLUTIONS OF THE DORIS SYSTEM

German Antarctic Receiving Station GARS O Higgins: Remote sensing as core for a broader range of activities

DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES

North American Horizontal Datums. Jan Van Sickle

Satellite'&'NASA'Data'Intro'

Leica AR25 White Paper

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning

A guide to coordinate systems in Great Britain

Rafael Lucas EUROPEAN SPACE AGENCY.

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

SPACE WEATHER SUPPORT FOR COMMUNICATIONS. Overview

Orbit Modeling and Multi-GNSS in the IGS

Sentinel-1 Mission Overview

Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD

Online GPS processing services: an initial study

Marlene C.S. Assis. Francisco Colomer. Jesús Gómez-González. José Antonio López-Fernández. Luisa VMS. Moniz.

Waypoint. Best-in-Class GNSS and GNSS+INS Processing Software

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

CORS/OPUS: Status & Future Prospects

Hyperspectral Satellite Imaging Planning a Mission

CHAPTER 18 TIME TIME IN NAVIGATION

Transcription:

Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003

Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy... 1 1.2 Classification and Basic Concepts of Satellite Geodesy... 3 1.3 Historical Development of Satellite Geodesy... 5 1.4 Applications of Satellite Geodesy... 7 1.5 Structure and Objective of the Book... 9 2 Fundamentals 10 2.1 Reference Coordinate Systems... 10 2.1.1 Cartesian Coordinate Systems and Coordinate Transformations 10 2.1.2 Reference Coordinate Systems and Frames in Satellite Geodesy 12 2.1.2.1 Conventional Inertial Systems and Frames... 13 2.1.2.2 2.1.2.3 Conventional Terrestrial Systems and Frames... 15 Relationship between CIS and CTS... 17 2.1.3 2.1.4 Reference Coordinate Systems in the Gravity Field of Earth. 21 Ellipsoidal Reference Coordinate Systems... 23 2.1.5 Ellipsoid, Geoid and Geodetic Datum... 25 2.1.6 World Geodetic System 1984 (WGS 84)... 28 2.1.7 Three-dimensional Eccentricity Computation... 30 2.2 Time... 31 2.2.1 Basic Considerations... 31 2.2.2 Sidereal Time and Universal Time... 32 2.2.3 Atomic Time... 35 2.2.4 Ephemeris Time, Dynamical Time, Terrestrial Time... 37 2.2.5 Clocks and Frequency Standards... 39 2.3 Signal Propagation... 42 2.3.1 Some Fundamentals of Wave Propagation... 43 2.3.1.1 Basic Relations and Definitions... 43 2.3.1.2 Dispersion, Phase Velocity and Group Velocity... 45 2.3.1.3 Frequency Domains... 46 2.3.2 Structure and Subdivision of the Atmosphere... 48 2.3.3 Signal Propagation through the Ionosphere and the Troposphere 52 2.3.3.1 Ionospheric Refraction... 54 2.3.3.2 Tropospheric Refraction... 56

x Contents 3 Satellite Orbital Motion 62 3.1 Fundamentals of Celestial Mechanics. Two-Body Problem... 62 3.1.1 Keplerian Motion... 63 3.1.2 Newtonian Mechanics. Two-Body Problem... 66 3.1.2.1 Equation of Motion... 66 3.1.2.2 Elementary Integration... 69 3.1.2.3 Vectorial Integration... 74 3.1.3 Orbit Geometry and Orbital Motion... 77 3.2 Perturbed Satellite Motion... 82 3.2.1 Representation of the Perturbed Orbital-Motion.... 84 3.2.1.1 Osculating and Mean Orbital Elements... 84 3.2.1.2 Lagrange s Perturbation Equations... 85 3.2.1.3 Gaussian Form of Perturbation Equation... 87 3.2.2 Disturbed Motion due to Earth s Anomalous Gravity Field.. 88 3.2.2.1 Perturbation Equation and Geopotential... 89 3.2.2.2 Perturbations of the Elements... 94 3.2.2.3 Perturbations Caused by the Zonal Coefficients Jn. 96 3.2.3 Other Perturbations... 98 3.2.3.1 Perturbing Forces Caused by the Sun and Moon.. 98 3.2.3.2 Solid Earth Tides and Ocean Tides... 101 3.2.3.3 Atmospheric Drag... 102 3.2.3.4 Direct and Indirect Solar Radiation Pressure... 104 3.2.3.5 Further Perturbations... 105 3.2.3.6 Resonances... 107 3.2.4 Implications of Perturbations on Selected Satellite Orbits... 108 3.3 Orbit Determination... 109 3.3.1 Integration of the Undisturbed Orbit... 110 3.3.2 Integration of the Perturbed Orbit... 114 3.3.2.1 Analytical Methods of Orbit Integration... 114 3.3.2.2 Numerical Methods of Orbit Integration... 116 3.3.2.3 Precise Orbit Determination with Spaceborne GPS. 119 3.3.3 Orbit Representation... 120 3.3.3.1 Ephemeris Representation for Navigation Satellites 121 3.3.3.2 Polynomial Approximation... 122 3.3.3.3 Simplified Short Arc Representation... 124 3.4 Satellite Orbits and Constellations... 126 3.4.1 Basic Aspects... 126 3.4.2 Orbits and Constellations... 128 3.4.3 Sun-synchronous, Geostationary, and Transfer Orbits... 131

