Prof. Dr.-Ing. Reiner Jäger



Similar documents
Deformation Integrity Monitoring for GNSS- Positioning Services including a Scalable Hazard Monitoring by the Karlsruhe Approach (MONIKA)

Algorithmen und Systementwicklungen zur präzisen multisensorischen GNSS/MEMS-basierten Navigation und Objektgeoreferenzierung

An Integrated Semantically Correct 2.5D Object Oriented TIN. Andreas Koch

1 Introduction. Keywords: GNSS (GPS, GLONASS, GALILEO) and LPS (total stations, levelling) online and real-time

Automated information technology for ionosphere monitoring of low-orbit navigation satellite signals


Alberding GNSS data management & monitoring tools

Imperial College London

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

Loop Parallelization

European Geodetic Status European Geodetic Reference Systems

USE OF THE SRTM DEM AS A GEO-REFERENCING TOOL BY ELEVATION MATCHING

Finite difference method

Alberding DGNSS solutions for inland waterways

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST)

RealtimePPP using EUREF and IGS Networks

The Effects of Geodetic Configuration of the Network in Deformation Analysis

Availability Benefit of Future Dual Frequency GPS Avionics under Strong Ionospheric Scintillation

How To Understand The Results Of The German Meris Cloud And Water Vapour Product

Establishment of Geodetic Control in Jebba Dam using CSRS PPP Processing Software

Form-finding of grid shells with continuous elastic rods

technical notes TRIMBLE SURVEY MANAGER SOFTWARE

Damage detection in composite laminates using coin-tap method

IMPACT ANALYSIS OF A CELLULAR PHONE

European Position Determination System. Guidelines For Cross- Border Data Exchange

Autonomous Navigation and Map building Using Laser Range Sensors in Outdoor Applications

Economic Interpretation of Regression. Theory and Applications

Case Study: Load Balancing

Help is a tou ch of a button away. Telecare - keeping you safe and independent in your own home. i Personal emergency equipment

A Crossplatform ECG Compression Library for Mobile HealthCare Services

AN EFFICIENT GROUP AUTHENTICATION FOR GROUP COMMUNICATIONS

Lei Liu, Hua Yang Business School, Hunan University, Changsha, Hunan, P.R. China, Abstract

Frequency Selective IQ Phase and IQ Amplitude Imbalance Adjustments for OFDM Direct Conversion Transmitters

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6

Application of Quasi Monte Carlo methods and Global Sensitivity Analysis in finance

Streaming Real-Time IGS Data and Products Using NTRIP

Data Mining from the Information Systems: Performance Indicators at Masaryk University in Brno

Solving Factored MDPs with Continuous and Discrete Variables

Alberding-QC. a multi-purpose GNSS service performance monitoring tool. Tamás Horváth. Alberding GmbH

Portfolio Loss Distribution

Computational Fluid Dynamics II

High Accuracy Real-time Dam Monitoring Using Low-cost GPS Equipment

AFREF First GNSS Station : Lessons learnt Building up a Continental Reference Frame

Trimble CenterPoint RTX Post-Processing Services FAQs

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS

Geomatics. Department of. Fakultät für Geomatik. Karlsruhe University of Applied Sciences. Geomatik. Hochschule Karlsruhe Technik und Wirtschaft

Formulating & Solving Integer Problems Chapter

Marginal Benefit Incidence Analysis Using a Single Cross-section of Data. Mohamed Ihsan Ajwad and Quentin Wodon 1. World Bank.

USER S MANUAL. Settop Cell-Xtrem

A Replication-Based and Fault Tolerant Allocation Algorithm for Cloud Computing

where the coordinates are related to those in the old frame as follows.

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

Inter-Ing INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, November 2007.

Dynamic Pricing for Smart Grid with Reinforcement Learning

EPN Special Project Real-Time Analysis Status Report

Introduction into Real-Time Network Adjustment with Geo++ GNSMART

the Manual on the global data processing and forecasting system (GDPFS) (WMO-No.485; available at

A Cryptographic Key Assignment Scheme for Access Control in Poset Ordered Hierarchies with Enhanced Security

iavenue iavenue i i i iavenue iavenue iavenue

Watermark-based Provable Data Possession for Multimedia File in Cloud Storage

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform

An Analysis of Dynamic Severity and Population Size

2. RELATED WORKS AND PROBLEM STATEMENT

Regression Models for a Binary Response Using EXCEL and JMP

Why do we need to improve co-locations of space geodetic techniques?

