Guang-Hua DUAN. 5 Juin 2014

Similar documents
Composants actifs ultra rapides pour les composants et interconnexions optiques intégrées

Recent developments in high bandwidth optical interconnects. Brian Corbett.

Silicon photonics can make it green(er): two case-studies of mass market communication applications

Technology Developments Towars Silicon Photonics Integration

Volumes. Goal: Drive optical to high volumes and low costs

Photonic components for signal routing in optical networks on chip

Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch)

The Fraunhofer Heinrich Hertz Institute

Advanced Modulation Formats in Data Centre Communications Michael J. Wale Director Active Products Research

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer

Integrated Photonic. Electronic. Optics. Optoelettronics. Integrated Photonic - G. Breglio L1. Quantum Mechanics Materials Science Nano/Bio-photonic

Photonics for the Coherent CFP2-ACO Unlocking 100G and 200G for the Metro

inter-chip and intra-chip Harm Dorren and Oded Raz

Introduction to Optical Link Design

SWIFT and Payment Factory projects

WDM-PON: A VIABLE ALTERNATIVE FOR NEXT GENERATION FTTP

DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES)

VOLUME BRAGG GRATINGS TM A NEW PLATFORM TECHNOLOGY FOR WDM APPLICATIONS. Boris L. Volodin, Sergei V. Dolgy, Elena D. Melnik and Vladimir S.

Silicon Photonics Market & Applications

Fiber Optics: Engineering from Global to Nanometer Dimensions

Optoelectronics Portfolio Product Selection Guide

Four Wave Mixing in Closely Spaced DWDM Optical Channels

Soitec. Eric Guiot, Manager R&D Soitec. 7 mars 2011 JSIam 2011

Silicon Photonic Interconnection Networks

High-Frequency Engineering / Photonics

The 50G Silicon Photonics Link

CWDM: lower cost for more capacity in the short-haul

Photonic Networks for Data Centres and High Performance Computing

Large effective area non-zero dispersion shifted fiber in metro/provincial network environments

IEO 5701 Optical Fiber Communication Lecture 1

8.5Gb/s SFP+ Fibre Channel Optical Transceiver

10G CWDM Conversion Technology

Silicon photonics for high performance optical communications

Measuring of optical output and attenuation

Fiber Coupler Overview

Georgia Tech 100G Center

Design, Fabbricazione e Packaging di Dispositivi Fotonici Integrati presso la Scuola Superiore Sant'Anna

Directly modulated CWDM/DWDM system using negative dispersion fiber for metro network application

Prisma IP 10 GbE VOD Line Card

How To Connect A 10Gbps Sfp+ Bi-Directional Transceiver To A Single Mode Fiber With A Single Power Cell (Sfp+) To A Power Cell With A Power Source (Sf) (Sfl) (

Next Generation 100G Client Optics

Plastic Optical Fiber for In-Home communication systems

Silicon photonics: low cost and high performance. L. Pavesi

OPTOELECTRONICS PACKAGING FOR EFFICIENT CHIP-TO-WAVEGUIDE COUPLING

Low loss fiber to chip connection system for telecommunication devices

2.488Gbps Compact Bi-Di SFP Transceiver, 20km Reach 1490nm TX / 1310 nm RX

Wavelength Division Multiplexing

A Gigabit Transceiver for Data Transmission in Future HEP Experiments and An overview of optoelectronics in HEP

Limiting factors in fiber optic transmissions

Modeling and Performance Analysis of DWDM Based 100 Gbps Low Power Inter-satellite Optical Wireless Communication (LP-IsOWC) System

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER

Photonic Integration in Indium Phosphide for Metro and Data Center Interconnects

We know how to write nanometer. extreme lithography. extreme lithography. xlith Gesellschaft für Hochauflösende Lithografie Support & Consulting mbh

LONGLINE 10Gbps 10km SFP+ Optical Transceiver

Optical Software Defined Networking

DTSB35(53)12L-CD20 RoHS Compliant 1.25G 1310/1550nm(1550/1310nm) 20KM Transceiver

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

Substrate maturity and readiness in large volume to support mass adoption of ULP FDSOI platforms. SOI Consortium Conference Tokyo 2016

GBIC CWDM 40km Part no:

Fiber optic communication

Fibre Bragg Grating Sensors An Introduction to Bragg gratings and interrogation techniques

Coherent sub-thz transmission systems in Silicon technologies: design challenges for frequency synthesis

Multiplexing. Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single physical medium.

Optical switches. Switching Technology S P. Raatikainen Switching Technology / 2004.