Contents xi 4 Basic Observation Concepts and Satellites Used in Geodesy 135 4.1 Satellite Geodesy as a Parameter Estimation Problem... 135 4.2 Observables and Basic Concepts... 139 4.2.1 Determination of Directions... 139 4.2.2 Determination of Ranges... 141 4.2.3 Determination of Range Differences (Doppler method)... 143 4.2.4 Satellite Altimetry... 144 4.2.5 Determination of Ranges and Range-Rates (Satellite-to-Satellite Tracking)... 144 4.2.6 Interferometric Measurements... 145 4.2.7 Further Observation Techniques... 147 4.3 Satellites Used in Geodesy... 147 4.3.1 Basic Considerations... 147 4.3.2 Some Selected Satellites... 149 4.3.3 Satellite Subsystems... 152 4.3.3.1 Drag Free Systems... 152 4.3.3.2 Attitude Control... 153 4.3.3.3 Navigation Payload, PRARE... 154 4.3.4 Planned Satellites and Missions... 156 4.4 Some Early Observation Techniques (Classical Methods)... 158 4.4.1 Electronic Ranging SECOR... 159 4.4.2 Other Early Observation Techniques... 160 5 Optical Methods for the Determination of Directions 161 5.1 Photographic Determination of Directions... 161 5.1.1 Satellites used for Camera Observations... 162 5.1.2 Satellite Cameras... 163 5.1.3 Observation and Plate Reduction... 164 5.1.4 Spatial Triangulation... 169 5.1.5 Results... 170 5.2 Directions with CCD Technology... 172 5.2.1 Image Coordinates from CCD Observations... 172 5.2.2 5.2.3 Star Catalogs, Star Identification and Plate Reduction... 174 Applications, Results and Prospects... 176 5.3 Directions from Space Platforms... 176 5.3.1 Star Tracker... 177 5.3.2 Astrometric Satellites, HIPPARCOS... 177 5.3.3 Planned Missions... 178 6 Doppler Techniques 181 6.1 Doppler Effect and Basic Positioning Concept... 183 6.2 One Successful Example: The Navy Navigation Satellite System.. 186 6.2.1 System Architecture... 187 6.2.2 Broadcast and Precise Ephemerides... 188

