Supporting Online Material for



Similar documents
MORPHOLOGY OF A SPECIMEN OF SUPERSAURUS (DINOSAURIA, SAUROPODA) FROM THE MORRISON FORMATION OF WYOMING, AND A RE-EVALUATION OF DIPLODOCID PHYLOGENY 1

BONE BINGO. Blood Production Red and white blood cells are produced in the bone marrow, a substance found inside the larger bones of the body.

AN UNUSUAL NEW NEOSAUROPOD DINOSAUR FROM THE LOWER CRETACEOUS HASTINGS BEDS GROUP OF EAST SUSSEX, ENGLAND

Observing Vertebrate Skeletons

Classification of bones Any bone may be classified into one of the following groups:

Laerdal' Human Anatomy Manual The Skeleton

Unit 4: Skeletal System Test Review Test Review

THE SKELETAL SYSTEM FUNCTIONS OF THE SKELETAL SYSTEM

Almost all known sauropod necks are incomplete and distorted

The lizard Rubiessaurus Gómez Pallerola, 1979 from the Lower Cretaceous of Catalonia (Montsec, Lleida, Spain)

LOCOMOTION AND MOVEMENT

(J~ GREGORY S. PAUL 3109 N. Calvert St. Side Apt. Baltimore, MD ABSTRACT

LABORATORY EXERCISE 12 BONE STRUCTURE AND CLASSIFICATION

CONTINUING EDUCATION COURSES. for Massage Therapists. Online!

Anthropology 209: Forensic Anthropology Fall 2012

Activity: Can You Identify the Age?

Anatomy of Skeletal System

Human Body Vocabulary Words Week 1

A Comprehensive Examination of sample Middle Jurassic Turtles

Medical Terminology, Anatompy & Physiology

II. Axial Skeleton (Skull, Thoracic Cage, and Vertebral Column)

Locating Common Bones*

RP PERFORM SPLINTING TECHNIQUES

The Avian Skeleton. Avian Flight. The Pelvic Girdle. Skeletal Strength. The Pelvic Girdle

Who are you: Strategies for Presenting Forensic Anthropology and Human Variation in the Classroom

Human Bones BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN ACTIVITY ASSESSMENT OPPORTUNITIES. Grade 4 Quarter 3 Activity 21

REBBACHISAURUS TESSONEI SP. NOV. A NEW SAUROPODA FROM THE ALBIAN-CENOMANIAN OF ARGENTINA; NEW EVIDENCE ON THE ORIGIN OF THE DIPLODOCIDAE

Skeletal system Pearson Education, Inc.

Anatomy and Physiology 121: Muscles of the Human Body

MECHANICAL DIGITIZING FOR PALEONTOLOGY - NEW AND IMPROVED TECHNIQUES. Heinrich Mallison, Alexander Hohloch, and Hans-Ulrich Pfretzschner

Table S1. List of Institutional Abbreviations. AMNH, American Museum of Natural History, New York, New York; ANSP, Academy of National Science of

Vertebral anatomy study guide. Human Structure Summer Prepared by Daniel Schmitt, Angel Zeininger, and Karyne Rabey.

Problem: CSI: The Experience - Educator s Guide

ARTICLE IN PRESS. C. R. Palevol xxx (2012) xxx xxx. Contents lists available at SciVerse ScienceDirect. Comptes Rendus Palevol

Anterior Superior Iliac Spine. Anterior Inferior Iliac Spine. head neck greater trochanter intertrochanteric line lesser trochanter

LESSON ASSIGNMENT. After completing this lesson, you should be able to: 4-1. Define skeleton.

Brunswick School Department: Grades Essential Understandings

Internal Anatomy. Figure 2. The bones of the avian skull (a) lateral view (b) posterior view (c) sclerotic ring.