Quantization Effects in Digital Filters

Numerical Methods 數 值 方 法 概 說. Daniel Lee. Nov. 1, 2006

Heuristic Static Load-Balancing Algorithm Applied to CESM

GNSS FIELD DATA COLLECTION GUIDELINES

GFZ prototype for GPS-based realtime deformation monitoring

One example: Michelson interferometer

CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements

Satisfaction with a Web Site: Its Measurements, Factors, and Correlates

A New Task Scheduling Algorithm Based on Improved Genetic Algorithm

IMPROVEMENT OF THE STABILITY SOLVING RATIONAL POLYNOMIAL COEFFICIENTS

An interactive system for structure-based ASCII art creation

Time Delayed Independent Component Analysis for Data Quality Monitoring

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

Deformation Integrity Monitoring for GNSS-Positioning Services including a Scalable Hazard Monitoring by the Karlsruhe Approach (MONIKA)

Conversion between the vector and raster data structures using Fuzzy Geographical Entities

Genetic Algorithm Based Optimization Model for Reliable Data Storage in Cloud Environment

Transcription:

Geodetc Infrastructures for GNSS-Postonng-Servces (GIPS) - The Motor for Prospectve and Economy Relevant Developments n Publc, RaD and Industry Sector at Brazl - Prof. Dr.-Ing. Rener Jäger Hochschule Karlsruhe Technk und Wrtschaft. Faculty of Geomatcs Department Vermessung&Geomatk and GIManagement Internatonal Study Programme Geomatcs (MSc) www.g.hs-karlsruhe.de Insttut für Angewandte Forschung (IAF) Moltkestrasse 30, D-76133 Karlsruhe Honorary Professor of the Sberan State Academy of Geodesy (SSGA) www.goca.nfo, www.monka.ag, www.dfhbf.de, www.moldpos.eu, www.geozlla.de, www.galleo-bw.de, www.navka.de

GNSS Postonng Servces

GNSS for Global Postonng n ITRF/ECEF Frames GPS < 50 (2010) 105! (2014) 105! GALILEO 2014 Space Segment GLONASS COMPASS User Segment Control Segment GNSS - Systems BeDou-1/2 14-Aprl Aprl-07

Space/Satellte Based Augmentaton Systems (SBAS) DNGSS-Correctons Correctons.. Standard RTCA and RTCM GNSS-Reference Statons => RTCM / RTCA Correctons - Satellte Communcaton - Internet Communcaton va GSM Exstng WAAS Satellte or Moble Internet (NTRIP) RTCM or RTCA Correctons Accuracy: 1 m WAAS (USA),CNSS (Chna),GAGAN( Chna),GAGAN/IRNSS (Inda),QZSS( Inda),QZSS/MSAS (Japan),SDCM( (Russa)

SITUATION n GERMANY 1 2 3 TRIMBLE VRSNOW 4 Accuracy: 1-3 cm!!! (B,L,h) ITRF-related

Precse Dfferental ( cm ) DGNSS Regonal DGNSS-Servces n and outsde Europe www.moldpos.eu Insttuto Braslero de Geografa e Statístca SWEPOS MOLDOVA cm!code- and Phase- Correctons! RTCM 3.1 SWIPOS + SWISSAT Unversdade Federal Rural do Ro de Janero, Insttuto de Tecnolgoa, Departamento de Engenhara (UFRRJ)

Augmentaton Systems (SBAS, GSM/Internet-based)... wth RTCM-Correctons Correctons for Precse Postonng and Navgaton Networked RTCM Correctons Inhomogenously dstrbuted GNSS-Reference Statons, lke e.g. Brasl

Alternatve to Commercal or State Regonal GNSS-Servces Servces EUREF-IP or IGS-IP IP and RTCM InterNet-Servce (NTRIP) EUREF oder IGS RTCM-Correctons Correctons NTRIP-Format Moble Internet (USB-Stck) and InterNet GNSS- Rado GNSS-Internet Rado