xii Contents 6.3 Doppler Receivers.... 190 6.3.1 Basic concept... 190 6.3.2 Examples of Doppler Survey Sets... 192 6.4 Error Budget and Corrections... 193 6.4.1 Satellite Orbits... 194 6.4.2 Ionospheric and Tropospheric Refraction... 195 6.4.3 Receiver System... 196 6.4.4 6.4.5 Earth Rotation and Relativistic Effects... 197 Motion of the Receiver Antenna... 198 6.5 Observation Strategies and Adjustment Models... 199 6.5.1 Extended Observation Equation... 199 6.5.2 Single Station Positioning... 201 6.5.3 Multi-Station Positioning... 202 6.6 Applications... 203 6.6.1 Applications for Geodetic Control... 204 6.6.2 Further Applications... 205 6.7 DORIS... 207 7 The Global Positioning System (GPS) 211 7.1 Fundamentals... 211 7.1.1 Introduction... 211 7.1.2 Space Segment... 213 7.1.3 Control Segment... 217 7.1.4 7.1.5 Observation Principle and Signal Structure... 218 Orbit Determination and Orbit Representation... 222 7.1.5.1 Determination of the Broadcast Ephemerides... 222 7.1 S.2 Orbit Representation... 223 7.1.5.3 Computation of Satellite Time and Satellite Coordinates... 225 7.1 S.4 Structure of the GPS Navigation Data... 227 7.1.6 Intentional Limitation of the System Accuracy... 229 7.1.7 System Development... 230 7.2 GPS Receivers (User Segment)... 234 7.2.1 7.2.2 Receiver Concepts and Main Receiver Components... 234 Code Dependent Signal Processing... 239 7.3 7.2.3 7.2.4 Codeless and Semicodeless Signal Processing.... 240 Examples of GPS receivers.... 243 7.2.4.1 Classical Receivers... 243 7.2.4.2 Examples of Currently Available Geodetic Receivers... 245 7.2.4.3 Navigation and Handheld Receivers... 248 7.2.5 Future Developments and Trends... 250 GPS Observables and Data Processing... 252

Contents... XIII 7.4 7.3.1 Observables... 252 7.3.1.1 Classical View... 252 7.3.1.2 Code and Carrier Phases... 255 7.3.2 Parameter Estimation... 258 7.3.2.1 7.3.2.2 Linear Combinations and Derived Observables... 258 Concepts of Parametrization.... 265 Resolution of Ambiguities.... 269 7.3.2.3 7.3.3 Data Handling... 277 7.3.3.1 Cycle Slips... 277 7.3.4 7.3.5 7.3.3.2 The Receiver Independent Data Format RINEX.. 281 Adjustment Strategies and Software Concepts... 283 Concepts of Rapid Methods with GPS... 289 7.3.5.1 Basic Considerations... 289 7.3.5.2 7.3.5.3 Rapid Static Methods... 290 Semi Kinematic Methods... 292 7.3.5.4 Pure Kinematic Method... 294 7.3.6 Navigation with GPS... 295 Error Budget and Corrections... 297 7.4.1 Basic Considerations... 297 7.4.2 Satellite Geometry and Accuracy Measures... 300 7.4.3 Orbits and Clocks... 304 7.4.3.1 Broadcast Ephemerides and Clocks... 304 7.4.3.2 Precise Ephemerides and Clocks, IGS... 307 7.4.4 Signal Propagation... 309 7.4.4.1 Ionospheric Effects on GPS Signals... 309 7.4.4.2 Tropospheric Propagation Effects... 314 7.4.4.3 Multipath... 316 7.4.4.4 Further Propagation Effects, Diffraction and Signal Interference... 319 7.4.5 Receiving System... 320 7.4.5.1 Antenna Phase Center Variation... 320 7.4.5.2 Other Error Sources Related to the Receiving System... 323 7.4.6 Further Influences, Summary, the Issue of Integrity... 323 7.5 Differential GPS and Permanent Reference Networks... 325 7.5.1 Differential GPS (DGPS)... 326 7.5.1.1 DGPS Concepts... 326 7.5.1.2 7.5.1.3 Data Formats and Data Transmission... 329 Examples of Services... 332 7.5.2 7.5.3 Real Time Kinematic GPS... 336 Multiple Reference Stations... 338 7.5.3.1 Wide Area Differential GPS... 339 7.5.3.2 High Precision Networked Reference Stations... 341