Muscles of Mastication

THE SKELETAL SYSTEM - THE AXIAL SKELETON

Middle California Region USPC Upper Level Horse Management Education. Tendons, Ligaments, Joints & the Skeletal System By Claudia Deffenbaugh

HUMAN BONES AND BURIALS

Dynamics of dinosaurs

Dinosaurs and other vertebrates from the Papo-Seco Formation (Lower Cretaceous) of southern Portugal

CORE-INFO: Fractures in children

MILfu CNON. ,Wfr. Dinosaur Trail -'M. '/h tf- llf rl4. A SELF GUIDED WALKINGTOUR Grand ResourceArea - Moab. Utah. ,/t BUREAU OF LAND MANAGEMENT

Atlas of Human Skeletal Anatomy

Part 1: Introduction Tell the name of your organ system and describe the major functions.

Were Australopithecines Ape Human Intermediates or Just Apes? A Test of Both Hypotheses Using the Lucy Skeleton

INFORMATION SOCIETIES TECHNOLOGY (IST) PROGRAMME

FORENSIC ANTHROPOLOGY NOTES

UNIT 4 - SKELETAL SYSTEM LECTURE NOTES

Chapter 5 The Skeletal System

Laboratory 1 Anatomical Planes and Regions

Divisions of the Skeletal System

THE SKELETAL AND MUSCULAR SYSTEMS

Introduction. I. Objectives. II. Introduction. A. To become familiar with the terms of direction and location.

Gallina & Apesteguia: Upper Cretaceous rebbachisaurid from Northern Patagonia 153

Activity: Is There Evidence of Trauma in the Skeleton?

THE DINOSAURS (CARNOSAURS, ALLOSAURIDS, SAUROPODS, CETIOSAURIDS) OF THE MIDDLE JURASSIC OF CERRO CÓNDOR (CHUBUT, ARGENTINA)

Nerve Tissue. Muscle Tissue. Connective Tissue

EHFA Assessment Strategy (EAD 03) Name of Training Organisation:

Charts of fetal size: limb bones

A Practical Guide to In Situ Dog Remains for the Field Archaeologist

Regarded as the first vertebrate group fully adapted to a

Research Journal of Pharmaceutical, Biological and Chemical Sciences

A STUDY ON THE PREVALENCE OF SKELETAL OSTEOSARCOMA IN DOGS AND CATS

The Muscular System. Appendicular Musculature

Online! CONTINUING EDUCATION COURSES

Mobility and Exercise for Health and Social Care

67 The Human Skeleton

Abstracts and Field Guides

Bone Growth Stimulators

Sauroposeidon: Oklahoma s Native Giant

Skin of eyebrows galea aponeurotica. Muscle and skin of mouth

PALEONTOLOGY OF MADAGASCAR. IV. - DINOSAURS by Armand THEVENIN *

Possible theropod predation evidence in hadrosaurid dinosaurs from the Upper Maastrichtian (Upper Cretaceous) of Arén (Huesca, Spain)

Resorptive Changes of Maxillary and Mandibular Bone Structures in Removable Denture Wearers

SPORT AND PHYSICAL ACTIVITY

The skeletal and muscular systems

Erketu ellisoni, a Long-Necked Sauropod from Bor Guvé (Dornogov Aimag, Mongolia)

NEW RECORDS AND A NEW SPECIES OF CHENDYTES, AN EXTINCT GENUS OF DIVING GEESE

International Journal of Biological & Medical Research

1.INTRODUCTION 2. MATERIALS AND METHODS

A NEW GENUS OF THE SPIDER SUBFAMILY GNAPHOSINA E FROM THE VIRGIN ISLANDS (ARANEAE, GNAPHOSIDAE ) Norman I. Platnick and Mohammad U.

7. Skeletal System: Bone Structure and Function

Appendix A Partial Pick List of Injury and Sequelae Codes (ICD-10-CA)

Journal of Forensic and Legal Medicine

The human skeleton anterior view

OTOZAMITES FALSUS (BENNETTITALES) FROM THE UPPE.R LIASSIC OF THE HOLY CROSS MTS, POLAND

Medical Billing Basics

Dinosaurs of Portugal Dinosaures du Portugal

Muscles of the Neck and Vertebral Column Sternocleidomastoid (anterior neck) Origin Insertion Action

High-Flex Solutions for the MIS Era. Zimmer Unicompartmental High Flex Knee System