4.25Gbps SFP Optical Transceiver, 30km Reach

Introduction to Add-Drop Multiplexers

A continuously tunable multi-tap complexcoefficient microwave photonic filter based on a tilted fiber Bragg grating

CISCO DWDM XENPAK. Main features of the Cisco DWDM XENPAK include:

Model GS Port Node 1 GHz with 40/52 MHz split

X2 LR Optical Transponder, 10Km Reach

Are Optical Networks Green? Rod Tucker University of Melbourne

Trends In Data Rate And Link Length In Evolving Optical Standards

Wireless Security Camera

First 40 Giga-bits per second Silicon Laser Modulator. Dr. Mario Paniccia Intel Fellow Director, Photonics Technology Lab

155Mbps/1250Mbps SFP Bi-Directional Transceiver, 40km Reach 1310nm TX / 1550 nm RX

Simultaneous RZ-OOK to NRZ-OOK and RZ- DPSK to NRZ-DPSK format conversion in a silicon microring resonator

IN LEITERPLATTEN INTEGRIERTE OPTISCHE VERBINDUNGSTECHNIK AUF DÜNNGLASBASIS

Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

Migration of Embedded Optical Interconnect into Data Centre Systems

Fiber Optics and Liquid Level Sensors Line Guide

SO-CFP-ER-DWDM. CFP, 103/112 Gbps, DWDM tunable, SM, DDM, 20km SO-CFP-ER4-DWDM OVERVIEW PRODUCT FEATURES APPLICATIONS ORDERING INFORMATION

Simulation and Best Design of an Optical Single Channel in Optical Communication Network

Green Photonics in Switching : Rod Tucker Centre for Energy-Efficient Telecommunications University of Melbourne

1.25Gbps GBIC Optical Transceiver, 20km Reach

GaAs Switch ICs for Cellular Phone Antenna Impedance Matching

Evolution and Prospect of Single-Photon

Specifying Optical Fiber for Data Center Applications Tony Irujo Sales Engineer

Next Generation FTTH Chris Pfistner ECOC 2011

Intel Ethernet SFP+ Optics

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

MASW T. HMIC TM PIN Diode SP2T 13 Watt Switch for TD-SCDMA Applications. Features. Functional Diagram (TOP VIEW)

Transcription:

Journée scientifique de la chaire UPsud/PSA «Optoélectronique et Photonique» Circuits Photoniques Intégrés pour les Applications en Communications Optiques Guang-Hua DUAN III-V Lab, a joint lab of 'Alcatel-Lucent Bell Labs France', 'Thales Research and Technology' and 'CEA Leti', Campus Polytechnique, 1, Avenue A. Fresnel, 91767 Palaiseau cedex, France 5 Juin 2014

What is III-V Lab? A jointly owned Alcatel-Lucent Bell Labs / Thales Research & Technology /CEA R&D Lab LETI French GIE (Groupement d Intérêt Economique) organization with about 150 R&D experts (incl. 25 from CEA-Leti + ~18 PhD students) Dedicated to epitaxial growth, device and circuit design and manufacturing performing R&T on III-V semiconductor technology and integration with Si circuits and microsystems Optoelectronic and microelectronic materials, devices and circuits From basic research to technology transfer for industrialisation or to small scale and pilot line production for complementary Alcatel-Lucent / Thales applications High bit rate Optical Fibre and Wireless Telecommunications Microwave and Photonic systems for Defence, Security and Space Page 2

Outline Motivation Current state of art of III-V and silicon PICs InPbased PICs Silicon based PICs Comparison of InPPICs and silicon PICs Hybrid III-V/Si integration technology Future directions Page 3

Optical communication market segments and key components /key techniques VCSEL: low power consumption Parallel links Directly Modulated Lasers (DML) : low cost, low temperature sensitivity, low chirp Electro-absorption Modulated Lasers (EML) Wavelength division multiplexing 100 m 10 km Data communications Up to 25 Gb/s Acces networks Up to 10 Gb/s per λ Metro networks Up to 100 Gb/s per λ Tunable lasers over C band Wavelength division multiplexing QPSK modulators/coherent detection 100 km Core networks Up to 400 Gb/s per λ Page 4

Short-reachreach opticaltransceivers 29 Juin 2011 Page 5

Transmission WDM 2 Atténuation (db/km) 1 0 1,45 1,46 1,48 1,55 1,60 1,65 1,80 Longueur d onde (µm) λ 1 λ i λ k λ N 1530 40 50 60 1570 λ (nm) bande passante des amplificateurs optiques Longueur d onde (nm)

Wavelength Division Multiplexing WDM transmitter laser modulator λ1 laser modulator λ2 Wavelength multiplexer laser modulator λn WDM receiver Photodiode λ1 Photodiode Photodiode λ2 λn Wavelength multiplexer

