Geodetc Infrastructures for GNSS-Postonng-Servces (GIPS) - The Motor for Prospectve and Economy Relevant Developments n Publc, RaD and Industry Sector at Brazl - Prof. Dr.-Ing. Rener Jäger Hochschule Karlsruhe Technk und Wrtschaft. Faculty of Geomatcs Department Vermessung&Geomatk and GIManagement Internatonal Study Programme Geomatcs (MSc) www.g.hs-karlsruhe.de Insttut für Angewandte Forschung (IAF) Moltkestrasse 30, D-76133 Karlsruhe Honorary Professor of the Sberan State Academy of Geodesy (SSGA) www.goca.nfo, www.monka.ag, www.dfhbf.de, www.moldpos.eu, www.geozlla.de, www.galleo-bw.de, www.navka.de
GNSS Postonng Servces
GNSS for Global Postonng n ITRF/ECEF Frames GPS < 50 (2010) 105! (2014) 105! GALILEO 2014 Space Segment GLONASS COMPASS User Segment Control Segment GNSS - Systems BeDou-1/2 14-Aprl Aprl-07
Space/Satellte Based Augmentaton Systems (SBAS) DNGSS-Correctons Correctons.. Standard RTCA and RTCM GNSS-Reference Statons => RTCM / RTCA Correctons - Satellte Communcaton - Internet Communcaton va GSM Exstng WAAS Satellte or Moble Internet (NTRIP) RTCM or RTCA Correctons Accuracy: 1 m WAAS (USA),CNSS (Chna),GAGAN( Chna),GAGAN/IRNSS (Inda),QZSS( Inda),QZSS/MSAS (Japan),SDCM( (Russa)
SITUATION n GERMANY 1 2 3 TRIMBLE VRSNOW 4 Accuracy: 1-3 cm!!! (B,L,h) ITRF-related
Precse Dfferental ( cm ) DGNSS Regonal DGNSS-Servces n and outsde Europe www.moldpos.eu Insttuto Braslero de Geografa e Statístca SWEPOS MOLDOVA cm!code- and Phase- Correctons! RTCM 3.1 SWIPOS + SWISSAT Unversdade Federal Rural do Ro de Janero, Insttuto de Tecnolgoa, Departamento de Engenhara (UFRRJ)
Augmentaton Systems (SBAS, GSM/Internet-based)... wth RTCM-Correctons Correctons for Precse Postonng and Navgaton Networked RTCM Correctons Inhomogenously dstrbuted GNSS-Reference Statons, lke e.g. Brasl
Alternatve to Commercal or State Regonal GNSS-Servces Servces EUREF-IP or IGS-IP IP and RTCM InterNet-Servce (NTRIP) EUREF oder IGS RTCM-Correctons Correctons NTRIP-Format Moble Internet (USB-Stck) and InterNet GNSS- Rado GNSS-Internet Rado
EUREF-IP or IGS-IP IP InterNet-Servce (NTRIP) GNSS-Internet Rado EUREF oder IGS RTCM-Correctons Correctons NTRIP-Format Moble Internet (USB-Stck) and InterNet GNSS- Rado
Geodetc Infrastructures for GNSS Postonng Servces (GIPS) 4 Components (GIPS 1,2,3,4) GIPS 1,2 before Installaton of a GNSS Servce - Infrastructure for Spatal Informaton (Bascs) E.g. Europe: INSPIRE (Infrastructure for Spatal Informaton n Europe) see nspre.jrc.ec.europa.eu Necessary for daly GNSS-Postonng of the users of a GNSS- Postonng Servce and for GIS purposes Ready for Brasl!!! GIPS 3,4 for runnng a GNSS Postonng Servce (Provder and for specal taks e.g. Geomontorng) --------------------------------------------------------------------------- http://www.geozlla.de/fles/geodaetsche_infrastrukturen_fuer_gnss NSS-Denste_%28GIPS%29.Jaeger..pdf