The Human Skeleton. Bone and Bone Growth

Hanover Point (Isle of Wight) fossils

Chapter 11. What are the functions of the skeletal system? More detail on bone

PART B - Human Tissue List February 2015

DESCRIPTION OF A TITANOSAURID CAUDAL SERIES FROM THE BAURU GROUP, LATE CRETACEOUS OF BRAZIL 1

GIANT MYSTERIOUS DINOSAURS

Transcription:

www.sciencemag.org/cgi/content/full/314/5807/1925/dc1 Supporting Online Material for A Giant European Dinosaur and a New Sauropod Clade Rafael Royo-Torres,* Alberto Cobos, Luis Alcalá This PDF file includes: *To whom correspondence should be addressed. E-mail: royo@dinopolis.com SOM Text Figs. S1 to S4 Tables S1 to S5 References Published 22 December 2006, Science 314, 1925 (2006) DOI: 10.1126/science.1132885

Supporting Online Material for: A GIANT EUROPEAN DINOSAUR AND A NEW SAUROPOD CLADE Rafael Royo-Torres 1*, Alberto Cobos 1 and Luis Alcalá 1 1 Fundación Conjunto Paleontológico de Teruel-Dinópolis. Avenida de Sagunto, E-44002 Teruel, Spain. *To whom correspondence should be addressed, E-mail: royo@dinopolis.com This file includes: 1. Geographic and stratigraphic setting (Figures S1, S2). 2. Excavation map of the Turiasaurus riodevensis type locality (Barrihonda-El Humero) (Figure S3). 3. Phylogenetic character codings for Losillasaurus, Turiasaurus and Galveosaurus (Table S1). 4. Measurements of skeletal elements of Turiasaurus riodevensis compared to those of other large-sized sauropods (Figure S4, Tables S2, S3). 5. Mass and length estimation of Turiasaurus riodevensis (Tables S4, S5). 6. Supporting Online Material References.

1. Geographic and stratigraphic setting Fig. S1. Geographic setting of the Barrihonda-El Humero site in Riodeva (Teruel Province, Spain): the type locality of Turiasaurus riodevensis.

Fig. S2. Stratigraphic sections of the localities where the Villar del Arzobispo Formation sauropods have been found and their temporal relationship. (A) Galve (S1, S2). (B) Riodeva (S3). (C) Alpuente (S4, S5). (D) Litostratigraphic chart of the South-Iberian Basin of the Iberian Range during the Upper Jurassic-Lower Cretaceous (S6). In Riodeva, the Villar del Arzobispo Formation consists of alternating fine to coarse sandstones and red silt stone beds deposited in more than ten shallowing para-sequences (from five to 20 m thick) related to successive sea level change and basin sedimentary infill.

2. Excavation map of the Turiasaurus riodevensis type locality (Barrihonda-El Humero) Fig. S3. Excavation map: Barrihonda-El Humero, Riodeva (Teruel, Spain) 2003-2005.

3. Phylogenetic character codings for Losillasaurus, Turiasaurus, and Galveosaurus Table S1: Phylogenetic character codings for Losillasaurus, Turiasaurus, and Galveosaurus. The codification of these taxa has been based on personal observations supported by descriptions in previous studies (S2, S5, S7). Character numbers follow Upchurch et al. (2004) (S8). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Losillasaurus??????????????????? Turiasaurus??????????????????? Galveosaurus??????????????????? 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Losillasaurus??????????????????? Turiasaurus??????????????????? Galveosaurus??????????????????? 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 Losillasaurus??????????????????? Turiasaurus??????????????????? Galveosaurus??????????????????? 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 Losillasaurus??????????????????? Turiasaurus??????????????????? Galveosaurus??????????????????? 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 Losillasaurus??????????????????? Turiasaurus?? 1 1 1 1 1 1 1 1 1 0 0?? 0??? Galveosaurus??????????????????? 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 Losillasaurus?????? 0 1 1 0 0 0 0 1 1 1 1 1 0 Turiasaurus?????? 0 1 1? 1 1 0 1 1 1 1 0 0 Galveosaurus?????? 0 1?? 1 1 0 0 1 1 1 0 0 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 Losillasaurus 1 1 0 0??????? 0 0 1 1 0 0 1 1 Turiasaurus 1 0 0 1 0 0 1???? 0 0 1 1 0? 1 1 Galveosaurus 1 1????????? 0 1 1 1 0? 1 1 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 Losillasaurus 0 0 1 1 1? 0 0 0 0 1 0 0 1 0 0 1 0 1 Turiasaurus 0 0 1 1 1? 0 0? 0 1 0 0 1 0 0 1 0? Galveosaurus 0? 1 1??? 0? 0 1 0 0 1 0 0 1 0? 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 Losillasaurus 1 1 0 1 1 0??????? 0 0??? 0 Turiasaurus 1 1 0? 1 0 0 0??????????? Galveosaurus 1 1 0?? 0? 0???????????

