A M A A December 995 SEMICONDUCTOR RFG7N6, RFP7N6, RFS7N6, RFS7N6SM 7A, 6V, Avalanche Rated, N-Channel Enhancement-Mode Power MOSFETs Features 7A, 6V r DS(on) =.4Ω Temperature Compensated PSPICE Model Peak Current vs Pulse Width Curve UIS Rating Curve (Single Pulse) 75 o C Operating Temperature Packages (BOTTOM SIDE METAL) JEDEC STYLE TO-247 Description The RFG7N6, RFP7N6, RFS7N6 and RFS7N6SM are N-channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits. (FLANGE) JEDEC TO-22AB PACKAGE AVAILABILITY PART NUMBER PACKAGE BRAND RFG7N6 TO-247 RFG7N6 RFP7N6 TO-22AB RFP7N6 RFS7N6 TO-262AA FS7N6 RFS7N6SM TO-263AB FS7N6 NOTE: When ordering use the entire part number. Add the suffix, 9A, to obtain the TO-263AB variant in tape and reel, e.g. RFS7N6SM9A. (FLANGE) JEDEC TO-262AA Formerly developmental type TA497. Symbol D JEDEC TO-263AB G S (FLANGE) Absolute Maximum Ratings T C = 25 o C, Unless Otherwise Specified RFG7N6, RFP7N6 RFS7N6, RFS7N6SM UNITS Drain Source Voltage........................................... S 6 V Drain Gate Voltage............................................. V DGR 6 V Gate Source Voltage............................................ V GS ±2 V Drain Current RMS Continuous............................................... I D 7 A Pulsed Drain Current...........................................I DM Refer to Peak Current Curve Single Pulse Avalanche Rating.................................... E AS Refer to UIS Curve Power Dissipation T C = 25 o C................................................... P D Derate above 25 o C.............................................. 5. W W/ o C Operating and Storage Temperature.............................T STG, T J -55 to 75 o C CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD handling procedures. Copyright Harris Corporation 995 3-5 File Number 326.3
Specifications RFG7N6, RFP7N6, RFS7N6, RFS7N6SM Electrical Specifications T C = 25 o C, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain-Source Breakdown Voltage BS I D = 25µA, V GS = V 6 - - V Gate Threshold Voltage V GS(TH) V GS =, I D = 25µA 2-4 V Zero Gate Voltage Drain Current I DSS = 6V, V GS = V T C = 25 o C - - µa T C = 5 o C - - 5 µa Gate-Source Leakage Current I GSS V GS = ±2V - - na On Resistance r DS(ON) I D = 7A, V GS = V - -.4 Ω Turn-On Time t ON V DD = 3V, I D = 7A - - 25 ns Turn-On Delay Time t D(ON) R L =.43Ω, V GS = V R GS = 2.5Ω - 2 - ns Rise Time t R - 5 - ns Turn-Off Delay Time t D(OFF) - 4 - ns Fall Time t F - 5 - ns Turn-Off Time t OFF - - 25 ns Total Gate Charge Q G(TOT) V GS = V to 2V V DD = 4V, - 5 25 nc Gate Charge at V Q G() V GS = V to V I D = 7A, R L =.6Ω - 5 nc