www.dfhbf.de www.geozlla.de e.g www.moldpos.eu www.monka.ag www.goca.nfo
GIPS-1 Horzontal Postonng
GIPS-1: Horzontal Datum-Trafo from (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Trafo-Database Computaton All-over-the-World Problem B,L) Classcal - X 1 X 2 x = (N + h) cos B cos L y = (N + h) sn B sn L 2 b z = ( N + h) snb 2 a mt N(B) = Normalkrümmungshalbmesser 3D Smlary Transformaton X 2 x1(b1,l1,h1 ) x2(b2,l2,h2) = m R X1 + t, mt X1 = y (B,L,h ) 1 1 1 1 und X2 = y2(b2,l2,h2) z1(b1,l1,h1) z2(b2,l2,h2) Rotaton Matrx 3 Rotatons Non-Lnear Realaton (see above)
B ( L h GIPS-1 Horzontal Datum Transton from (B,L) GNSS,ITRF to Classcal Datum (B,L) Classcal Karlsruhe Approach (COPAG) and Trafo-Database Database-Computon B,L) Classcal 2 B L h (N + h) cos(b) Soluton of the horzontal Transformaton Problem (a,b) 1,(a,b) 2 (a,b)1,(a,b)2 (a,b)1,(a,b)2 a W + h sn(l) M + h 2 sn(b) cos(l) (N (1 e ) + h) 2 N e sn(b) cos(b) sn(l) B L ) h 1 v + v v (N + h) cos(b) B L h a W + h cos(l) M + h 2 sn(b) sn(l) (N (1 e ) + h) 2 N e sn(b) cos(b) cos(l) = [ Moldensk] 0 1 0 h + a W (B,L,h)1, 2 sn(b) cos(b) N e M + h 0 ε x ε y εz s t x t y t z sn(b) cos(l) M + h sn(l) (N + h) cos(b) cos(b) cos(l) a 2 2 2 2 W = = 1 e sn B 2 a b N e = 2 a 3D Smlarty ransformaton Related to (B,L,h) 1D-,2D-,3D- Identcal Ponts WTRANS www.geozlla.de sn(b) sn(l) M + h cos(l) (N + h) cos(b) cos(b) sn(l) cos(b) M + h 0 sn(b)
GIPS-1: Horzontal Datum-Trafo from (B,L) GNSS,ITRF to Classcal Datum (B,L)( - Karlsruhe Approach (COPAG) and Trafo-Database Computaton B,L) Classcal Long waved deflectons - Weak shapes GIS Transton to ITRFGNSS consstent frame Strct and General TRAFO ITRF / ETRF89 - Datum GNSS-practce Old Classcal Systems
GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton B,L) Classcal COPAG = Contnuously Patched Georeferencng Contnuty along the Mesh Borders!
GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton B,L) Classcal Reference-Transformaton (Data / Parameters / Algorthms) Source CRS Target CRS (B,L,h) GNSS (B,L,h) GNSS => (B,L) Classcal => (B,L,H) Classcal Hungary 1-3 cm DFLBF_DB Transformaton Parameters & Resduals
GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton B,L) Classcal Brasl Meshes = Patchng for Corrego Alegre Classcal Datum Brasl Corrego Alegre Srgas
GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton DFLBF/COPAG Databases for Brazl Meshes SAD69 SIRGAS B,L) Classcal DFLBF/COPAG Databases for Brazl Meshes SAD96 SIRGAS Brazl
GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton Accuracy of DFLBF/COPAG Databases for Brazl SAD99 SIRGAS B,L) Classcal BRASIL