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 Losillasaurus 0 1 0 0? 0??? 0 0 0 0 0 0? 0 0 1 Turiasaurus???? 0??? 0?????????? Galveosaurus? 0 0 0??? 0? 0 0 0 1 0 0???? 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 Losillasaurus 0 0???????????????? 0 Turiasaurus?????????? 0 0?????? 0 Galveosaurus???? 1????? 0 0??? 0? 0 0 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 Losillasaurus 2 0????? 0 0 0 0 1 1 1?? 0 1 1 Turiasaurus 2 0 0 0??? 0 0 0 0 1 1 1? 0 1 1 1 Galveosaurus 2 0 0???? 0 0 0 0 0??????? 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 Losillasaurus 1 0???? 1 1??????????? Turiasaurus 1 0 0 0 0 1 1 1 1 1 0 0 0?????? Galveosaurus??????????????????? 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 Losillasaurus??????? 0??? 0??????? Turiasaurus??????????????????? Galveosaurus??????? 0 0 0? 0 0?????? 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 Losillasaurus??????????????????? Turiasaurus??? 1? 0? 0 1 0?? 1 1 0 1 0 1 1 Galveosaurus???????????? 1?????? 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 Losillasaurus??????????????????? Turiasaurus 1 1? 1? 1 1??? 1 1??? 0 1 0 1 Galveosaurus??????????????????? 305 306 307 308 309 Losillasaurus???? 0 Turiasaurus? 1? 1 0 Galveosaurus???? 1

4. Measurements of skeletal elements of Turiasaurus riodevensis compared to those of other large-sized sauropods On the femur, only the distal end is known in Turiasaurus. Accordingly we have estimated the length of this bone based on the humerofemoral proportions of other basal sauropods. Using the allometric equations generated, we estimate the Riodeva femoral length of Turiasaurus as 2219 mm. Fig. S4. Regression analyses of the skeletal proportions of the basal sauropods Gongxianosaurus shibeiensis (S9), Kotasaurus yamanpalliensis (S10) (notice that humerus and femur could not belong to the same specimen); the basal eusauropods Cetiosauriscus stewarti (S11), Cetiosaurus oxoniensis (S12), Jobaria tiguidensis (S13, S14), Omeisaurus maoianus (S15) and Mamenchisaurus youngi (S16); and the basal neosauropod Ferganasaurus verzilini (S17), which have been used to estimate femur and tibia length (mm) in the turiasaurian eusauropod Turiasaurus riodevensis. The humerus of Turiasaurus measures 1790 mm in length. The allometric equations generated were used to estimate the lengths of the femur and tibia of Turiasaurus at: 2219 and 1365 mm, respectively.