xiv Contents 7.6 Applications... 345 7.6.1 Planning and Realization of GPS Observation... 345 7.6.1.1 Setting Up an Observation Plan... 346 7.6.1.2 Practical Aspects in Field Observations... 348 7.7 7.6.2 7.6.1.3 Observation Strategies and Network Design... 350 Possible Applications and Examples of GPS Observations.. 356 7.6.2.1 Geodetic Control Surveys... 357 7.6.2.2 Geodynamics... 362 7.6.2.3 Height Determination... 366 7.6.2.4 Cadastral Surveying, Geographic Information Systems... 368 7.6.2.5 Fleet Management, Telematics, Location Based Services... 371 7.6.2.6 Engineering and Monitoring... 372 7.6.2.7 Precise Marine Navigation, Marine Geodesy, and Hydrography... 375 7.6.2.8 Photogrammetry, Remote Sensing, Airborne GPS. 378 7.6.2.9 Special Applications of GPS... 380 GNSS - Global Navigation Satellite System... 383 7.7.1 GLONASS... 384 7.7.2 GPS/GLONASS Augmentations... 392 7.7.3 GALILEO... 393 7.8 Services and Organizations Related to GPS... 397 7.8.1 The International GPS Service (IGS)... 397 7.8.2 Other Services... 401! 8 Laser Ranging 404 8.1 Introduction... 404 8.2 Satellites Equipped with Laser Reflectors... 406 8.3 Laser Ranging Systems and Components... 411 8.3.1 Laser Oscillators... 411 8.3.2 Other System Components... 412 8.3.3 Currently Available Fixed and Transportable Laser Systems. 414 8.3.4 Trends in SLR System Developments... 416 8.4 Corrections, Data Processing and Accuracy... 418 8.4.1 Extended Ranging Equation... 418 8.4.2 Data Control, Data Compression, and Normal Points... 422 8.5 Applications of Satellite Laser Ranging... 424 8.5.1 Realization of Observation Programs. lnternational Laser Ranging Service (ILRS)... 424 8.5.2 Parameter Estimation... 427 8.5.3 Earth Gravity Field, Precise Orbit Determination (POD)... 428 8.5.4 Positions and Position Changes... 431

Contents xv 8.5.5 Earth Rotation. Polar Motion... 432 8.5.6 Other applications... 435 8.6 Lunar Laser Ranging... 436 8.7 Spaceborne Laser... 441 9 Satellite Altimetry 443 9.1 Basic Concept... 443 9.2 Satellites and Missions... 444 9.3 Measurements, Corrections. Accuracy... 451 9.3.1 Geometry of Altimeter Observations... 451 9.3.2 Data Generation... 452 9.3.3 Corrections and Error Budget... 454 9.4 Determination of the Mean Sea Surface... 460 9.5 Applications of Satellite Altimetry... 461 9.5.1 Geoid and Gravity Field Determination... 462 9.5.2 Geophysical Interpretation... 464 9.5.3 Oceanography and Glaciology... 465 10 Gravity Field Missions 469 10.1 Basic Considerations... 469 10.2 Satellite-to-Satellite Tracking (SST)... 473 10.2.1 Concepts... 473 10.2.2 High-Low Mode, CHAMP... 476 10.2.3 Low-Low Mode. GRACE... 477 10.3 Satellite Gravity Gradiometry... 480 10.3.1 Concepts... 480 10.3.2 GOCE mission... 482 11 Related Space Techniques 485 11. 1 Very Long Baseline Interferometry... 485 11.1.1 Basic Concept. Observation Equations. and Error Budget... 485 11.1.2 Applications... 491 11.1.3 International Cooperation. International VLBI Service (IVS). 496 11.1.4 VLBI with Satellites... 498 11.2 Interferometric Synthetic Aperture Radar (InSAR)... 500 11.2.1 Basic Concepts, Synthetic Aperture Radar (SAR)... 500 11.2.2 Interferometric SAR... 502 I 1.2.3 Differential Radar Interferometry... 505 12 Overview and Applications 506 12.1 Positioning... 506 12.1.1 Concepts. Absolute and Relative Positioning... 506 12.1.2 Global and Regional Networks... 510 12.1.3 Operational Positioning... 511

xvi Contents 12.2 Gravity Field and Earth Models... 514 12.2.1 Fundamentals.... 514 12.2.2 Earth Models... 519 12.3 Navigation and Marine Geodesy... 523 12.3.1 Possible Applications and Accuracy Requirements in Marine Positioning... 523 12.3.2 Marine Positioning Techniques.... 524 12.4 Geodynamics... 527 12.4.1 Recent Crustal Movements.... 527 12.4.2 Earth Rotation, Reference Frames. IERS... 529 12.5 Combination of Geodetic Space Techniques... 534 12.5.1 Basic Considerations.... 534 12.5.2 Fundamental Stations.... 535 12.5.3 Integrated Global Geodetic Observing System (IGGOS)... 537 References 539 Index 575