EUREF-IP or IGS-IP IP InterNet-Servce (NTRIP) GNSS-Internet Rado EUREF oder IGS RTCM-Correctons Correctons NTRIP-Format Moble Internet (USB-Stck) and InterNet GNSS- Rado

Geodetc Infrastructures for GNSS Postonng Servces (GIPS) 4 Components (GIPS 1,2,3,4) GIPS 1,2 before Installaton of a GNSS Servce - Infrastructure for Spatal Informaton (Bascs) E.g. Europe: INSPIRE (Infrastructure for Spatal Informaton n Europe) see nspre.jrc.ec.europa.eu Necessary for daly GNSS-Postonng of the users of a GNSS- Postonng Servce and for GIS purposes Ready for Brasl!!! GIPS 3,4 for runnng a GNSS Postonng Servce (Provder and for specal taks e.g. Geomontorng) --------------------------------------------------------------------------- http://www.geozlla.de/fles/geodaetsche_infrastrukturen_fuer_gnss NSS-Denste_%28GIPS%29.Jaeger..pdf

www.dfhbf.de www.geozlla.de e.g www.moldpos.eu www.monka.ag www.goca.nfo

GIPS-1 Horzontal Postonng

GIPS-1: Horzontal Datum-Trafo from (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Trafo-Database Computaton All-over-the-World Problem B,L) Classcal - X 1 X 2 x = (N + h) cos B cos L y = (N + h) sn B sn L 2 b z = ( N + h) snb 2 a mt N(B) = Normalkrümmungshalbmesser 3D Smlary Transformaton X 2 x1(b1,l1,h1 ) x2(b2,l2,h2) = m R X1 + t, mt X1 = y (B,L,h ) 1 1 1 1 und X2 = y2(b2,l2,h2) z1(b1,l1,h1) z2(b2,l2,h2) Rotaton Matrx 3 Rotatons Non-Lnear Realaton (see above)

B ( L h GIPS-1 Horzontal Datum Transton from (B,L) GNSS,ITRF to Classcal Datum (B,L) Classcal Karlsruhe Approach (COPAG) and Trafo-Database Database-Computon B,L) Classcal 2 B L h (N + h) cos(b) Soluton of the horzontal Transformaton Problem (a,b) 1,(a,b) 2 (a,b)1,(a,b)2 (a,b)1,(a,b)2 a W + h sn(l) M + h 2 sn(b) cos(l) (N (1 e ) + h) 2 N e sn(b) cos(b) sn(l) B L ) h 1 v + v v (N + h) cos(b) B L h a W + h cos(l) M + h 2 sn(b) sn(l) (N (1 e ) + h) 2 N e sn(b) cos(b) cos(l) = [ Moldensk] 0 1 0 h + a W (B,L,h)1, 2 sn(b) cos(b) N e M + h 0 ε x ε y εz s t x t y t z sn(b) cos(l) M + h sn(l) (N + h) cos(b) cos(b) cos(l) a 2 2 2 2 W = = 1 e sn B 2 a b N e = 2 a 3D Smlarty ransformaton Related to (B,L,h) 1D-,2D-,3D- Identcal Ponts WTRANS www.geozlla.de sn(b) sn(l) M + h cos(l) (N + h) cos(b) cos(b) sn(l) cos(b) M + h 0 sn(b)

GIPS-1: Horzontal Datum-Trafo from (B,L) GNSS,ITRF to Classcal Datum (B,L)( - Karlsruhe Approach (COPAG) and Trafo-Database Computaton B,L) Classcal Long waved deflectons - Weak shapes GIS Transton to ITRFGNSS consstent frame Strct and General TRAFO ITRF / ETRF89 - Datum GNSS-practce Old Classcal Systems

GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton B,L) Classcal COPAG = Contnuously Patched Georeferencng Contnuty along the Mesh Borders!

GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton B,L) Classcal Reference-Transformaton (Data / Parameters / Algorthms) Source CRS Target CRS (B,L,h) GNSS (B,L,h) GNSS => (B,L) Classcal => (B,L,H) Classcal Hungary 1-3 cm DFLBF_DB Transformaton Parameters & Resduals

GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton B,L) Classcal Brasl Meshes = Patchng for Corrego Alegre Classcal Datum Brasl Corrego Alegre Srgas

GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton DFLBF/COPAG Databases for Brazl Meshes SAD69 SIRGAS B,L) Classcal DFLBF/COPAG Databases for Brazl Meshes SAD96 SIRGAS Brazl

GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton Accuracy of DFLBF/COPAG Databases for Brazl SAD99 SIRGAS B,L) Classcal BRASIL

GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton B,L) Classcal GIPS-1.1: Horzontal Datum Transton from (B,L) to GNSS,ITRF (B,L) Classcal DFLBF-Databases. Use n GNSS-Servces on controllers and va RTCM GIPS-1.2 :Horzontal Datum Transton from (B,L) Classcal to (B,L) GNSS,ITRF COPAG-Databases for GIS www.geozlla.de

GIPS-2 GNSS-Heghtng

GIPS-2: Heght Heght Reference Surface (HRS) Qgeod/Geod (N) for Transton h GNSS,ITRF to Physcal Heghts H = h-n h - Karlsruhe Approach (DFHBF) and DFHBF-DBComputaton DBComputaton +/- 70 m Geod (HBF) Ellpsod h www.dfhbf.de GNSS Heghtng H from h- GNSS H = h - N(B,L,h) Reference-Transformaton Source CRS Target CRS (B,L,h) GNSS => N h H N HRS

GIPS-2: Heght Reference Surface (HRS) Qgeod/Geod (N) for Transton hgnss,itrf to Physcal Heghts H = h-n - Karlsruhe Approach (DFHBF) and DFHBF-DBComputaton H +v = H Patchng NG j + v j = ft p + NG(d j) a 4 π γ(b) σ g S(ψ)dσ -Exstng nonftted Qgeod Identca Ponts hgnss+ v = H + ft p - hgps m -/ Geod GrdsGrds ξj + v = - fbt / M(B) p + ξ (dξ,ηη) j η j + v = - flt/(n(b) cos(b)) p + η(dξ,ηη) j Deflectons fo the Vertcal from modern ZenthCameras or from Classcal Geod- Astron. Campagns New: Global Geopotental Model (EIGEN,EGM2008) Coeffcents (Cnm,Snm) => Mapped to Sphercal Cap-Harmonc Coeffcents (C nm, S nm) (C nm, S nm) => Introduced as drect observatons http://www.geozlla.de/fles/geodaetsche_infrastrukturen_fuer_gnss-denste_%28gips%29.jaeger..pdf a n ( k ) +1 (n (k ) + 1) k LGV g grav + v = ( C 'n ( k )), m cos mλ'+ S 'n ( k ), m sn mλ' ) Pn ( k ), m (cos θ' ) + dg(d) r r k =0 r m =0 0 + v N = N ( C ' n ( k ),m, S 'n ( k ),m ) (f T p + m h ) Goana 10-15.Jul 2011

GIPS-2: Heght Reference Surface (HRS) Qgeod/Geod (N) for Transton h GNSS,ITRF to Physcal Heghts H = h-n h - Karlsruhe Approach (DFHBF) and DFHBF-DBComputaton DBComputaton www.dfhbf.de Software Sreenshot Identcal Fttng Ponts (B,L,h;H) Meshes

GIPS-2: Heght Heght Reference Surface (HRS) Qgeod/Geod (N) for Transton h GNSS,ITRF to Physcal Heghts H = h-n h - Karlsruhe Approach (DFHBF) and DFHBF-DBComputaton DBComputaton - DataBase Quas-Geod N QG Quas-Geod N G N G = N QG + g γ γ H

GIPS-2: Heght Reference Surface (HRS) Qgeod/Geod (N) for Transton h GNSS,ITRF to Physcal Heghts H = h-n h - Karlsruhe Approach (DFHBF) and DFHBF-DBComputaton DBComputaton Brazl Geod-Computaton for Brasl: Patches and Meshes www.dfhbf.de

GIPS-3 RTCM Transformaton Messages Provson

GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Present or old standard:trafo-databases or Grds n GNSS-controllers (Trmble, Leca-Geosystems, Topon, etc.)