Table S2: Measurements of skeletal elements of Turiasaurus riodevensis compared to those of other European sauropods. 1: Craniocaudally length of cervical vertebrae; 2: Dorsoventral height of cervical vertebrae; 3: Craniocaudally length of dorsal vertebrae; 4: Dorsoventral height of dorsal vertebrae; 5: Scapulocoracoid length, 6: Sternal length; 7: Humerus length; 8: Radius length; 9: Ulna length; 10: Metacarpal II length; 11: Femur length; 12: Tibia length; 13: Fibula length; 14: Mediolateral width of astragali; 15: Metatarsal II length; 16: Craniocaudally length of pedal digit I ungual; 17: Dorsal rib length. Taxa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 References Ampelosaurus atacis 180 350 200 500 910 / 630 / 395 / 837 520 541 / / / / S18 Aragosaurus ischiaticus / / / / 1260 / 1120 790 820 / 1360 / / / / 170 / S19 Brachiosauridae indet. MIWG7306 745 / / / / / / / / / / / / / / / / S20 Cetiosaurus oxoniensis 360 357 186 / 1370 / 1236 / 930 / 1615 945 945 / / / / S12, S21 "Cetiosauriscus greppini" / / / / / / 520 / / / 600 ca / / / / / / S22 Cetiosauriscus stewarti / / / / 965 595 940 760 760 / 1360 / / / 210 / / S8, S11 "Chondrosteosaurus gigas" 340 144+ / / / / / / / / / / / / / / / S23 Dinheirosaurus lourinhanensis 710 / 580 500 / / / / / / / / / / / / / S24 Eucamerotus foxi / / 228 657 / / / / / / / / / / / / / S25 Galveosaurus herreroi 436 578 / 725 750 620 1530 / / / / / / / / / 1500 S2, S7 Histriasaurus boscarollii 350 150 200 750 / / / / / / / / / / / / / S26 Lirainosaurus astibiae / / 125 280 520 260 530 / / / 660 525 560 / / / / S27 Losillasaurus giganteus 410 / 205 775 / 600 1430 785 ca 810 ca 330 ca 1834* 1114* / / / / / S5 Lourinhasaurus alenquerensis 500 / 300 / 1670 / 1500 1010 1060 150 1740 1100 1160 360 / / / S28, S29 Lusotitan atalaiensis 200 120 200 / / / 2050 ca 1130 1150 370 1900-2000 ca 1120 / / / / / S28, S30 Magyarosaurus dacus / / / / / / 400 / 400 / / / 470 / / / / S31, S32 Ohmdenosaurus liasicus / / / / / / / / / / / 412 / 140 / / / S32, S33 Ornithopsis hulkei / / 200 / / / / / / / / / / / / / / S23 Pelorosaurus conybearei / / / / / / 1300 / / / / / / / / / / S34 Turiasaurus riodevensis 520 400 ca 200 ca 700 / 950 1790 1180 1260 435 2219* 1365* 1440 ca 370 295 300 1900 * estimated; ca: approximately

Table S3: Measurements of skeletal elements of Turiasaurus riodevensis compared to those of the largest known sauropods. 1: Craniocaudally length of cervical vertebrae; 2: Dorsoventral height of cervical vertebrae; 3: Craniocaudally length of dorsal vertebrae; 4: Dorsoventral height of dorsal vertebrae; 5: Scapulocoracoid length, 6: Sternal length; 7: Humerus length; 8: Radius length; 9: Ulna length; 10: Metacarpal II length; 11: Femur length; 12: Tibia length; 13: Fibula length; 14: Mediolateral width of astragali; 15: Metatarsal II length; 16: Craniocaudally length of pedal digit I ungual; 17: Dorsal rib length; 18: Humerus minimum mid-shaft circumference; 19: Pedal ungual phalanx I length. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 References Amphicoelias fragillimus / / / 1920 ca / / / / / / 3100-4000* / / / / / / / S35,S36 Argentinosaurus huinculensis PVPH-1 / / 410 1590 / / 1810* / / / 2257-2557ca / 1550 / / / / / S37, S38, S39 Antarctosaurus giganteus MLP23-316 / / / / / / / / / / 2350 / / / / / / / S38 Brachiosaurus brancai HMN SII 1155 / / 1170 2360* 1100 2130 1240 / 635 2090* 1150* 1190 / 276 240 2580 647 240* S40, S41 Brachiosaurus brancai HMN XV2 1300* / / 1320* 2660* / 2400* / / / 2350* / 1340 / / / 2900* / S40 Paralititan stromeri CGM 81119 / / / / / / 1690 / / / 2054* / / / / / / / S39 Puertasaurus reuili MPM 10002 1180 / 450 1060 / / / / / / / / / / / / / / S42 Sauroposeidon proteles OMNH 53062 1250-1400 / / / / / / / / / / / / / / / / / S43 Seismosaurus halli NMMNH 3690 / / / 1000* / / / / / / / / / / / / / / S36, S44 Supersaurus vivianae BYU 5501 / / / / 2700 / / / / / 2600* / / / / / / / S40 Turiasaurus riodevensis 520 400 ca 200 ca 700 / 950 1790 1180 1260 435 2219 ca 1365 ca 1440 ca 370 295 300 1900 755 300 * estimated; ca: approximately