Threshold Gate Charge Q G(TH) V GS = V to 2V - 5.5 6.5 nc Input Capacitance C ISS = 25V, V GS = V - 3 - pf f = MHz Output Capacitance C OSS - 9 - pf Reverse Transfer Capacitance C RSS - 3 - pf Thermal Resistance Junction to Case R θjc - -. Thermal Resistance Junction to Ambient R θja - - o C/W o C/W Source-Drain Diode Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Forward Voltage V SD I SD = 7A - -.5 V Reverse Recovery Time t RR I SD = 7A, di SD /dt = A/µs - - 25 ns 3-52
Typical Performance Curves RFG7N6, RFP7N6, RFS7N6, RFS7N6SM 5 T C = 25 o C 2 I D, CURRENT (A) OPERATION IN THIS AREA MAY BE LIMITED BY r DS(ON) S MAX = 6V µs ms ms ms DC Z θjc, NORMALIZED THERMAL RESPONSE..5.2..5.2. P DM t2 NOTES: SINGLE PULSE DUTY FACTOR: D = t /t 2 PEAK T J = P DM x Z θjc T C. -5-4 -3-2 - t, -TO- VOLTAGE (V) t, RECTANGULAR PULSE DURATION (s) FIGURE. SAFE OPERATING AREA CURVE FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE I D, CURRENT (A) 7 6 5 4 3 2 25 5 75 25 5 T C, CASE TEMPERATURE ( o C) 75 I DM, PEAK CURRENT CAPABILITY (A) V GS = V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION T C = 25 o C FOR TEMPERATURES ABOVE 25 o C DERATE PEAK CURRENT AS FOLLOWS: 75 T C I = I 25 ---------------------- 5 5-5 -4-3 -2 - t, PULSE WIDTH (s) FIGURE 3. MAXIMUM CONTINUOUS CURRENT vs TEMPERATURE FIGURE 4. PEAK CURRENT CAPABILITY I D, CURRENT (A) 2 6 2 4 PULSE DURATION = 25µs, T C = 25 o C V GS = 2V V GS = V V GS = V V GS = 7V V GS = 6V V GS = 5V V GS = 4.5V. 2. 3. 4. 5., -TO- VOLTAGE (V) I D(ON), ON-STATE CURRENT (A) 2 6 2 4 PULSE TEST PULSE DURATION = 25µs DUTY CYCLE =.5% MAX V DD = 5V -55 o C 25 o C 75 o C 2. 4. 6... V GS, -TO- VOLTAGE (V) FIGURE 5. TYPICAL SATURATION CHARACTERISTICS FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS 3-53
RFG7N6, RFP7N6, RFS7N6, RFS7N6SM Typical Performance Curves (Continued) r DS(ON), NORMALIZED ON RESISTANCE 2.5 2..5..5 PULSE DURATION = 25µs, V GS = V, I D = 7A. - -4 4 2 6 T J, JUNCTION TEMPERATURE ( o C) 2 V GS(TH), NORMALIZED THRESHOLD VOLTAGE 2..5..5 V GS =, I D = 25µA. - -4 4 2 6 T J, JUNCTION TEMPERATURE ( o C) 2 FIGURE 7. NORMALIZED r DS(ON) vs JUNCTION TEMPERATURE FIGURE. NORMALIZED THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE BS, NORMALIZED -TO- BREAKDOWN VOLTAGE 2..5..5 I D = 25µA. - -4 4 2 6 T J, JUNCTION TEMPERATURE ( o C) FIGURE 9. NORMALIZED - BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 2 POWER DISSIPATION MULTIPLIER.2...6.4.2. 25 5 75 25 5 75 T C, CASE TEMPERATURE ( o C) FIGURE. NORMALIZED POWER DISSIPATION vs TEMPERA- TURE DERATING CURVE C, CAPACITANCE (pf) 5 4 3 2 V GS = V, FREQUENCY (f) = MHz C ISS C OSS C RSS, - VOLTAGE (V) 6 45 3 5 V DD = BS.75 BS.5 BS.25 BS R L =.6Ω I G(REF) = 2.2mA V GS = V V DD = BS 7.5 5. 