New standard:rtcm-transformaton Parameters from GNSS-Postonng Servce HS Karlsruhe BMBF-Project 2010-2011: www.moldpos.eu

GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach New standard:rtcm-transformaton Parameters from GNSS-Postonng Servce Grddng of Reference Transformatons by Vrtual Fttng Ponts

GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Message 1021 or 1022 Geod-Grd or not Grd Locaton&Sze 7 Parameters Ellpsod Parameters Source / Target

GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Message 1023 or Message 1024 :: :: Resduals P 14 Resduals P 15 Resduals P 16 Heght Indcator = 1 dh = Physcal Heghts Resduals dh Heght Indcator = 2 dh = Geod / HRS Heghts N (dn )

GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Usng Reference Transformatons to compute a country-wde 1.) STATIC GRID ( Large Resduals Grd)

GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Usng Reference Transformatons to compute country-wde grds dynamcally onlne on NMEA-request by vrtual fttng ponts 2.) Dynamc Grd Advantages 1.) No preceedng Grddng Dscretzaton Error 2.) Small Resduals - Small Interpolaton error 3.) De facto - De facto ndependence of the resdual nterpolaton method n the rover

GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Usng Reference Tranformatons to compute grds dynamcally Dynamc Grd 4.) Drect use of Orgnal Reference Transformatons GM n W(r, ϑ, λ) = (1 + r n= 2 m= x u = y u z 0 a ( GRS80 2 2 1 + ε u cosß cosλ 2 2 1 + ε u cosβ sn λ u snβ r ) n (C nm cosmλ + S nm sn mλ) P U = U(a, ε, ω,m) REF (ß, λ, u)) nm (cosϑ) N((x, y,z) GNSS ) = W U γ h N

GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Usng Reference Tranformatons to compute grds dynamcally Dynamc Grd 5.) Combned Message Generaton Part 1 - Plate Models [(B,L,h) ITRF ITRF-related ] [(B,L,h) GNSS,ITRF ] Vrtual Fttng-Ponts Part 2 - Standard Reference Transformatons [(B,L,h) ITRF-related ] [(B,L) T, H T or N)] Vrtual Fttng Ponts Dynamc Message Set up by local 7PT Grddng

GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Reference Transformatons DFHBF Florda DFHBF Bavara DFLBF Bavara www.geozlla.de

GIPS-4 Montorong of GNSS-Reference Statons ncludng Geomontorng

GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) GNSS Reference Staton MONItorng by the KArlsruhe approach and software (MONIKA) www.monka.ag T( ˆ x,k R ˆ x ) =,k T R ( Q,k ˆ ˆ R 2 3 σˆ ) 1 ˆ x,k R Old Classcal Systems

GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Coordnate related Reference- Ponts Deformaton Analyss Multvarate and Mult-Epoch Congruency Testng Addtonally: Local Object Montorng and Deformaton Analyss www.monka.ag

GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 1 I. GNSS RINEX GNSSControl-Software l( t), C l (t) 1. Data Communcaton 2. Processng Processng Engnes WA1 (Wannnger Software) Berner GNSS-Software 5.0 RTKLIB - based x(t ) j, Cx (t ) j II. GNSS SINEX Import x(t ) j, Cx (t ) j www.monka.ag

GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 2 Baselnes Epoch Networks Partal networks Daly Solutons x(t ) j, Cx (t ) j t x(t ), C x (t Epoch States )

GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 2 Coordnate related Referencepont-Deformatonanalyss MONIKA Free GNSS-network Deformaton Analyss Concept Orgnal GNSS observatons l( t) C RINEX, l(t) x(t New Helmert-Transformaton d=3 x (t ) = : ), x 0 C x x(t (t ) ) x 0 x(t SINEX ), C x (t ) Epoch States MONIKA Step 2 Sngular x 0? Unknown Datum www.monka.ag S-Transformaton d=3 T Cx (t ) = S Cx (t ) S MONIKA Trafo 2 - Step 2

GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 2 Coordnate related Referencepont-Deformatonanalyss 27cm/10y Use of IERS Parameters Consderaton of Datum-drft and Plate-Movement Rates x(t 1 ) ITRFzz,t x y z 1) ITRFyy 1,t1 MONIKA Trafos 1 - Step 2 = (1 + m) R ( ε, ε, ε ) x(t + t ( ( R& + m) & x(t ) + t& ) + ( R& (t ) ) ) (t t ) x ( t ) ITRFzz.t = x(t1) ITRFzz.t + 1 ITRFzz.t P( j) x 1 ITRFzz.t 2 1 2 2 1 1 1 Reference tme t 0 Epoch tme t

GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 3 Coordnate related Reference-Pont-Deformatonanalyss ( x(t ) x 0 ) + v x(t ) = D R dˆ x R + D O dxˆ O and C x ( t ) T k ( (t ) ) ' dˆ' dˆ' ˆ,k x x 0 + v x(t ) = D R x R + D O x O + B x (t ) B k ˆ x,k R (t 0 0 0 1 0 0 0 0 ) = 0 0 0... 0 1 0... 0 0 0 0 0 0 0 1 0 0 R 0 0 0 T ˆ x,k R (t ) ˆ x,k R (t ) = ( B k T P Q vv P B k ) 1 B k T P v x(t ) and Q,k k T k 1 ˆ ˆ (t R ) = ( B P Q vv P B )

GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 3 Coordnate related Referencepont-Deformatonanalyss 3D a-posteror Teststatstcs Sgnfcance of T( ˆ x,k R ) = ˆ x ˆ x =,k T R,k T R ( Q ( B,k ˆ ˆ R 2 3 σˆ k T ) P Q 3 σˆ 1 vv 2 ˆ x P B,k R k = ) ˆ x,k R ~ F 3,r 3 σˆ 2 = v T, k x R Pv ˆ x,k T R ( Q r 3,k ˆ ˆ R ) 1 ˆ x Test related to 1-α, e.g = 95% Confdence ellpsod,k R Senstvty ellpsod α = 5 %, ß=95% Detectablty of GNSS Reference Staton,k Deformatons x R ˆ x,k T R = λ(f' ( Q 3,r 3,k ˆ ˆ R ) 1 ˆ x, α, β) = 17.3,k R ß%-Senstvty f = 17.3 = 4.2 ( = 1.0 accuracy, 1-α = 19.9 % error ellpsod )

GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) - www.monka.ag GNSS-Postonng-Servce of Rhenland-Pfalz (SAPOS) - Volcano Montorng - GNSS-Postonng-Servce Geomontorng of Local Objects GNSS-Postonng-Servce Geomontorng of Natur Hazard Zones

GNSS Postonng Servces + GIPS Motor for New Developments e.g. Precse Multsensor Navgaton! Geodetc Know How questoned!

GNSS-Postonng Servces Precse Postonng/Geodata Acquston/Navgaton Moble GIS Augmented Realty and Moble Data-Acquston Moble Servces Seamless Outdoor/Indoor Navgaton Multsensor-Systems

GNSS-Postonng Servces Precse Postonng/Geodata Acquston/Navgaton ( ) ( ) ( ) ( ) ( ) ( ) k k k k k k k k k k k k k k k k k k k k k k y t y y v t v v t y y v y v t y v E t y y v y v t y v N y y v v E N + + + + + + + = + & & & & & & & & & & 2 2 1 ] sn cos [ 2 1 ] cos [ ] cos sn [ 2 1 ] sn [ ( ) ( ) ( )] 3 ] t ] y 0, 0,p r [ (3) [ (3) y n n p n p p p np ω R ω ω = = & www.navka.de Algorthms for Precse Multsensor-Mult-Purpose Navgaton-Platforms GNSS GNSS + Autonomous Autonomous Sensors (MEMS) Sensors (MEMS) Gyroscopes Gyroscopes Accelerometers Accelerometers, etc., etc. Feld Robots Water-Drones Ar-Drones Jont Research Project 2011-2013

GNSS-Postonng Servces Precse Postonng/Geodata Acquston/Navgaton Algorthms for Precse Multsensor-Mult-Purpose Navgaton-Platforms Jont Research Project 2011,2012,2013 www.navka.de Moble Data Acquston Systems Autonomous Indoor Navgaton