5. Mass and length estimation of Turiasaurus riodevensis Estimations of dinosaurs body mass have produced varied results. For example, for the basal titanosauriform sauropod Brachiosaurus brancai, the following quite different mass estimates have been proposed (in metric tons): 78.26 Colbert (1962) (S45) 46.6 Alexander (1985) (S46) 39.5 Mazzetta et al. (2004) (S38) 37.4 Christiansen (1997) (S41) 31.5 Paul (1988) (S40) 29 Anderson et al. (1985) (S47) The method developed by Anderson et al. (1985) (S47) produced the lowest mass estimate; we therefore follow their method, to be conservative. Their mass estimate is calculated based on the minimum midshaft circumferences of the humerus (C h ) and femur (C f ) in mm, according to the following formula proposed for quadrupedal dinosaurs: W = 0.078 C h+f 2.73 The Turiasaurus humerus is complete and its midshaft circumference measures 755 mm. Unfortunately, we lack the same datum for the femur, as only its distal end has been preserved. To estimate the midshaft femoral circumference of Turiasaurus, we have measured the circumference of the shaft in a section corresponding to 16% of the total femur length (which, as above, was estimated using the humeral:femoral proportions of other primitive sauropods at 2219 mm) with respect from the distal end; this value is 980 mm. To estimate which would be the measurement of the circumference of this femur, we have used references from the femora of other sauropods (see table below). As the maximum and minimum difference between circumferences at 16% and 50% of femoral length ranges between 81% and 92%, we estimate that the approximate midshaft circumference of the Turiasaurus femur could range between 794 mm and 902 mm.

Table S4: Data used to estimate the midshaft circumference of the Turiasaurus femur. MPZ (Museo Paleontológico de la Universidad de Zaragoza), CPT (Museo Fundación Conjunto Paleontológico de Teruel-Dinópolis), MMG (Museo Municipal de Galve). Sauropod from Peñarroya de Tastavins (S48) MPZ-99/9 Sauropod from the Morrison Formation (USA) CPT-M01 Sauropod from the Morrison Formation (USA) CPT-M02 Cast of Bellusaurus sui (China) CPT-221 Cast of Brachiosaurus brancai (HMN SII) CPT-211 Aragosaurus ischiaticus MMG-SS Turiasaurus riodevensis CPT-1241 Femur total length (mm) 1300 1450 1300 500 1700 1420 2219 A= distal shaft circumference at 16% of the femur total length (mm) 670 770 850 880 960 715 980 B= midshaft circumference at 50% of the femur total length (mm) 550 710 780 710 840 640 Difference 82% 92% 92% 81% 87.5% 90% Applying the formula from Anderson et al. (1985) (S47): Minimum estimated weight in g = 0.078 (755 + 794) 2.73 Maximum estimated weight in g = 0.078 (755 + 902) 2.73 So, the body mass of Turiasaurus could range between 39.90 and 47.96 metric tons. Similarly, we have calculated the mass of Turiasaurus, using the formula log (body mass) = v log X + log u obtained by Mazzetta et al. (2004) (S38) via logarithmic regressions proposed using several available dimensions; the results obtained from our data (X) and from the parameters provided by Mazzetta et al. (2004) (S38) are the following:

51.05 metric tons using length of the femur (fl = 2219 mm, estimated). 49.40 metric tons using distal width of the femur across the condyles (fw = 620 mm). 36.87 and 25.29 metric tons using mid-shaft perimeter of the femur (fp: maximum estimated = 902 mm and minimum estimated = 794 mm). Regardless of whether maximum or minimum estimated dimensions for Turiasaurus are used the average of these calculations exceeds 40 metric tons (41.91 and 45.77, respectively). With this mass, and according to Seebacher s (2001) correlation method (S49), which proposes the following regression equation for sauropods: body mass (kg) = 214.44 (total length in m) 1.46 the length of Turiasaurus would range between about 36 m (minimum) and 38-39 m (maximum). If this calculation is made using the average of the weights obtained by the Anderson et al. (1985) (S47) method, the estimated length would be 37.3 m, practically the same. Nearly the same results are achieved by two different methods. All of these data establish Turiasaurus riodevensis as one of the largest sauropods yet discovered, along with Amphicoelias fragillimus, Seismosaurus, Supersaurus, Antarctosaurus giganteus, Argentinosaurus, Paralititan, Puertasaurus, and Sauroposeidon (S8, S37, S39, S42, S43, S50). Moreover, Turiasaurus is arguably the most completely known of these gigantic sauropods. The only one of them known from comparably complete material is Seismosaurus (see below). Table S5: Skeletal completeness of Seismosaurus vs. Turiasaurus. SKULL AXIAL SKELETON APPENDICULAR SKELETON TOTAL Seismosaurus (S44 ) Skull elements * Very fragmentary remains Turiasaurus (this paper) Teeth * 8 (3 complete) Cervical vertebrae * 6 vertebrae with ribs (numbers 3-8) Dorsal vertebrae 8 vertebrae with ribs 3 complete vertebrae, 1 incomplete vertebra, 3 complete ribs, 5 incomplete ribs Sacrum Nearly complete sacrum Partial sacrum Caudal vertebrae 21 caudal vertebrae (ant., med., and post.) 2 posterior vertebrae Chevrons 5 * Scapular girdle * Scapula and sternal fragments Pelvic girdle 2 ilia; 2 ischia; 1 pubis * Fore limbs * Humerus, radius, ulna, carpal, 5 metacarpals, 7 phalanges Hind limbs * Distal fragment of femur, proximal fragment of tibia, 1 fibula, 2 astragali, 2 complete and 3 incomplete metatarsals, 10 phalanges App. 50 App. 70