2.5 V GS, - VOLTAGE (V) 5 5 2 25, -TO- VOLTAGE (V) I I G( REF) 2-------------------- t, TIME (µs) -------------------- G( REF) I I G( ACT) G( ACT) FIGURE. TYPICAL CAPACITANCE vs VOLTAGE FIGURE 2. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT CURRENT. REFER TO HARRIS APPLICATION NOTES AN7254 AND AN726 3-54
RFG7N6, RFP7N6, RFS7N6, RFS7N6SM Typical Performance Curves (Continued) I AS, AVALANCHE CURRENT (A) 3 If R = t AV = (L)(I AS )/(.3*RATED BS - V DD ) If R t AV = (L/R) ln [(I AS *R)/(.3*RATED BS -V DD ) ] STARTING T J = 5 o C STARTING T J = 25 o C.. t AV, TIME IN AVALANCHE (ms) FIGURE 3. UNCLAMPED INDUCTIVE SWITCHING REFER TO HARRIS APPLICATION NOTES AN932 AND AN9322 Test Circuits and Waveforms BS L t P VARY t P TO OBTAIN REQUIRED PEAK I AS V GS R G V DD - I AS V DD DUT V t P I L.Ω t AV FIGURE 4. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 5. UNCLAMPED ENERGY WAVEFORMS V DD t ON t OFF t D(ON) t D(OFF) R L t R t F 9% 9% V GS % % V R GS DUT V GS % 5% PULSE WIDTH 9% 5% FIGURE 6. RESISTIVE SWITCHING TEST CIRCUIT FIGURE 7. RESISTIVE SWITCHING WAVEFORMS 3-55
Temperature Compensated PSPICE Model for the RFG7N6, RFP7N6, RFS7N6, RFS7N6SM.SUBCKT RFG7N6 2 3 ; rev 3/2/92 RFG7N6, RFP7N6, RFS7N6, RFS7N6SM CA 2 5.56e-9 CB 5 4 5.3e-9 CIN 6 2.63e-9 DBODY 7 5 DBDMOD DBREAK 5 DBKMOD DPLCAP 5 DPLCAPMOD EBREAK 7 7 65. EDS 4 5 EGS 3 6 ESG 6 6 EVTO 2 6 IT 7 L 2 5 e-9 L 9 3.e-9 L 3 7.2e-9 MOS 6 6 MOSMOD M =.99 MOS2 6 2 MOSMOD M =. RBREAK 7 RBKMOD R 5 6 RDSMOD 4.66e-3 RL 2 5 R 9 2.2 RL 9 3 RIN 6 e9 R 7 RDSMOD 3.92e-3 RL 3 7.2 RVTO 9 RVTOMOD SA 6 2 3 SAMOD SB 3 2 3 SBMOD S2A 6 5 4 3 S2AMOD S2B 3 5 4 3 S2BMOD VBAT 9 DC VTO 2 6.65 SA 2 SB CA - ESG 6 RL EVTO 9 2 - R L 3 6 RIN 4 3 DPLCAP RSCL2 6 VTO - S2A 5 CIN S2B 3 CB 4 6 EGS EDS 5 - - 5 RSCL 5 5 5 ESCL 5 R 2 MOS RL 2 L DBREAK DBODY EBREAK 7 - MOS2 RL R 7 3 L RBREAK 7 RVTO 9 IT VBAT.MODEL DBDMOD D (IS = 7.9e-2 RS = 3.7e-3 TRS = 2.7e-3 TRS2 = 2.5e-7 CJO = 4.4e-9 TT = 4.5e-).MODEL DBKMOD D (RS = 3.9e-2 TRS =.5e-4 TRS2 = 3.e-5).MODEL DPLCAPMOD D (CJO = 4.e-9 IS = e-3 N = ).MODEL MOSMOD NMOS (VTO = 3.46 KP = 47 IS = e-3 N = TOX = L = u W = u).model RBKMOD RES (TC =.46e-4 TC2 = -.4e-7).MODEL RDSMOD RES (TC = 2.23e-3 TC2 = 6.56e-6).MODEL RVTOMOD RES (TC = -3.29e-3 TC2 = 3.49e-7).MODEL SAMOD VSWITCH (RON = e-5 ROFF =. VON = -.35 VOFF= -6.35).MODEL SBMOD VSWITCH (RON = e-5 ROFF =. VON = -6.35 VOFF= -.35).MODEL S2AMOD VSWITCH (RON = e-5 ROFF =. VON = -2. VOFF= 3.).MODEL S2BMOD VSWITCH (RON = e-5 ROFF =. VON = 3. VOFF= -2.).ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley. 3-56