GIPS-1: : Horzontal Datum-Trafo (B,L) GNSS,ITRF to Classcal Datum (B,L)( Karlsruhe Approach (COPAG) and Database Computaton B,L) Classcal GIPS-1.1: Horzontal Datum Transton from (B,L) to GNSS,ITRF (B,L) Classcal DFLBF-Databases. Use n GNSS-Servces on controllers and va RTCM GIPS-1.2 :Horzontal Datum Transton from (B,L) Classcal to (B,L) GNSS,ITRF COPAG-Databases for GIS www.geozlla.de
GIPS-2 GNSS-Heghtng
GIPS-2: Heght Heght Reference Surface (HRS) Qgeod/Geod (N) for Transton h GNSS,ITRF to Physcal Heghts H = h-n h - Karlsruhe Approach (DFHBF) and DFHBF-DBComputaton DBComputaton +/- 70 m Geod (HBF) Ellpsod h www.dfhbf.de GNSS Heghtng H from h- GNSS H = h - N(B,L,h) Reference-Transformaton Source CRS Target CRS (B,L,h) GNSS => N h H N HRS
GIPS-2: Heght Reference Surface (HRS) Qgeod/Geod (N) for Transton hgnss,itrf to Physcal Heghts H = h-n - Karlsruhe Approach (DFHBF) and DFHBF-DBComputaton H +v = H Patchng NG j + v j = ft p + NG(d j) a 4 π γ(b) σ g S(ψ)dσ -Exstng nonftted Qgeod Identca Ponts hgnss+ v = H + ft p - hgps m -/ Geod GrdsGrds ξj + v = - fbt / M(B) p + ξ (dξ,ηη) j η j + v = - flt/(n(b) cos(b)) p + η(dξ,ηη) j Deflectons fo the Vertcal from modern ZenthCameras or from Classcal Geod- Astron. Campagns New: Global Geopotental Model (EIGEN,EGM2008) Coeffcents (Cnm,Snm) => Mapped to Sphercal Cap-Harmonc Coeffcents (C nm, S nm) (C nm, S nm) => Introduced as drect observatons http://www.geozlla.de/fles/geodaetsche_infrastrukturen_fuer_gnss-denste_%28gips%29.jaeger..pdf a n ( k ) +1 (n (k ) + 1) k LGV g grav + v = ( C 'n ( k )), m cos mλ'+ S 'n ( k ), m sn mλ' ) Pn ( k ), m (cos θ' ) + dg(d) r r k =0 r m =0 0 + v N = N ( C ' n ( k ),m, S 'n ( k ),m ) (f T p + m h ) Goana 10-15.Jul 2011
GIPS-2: Heght Reference Surface (HRS) Qgeod/Geod (N) for Transton h GNSS,ITRF to Physcal Heghts H = h-n h - Karlsruhe Approach (DFHBF) and DFHBF-DBComputaton DBComputaton www.dfhbf.de Software Sreenshot Identcal Fttng Ponts (B,L,h;H) Meshes
GIPS-2: Heght Heght Reference Surface (HRS) Qgeod/Geod (N) for Transton h GNSS,ITRF to Physcal Heghts H = h-n h - Karlsruhe Approach (DFHBF) and DFHBF-DBComputaton DBComputaton - DataBase Quas-Geod N QG Quas-Geod N G N G = N QG + g γ γ H
GIPS-2: Heght Reference Surface (HRS) Qgeod/Geod (N) for Transton h GNSS,ITRF to Physcal Heghts H = h-n h - Karlsruhe Approach (DFHBF) and DFHBF-DBComputaton DBComputaton Brazl Geod-Computaton for Brasl: Patches and Meshes www.dfhbf.de
GIPS-3 RTCM Transformaton Messages Provson
GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Present or old standard:trafo-databases or Grds n GNSS-controllers (Trmble, Leca-Geosystems, Topon, etc.)