6. Supporting Online Material References S1. J.I. Ruiz-Omeñaca et al., Estud. Geol. 60, 179 (2004). S2. J.L. Barco, J.I. Canudo, G. Cuenca-Bescós, J.I. Ruiz-Omeñaca, Nat. Aragonesa 15, 4 (2005). S3. L. Luque, A. Cobos, R. Royo-Torres, E. Espílez, L. Alcalá, Geogaceta 38, 27 (2005). S4. M.L. Casanovas-Cladellas, J.V. Santafé Llopis, C. Santisteban Bové, X. Pereda- Suberbiola, Rev. Esp. Paleontol. Homenaje Prof. J. Truyols, 57 (1999). S5. M.L. Casanovas, J.V. Santafé, J.L. Sanz, Paleontol. Evolució 32, 99 (2001). S6. R. Salas et al., in Peri-Tethyan Rift/Wrench Basins and Passive Margins, W. Cavazza, A.H.F.R. Robertson, P. Ziegler, S. Crasquin-Soleau, Eds. (Mém. Muséum National Histoire Naturelle, 2001), vol. 186, pp. 145-185. S7. B. Sánchez-Hernández, Zootaxa 1034, 1 (2005). S8. P. Upchurch, P.M. Barrett, P. Dodson, in The Dinosauria, D.B. Weishampel, P. Dodson, H. Osmólska, Eds. (Univ. California Press, Berkeley, 2004), pp. 259-322. S9. Y. Luo, C. Wang, Acta Geol. Sin. 74, 132 (2000) S10. P. Yadagiri, Records Geol. Surv. India 11, 102 (1988). S11. A.S. Woodward, Proc. Zool. Soc. London 26, 232 (1905). S12. P. Upchurch, J. Martin, J. Vert. Paleontol. 23, 208 (2003). S13. P.C. Sereno et al., Science 286, 1342 (1999). S14. A.F. de Lapparent, Mém. Soc. Géol. France, 88A, 57 (1960). S15. T. Feng, J. Xingsheng, K. Ximin, Z. Goujon, Omeisaurus maoianus. A complete Sauropods from Jingyan, Sichuan (Research Works of Natural Museum of Zhejiang, 2001), pp. 1-128. S16. H. Ouyang, Y. Ye, The First Mamenchisaurian Skeleton with Complete Skull: Mamenchisaurus youngi (Sichuan Science and Technology Press, Chengdu, 2002), pp. 1-110. S17. V.R. Alifanov, A.O. Averianov, J. Vert. Paleontol. 23, 358 (2003). S18. J. Le Loeuff, in Thunder-Lizards. The Sauropodomorph Dinosaurs, V. Tidwell, K. Carpenter, Eds. (Indiana University Press, 2005), pp. 115-137. S19. J.L. Sanz, A.D. Buscalioni, M.L. Casanovas, J.V. Santafé, Estud. Geol. Galve- Tremp, 45 (1987). S20. D. Naish, D.M. Martill, D. Cooper, K.A. Stevens, Cretaceous Res. 25, 787 (2004). S21. P. Upchurch, J. Martin, Palaeontology 45, 1049 (2002). S22. C.A. Meyer, B. Thüring, Comp. Rend. Palevol 3, 103 (2003). S23. P. Upchurch, thesis, Cambridge University (1993). S24. J.F. Bonaparte, O. Mateus, Rev. Mus. Argent. Cienc. Nat. Bernardino Rivadavia 5, 13 (1999). S25. W.T. Blows, Palaeontology 38, 187 (1995). S26. F. Dalla Vecchia, Geol. Croatica 51, 105 (1998). S27. J.L. Sanz, J.E. Powell, J. Le Loeuff, R. Martínez, X. Pereda-Suberbiola, Estud. Mus. Cien. Nat. Alava, 14, 235 (1999). S28. A.F. Lapparent, G. Zbyszewski, Mem. Serv. Géol. Portugal 2, 1 (1957). S29. P. Dantas et al., Comun. Inst. Geol. Mineiro 84, 91 (1998). S30. M.T. Antunes, O. Mateus, Comp. Rend. Palevol 2, 77 (2003). S31. F. V. Huene, Monog. Geol. Palaeontol. 1, 1 (1932).

S32. D. Glut, Dinosaurs: The Encyclopedia (McFarland & Company Inc. Publishers, 1997), pp. 1-1076. S33. R. Wild, Stutt. Beit. Natur. ser. B 41, 1 (1978). S34. G.A. Mantell, Philos. Trans. R. Soc. London 140, 379 (1850). S35. E.D. Cope, Am. Nat. 13, 563 (1878). S36. G.S. Paul, The Dinosaur Report, 12 (1994). S37. J.F. Bonaparte, R.A. Coria, Ameghiniana 30, 271 (1993). S38. G.V. Mazzetta, P. Chistiansen, R.A. Fariña, Hist. Biol. 16, 71 (2004). S39. J.B. Smith et al., Science 292, 1704 (2001). S40. G.S. Paul, Hunteria 2, 1 (1988). S41. P. Christiansen, GAIA 14, 45 (1997). S42. F.E. Novas, L. Salgado, J. Calvo, F. Agnolin, Rev. Mus. Argent. Cienc. Nat. Bernardino Rivadavia 7, 37 (2005). S43. M.J. Wedel, R.L. Cifelli, R.K. Sanders, J. Vert. Paleontol. 20, 109 (2000). S44. D.D. Gillete, J. Vert. Paleontol. 11, 417 (1991). S45. E.H. Colbert, Am. Mus. Novit. 2076, 1 (1962). S46. R.M. Alexander, Zool. J. Linn. Soc. 83, 1 (1985). S47. J.F. Anderson, A. Hall-Martín, D.A. Russell, J. Zool. 207, 53 (1985). S48. R. Royo-Torres, thesis, Universidad de Zaragoza (2005). S49. F. Seebacher, J. Vert. Paleontol. 21, 51 (2001). S50. J. Peczkis, J. Vert. Paleontol. 14, 520 (1994).