New standard:rtcm-transformaton Parameters from GNSS-Postonng Servce HS Karlsruhe BMBF-Project 2010-2011: www.moldpos.eu
GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach New standard:rtcm-transformaton Parameters from GNSS-Postonng Servce Grddng of Reference Transformatons by Vrtual Fttng Ponts
GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Message 1021 or 1022 Geod-Grd or not Grd Locaton&Sze 7 Parameters Ellpsod Parameters Source / Target
GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Message 1023 or Message 1024 :: :: Resduals P 14 Resduals P 15 Resduals P 16 Heght Indcator = 1 dh = Physcal Heghts Resduals dh Heght Indcator = 2 dh = Geod / HRS Heghts N (dn )
GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Usng Reference Transformatons to compute a country-wde 1.) STATIC GRID ( Large Resduals Grd)
GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Usng Reference Transformatons to compute country-wde grds dynamcally onlne on NMEA-request by vrtual fttng ponts 2.) Dynamc Grd Advantages 1.) No preceedng Grddng Dscretzaton Error 2.) Small Resduals - Small Interpolaton error 3.) De facto - De facto ndependence of the resdual nterpolaton method n the rover
GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Usng Reference Tranformatons to compute grds dynamcally Dynamc Grd 4.) Drect use of Orgnal Reference Transformatons GM n W(r, ϑ, λ) = (1 + r n= 2 m= x u = y u z 0 a ( GRS80 2 2 1 + ε u cosß cosλ 2 2 1 + ε u cosβ sn λ u snβ r ) n (C nm cosmλ + S nm sn mλ) P U = U(a, ε, ω,m) REF (ß, λ, u)) nm (cosϑ) N((x, y,z) GNSS ) = W U γ h N
GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Usng Reference Tranformatons to compute grds dynamcally Dynamc Grd 5.) Combned Message Generaton Part 1 - Plate Models [(B,L,h) ITRF ITRF-related ] [(B,L,h) GNSS,ITRF ] Vrtual Fttng-Ponts Part 2 - Standard Reference Transformatons [(B,L,h) ITRF-related ] [(B,L) T, H T or N)] Vrtual Fttng Ponts Dynamc Message Set up by local 7PT Grddng
GIPS-3: RTCM Transformatonmessages and Setup from Reference Transformatons - Karlsruhe Approach Reference Transformatons DFHBF Florda DFHBF Bavara DFLBF Bavara www.geozlla.de
GIPS-4 Montorong of GNSS-Reference Statons ncludng Geomontorng
GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) GNSS Reference Staton MONItorng by the KArlsruhe approach and software (MONIKA) www.monka.ag T( ˆ x,k R ˆ x ) =,k T R ( Q,k ˆ ˆ R 2 3 σˆ ) 1 ˆ x,k R Old Classcal Systems
GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Coordnate related Reference- Ponts Deformaton Analyss Multvarate and Mult-Epoch Congruency Testng Addtonally: Local Object Montorng and Deformaton Analyss www.monka.ag
GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 1 I. GNSS RINEX GNSSControl-Software l( t), C l (t) 1. Data Communcaton 2. Processng Processng Engnes WA1 (Wannnger Software) Berner GNSS-Software 5.0 RTKLIB - based x(t ) j, Cx (t ) j II. GNSS SINEX Import x(t ) j, Cx (t ) j www.monka.ag
GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 2 Baselnes Epoch Networks Partal networks Daly Solutons x(t ) j, Cx (t ) j t x(t ), C x (t Epoch States )
GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 2 Coordnate related Referencepont-Deformatonanalyss MONIKA Free GNSS-network Deformaton Analyss Concept Orgnal GNSS observatons l( t) C RINEX, l(t) x(t New Helmert-Transformaton d=3 x (t ) = : ), x 0 C x x(t (t ) ) x 0 x(t SINEX ), C x (t ) Epoch States MONIKA Step 2 Sngular x 0? Unknown Datum www.monka.ag S-Transformaton d=3 T Cx (t ) = S Cx (t ) S MONIKA Trafo 2 - Step 2
GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 2 Coordnate related Referencepont-Deformatonanalyss 27cm/10y Use of IERS Parameters Consderaton of Datum-drft and Plate-Movement Rates x(t 1 ) ITRFzz,t x y z 1) ITRFyy 1,t1 MONIKA Trafos 1 - Step 2 = (1 + m) R ( ε, ε, ε ) x(t + t ( ( R& + m) & x(t ) + t& ) + ( R& (t ) ) ) (t t ) x ( t ) ITRFzz.t = x(t1) ITRFzz.t + 1 ITRFzz.t P( j) x 1 ITRFzz.t 2 1 2 2 1 1 1 Reference tme t 0 Epoch tme t
GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 3 Coordnate related Reference-Pont-Deformatonanalyss ( x(t ) x 0 ) + v x(t ) = D R dˆ x R + D O dxˆ O and C x ( t ) T k ( (t ) ) ' dˆ' dˆ' ˆ,k x x 0 + v x(t ) = D R x R + D O x O + B x (t ) B k ˆ x,k R (t 0 0 0 1 0 0 0 0 ) = 0 0 0... 0 1 0... 0 0 0 0 0 0 0 1 0 0 R 0 0 0 T ˆ x,k R (t ) ˆ x,k R (t ) = ( B k T P Q vv P B k ) 1 B k T P v x(t ) and Q,k k T k 1 ˆ ˆ (t R ) = ( B P Q vv P B )
GIPS-4: GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) MONIKA Step 3 Coordnate related Referencepont-Deformatonanalyss 3D a-posteror Teststatstcs Sgnfcance of T( ˆ x,k R ) = ˆ x ˆ x =,k T R,k T R ( Q ( B,k ˆ ˆ R 2 3 σˆ k T ) P Q 3 σˆ 1 vv 2 ˆ x P B,k R k = ) ˆ x,k R ~ F 3,r 3 σˆ 2 = v T, k x R Pv ˆ x,k T R ( Q r 3,k ˆ ˆ R ) 1 ˆ x Test related to 1-α, e.g = 95% Confdence ellpsod,k R Senstvty ellpsod α = 5 %, ß=95% Detectablty of GNSS Reference Staton,k Deformatons x R ˆ x,k T R = λ(f' ( Q 3,r 3,k ˆ ˆ R ) 1 ˆ x, α, β) = 17.3,k R ß%-Senstvty f = 17.3 = 4.2 ( = 1.0 accuracy, 1-α = 19.9 % error ellpsod )
GNSS-Reference Staton Montorng and Use as Geosensor-Networks for Geomontorng and Hazard Mtgaton Karlsruhe Approach (MONIKA) - www.monka.ag GNSS-Postonng-Servce of Rhenland-Pfalz (SAPOS) - Volcano Montorng - GNSS-Postonng-Servce Geomontorng of Local Objects GNSS-Postonng-Servce Geomontorng of Natur Hazard Zones
GNSS Postonng Servces + GIPS Motor for New Developments e.g. Precse Multsensor Navgaton! Geodetc Know How questoned!
GNSS-Postonng Servces Precse Postonng/Geodata Acquston/Navgaton Moble GIS Augmented Realty and Moble Data-Acquston Moble Servces Seamless Outdoor/Indoor Navgaton Multsensor-Systems
GNSS-Postonng Servces Precse Postonng/Geodata Acquston/Navgaton ( ) ( ) ( ) ( ) ( ) ( ) k k k k k k k k k k k k k k k k k k k k k k y t y y v t v v t y y v y v t y v E t y y v y v t y v N y y v v E N + + + + + + + = + & & & & & & & & & & 2 2 1 ] sn cos [ 2 1 ] cos [ ] cos sn [ 2 1 ] sn [ ( ) ( ) ( )] 3 ] t ] y 0, 0,p r [ (3) [ (3) y n n p n p p p np ω R ω ω = = & www.navka.de Algorthms for Precse Multsensor-Mult-Purpose Navgaton-Platforms GNSS GNSS + Autonomous Autonomous Sensors (MEMS) Sensors (MEMS) Gyroscopes Gyroscopes Accelerometers Accelerometers, etc., etc. Feld Robots Water-Drones Ar-Drones Jont Research Project 2011-2013
GNSS-Postonng Servces Precse Postonng/Geodata Acquston/Navgaton Algorthms for Precse Multsensor-Mult-Purpose Navgaton-Platforms Jont Research Project 2011,2012,2013 www.navka.de Moble Data Acquston Systems Autonomous Indoor Navgaton