Metro-long haul transceiver 29 Juin 2011 Page 8

Evolution of Coherent Transceiver Module 29 Juin 2011 Page 9

Photonic Integrated Circuits 100 Gb/s Transmit 100Gb/s Transmit 100Gb/s Receive 100 Gb/s Receive Courtery from Infinera

PIC: an on-going (r)evolution WDM transmitter laser modulator λ1 laser modulator λ2 Wavelength multiplexer laser modulator λn Photonic Integration Small footprint Cost effective Reduced power consumption High device yield Trade-off on performance

Intégration monolithic sur InP Butt-joint par une reprise de croissance Guide actif laser Guide passif Mux

CWDM : intégration de 4 et 8 λ par SAG Principe de la SAG : compositions + effet latéral X Ga 0.40 In 0.60 As Ga 0.50 In 0.50 As épaisseur x 2.5 200 nm Substrat

Masque 8 λà 20 nm CWDM : intégration de 4 et 8 λ par SAG λ 1 Wm 1 1550 1500 λ 2 Wm 2 λ (nm) 1450 1400 λ=160 nm 1350 Wm i 1300 0 20 40 60 80 100 120 140 160 180 Wm (µm) λ i dielectric

100 G PIC from Infinera Laser- modulator Laser- modulator Laser- modulator λ1 λ2 λn Wavelength multiplexer

Produit visé PIC 10x10G TOSA Sous-module optique Isolateur, wavelength locker Élément Peltier Substrat céramique multi-couches avec 10 drivers (éloignés du PIC) AWG flip-chippé Embase Si Barrette 10 lasers flipchippée

PIC: Detailed Comparison Power consumption: 30% less than 10xXFP Footprint reduction compared to discrete solution: 68% less than 10xXFP+Mux/Demux Lower cost: 7.6 k$ in 2011 and 5.2 k$ in 2012 compared to 13.7 k$ for 10xXFP+Mux/Demux Comparison between ALU PIC and Infinera PIC ALU PIC Power Consumption (28W) Reach: Unamplified links up to 70 km higher Tx output power (DML approach + Silica AWG) higher sensitivity (APD based Rx) Infinera PIC Power Consumption (48W) Reach: Unamplified links <10km lower Tx output power (EML approach + InP AWG) lower sensitivity (PIN based Rx)

PIC for QPSK transmitter Infinera s QPSK transmitter: PM DFB Nested MZM Bell Lab s QPSK/QAM Source Integration of tunable laser and Electro-absorption Modulators I. Kang, Optics Express 2007, C. Kazmierski, OFC 2014 Page 18

Roadmap of Infinera s PICs 100 elements 40 elements 40 elements From R. Dodd, Infinera Page 19

Photonic integrated circuits on silicon CMOS EIC platform on silicon Mature industrial process with high yield Foundry model for cost-effective industrial production Cost-effective for large volume PICs on silicon Taking benefit for EICs: industrial tools, foundry models, etc. Co-integration with CMOS electronics, close proximity between signal processing unit and photonic elements Providing optical interconnect solutions for More than Moore for EICs Can silicon be a Photonic integration platform?

The building blocks Optical modulator Photodetector MUX & DEMUX Waveguide Laser source Grating coupler In-plane coupler Optical switch

Impossible d'afficher l'image. Votre ordinateur manque peut-être de mémoire pour ouvrir l'image ou l'image est endommagée. Redémarrez l'ordinateur, puis ouvrez à nouveau le fichier. Si le x rouge est toujours affiché, vous devrez peut-être supprimer l'image avant de la réinsérer. Wafer level testing

Luxtera sactive Optical Cables Luxtera technology for transceiver Freescale SC Hip7 0.13µm SOI CMOS process Customized SOI & CMOS 130nm technology Proprietary library for electronic design Flip chip laser die bonding Si lateral depletion modulator 10Gb/s Ge photodetectors 20GHz Surface holographic gratings fiber coupling 4x28 Gb/s using 4 parallel links Luxtera and STMicroelectronics to Enable High- Volume Silicon Photonics Solutions Collaboration between two leading companies will bring silicon photonics into mainstream markets March 1 st, 2012 29 Juin 2011 Page 23

Single-chip 100 G Si transceiver Chip C. Doerre, et al., OFC 2014 27x35.5 mm2 module: PIC, Drivers and TIA Silicon PIC: 2.7x11.5 mm2 Page 24

Photonic Integration : InPvs vssi Photonics Platforms InP platform Si-photonics platform Functionality Performance Footprint Source, Detector, Waveguide, Modulator Excellent optical performance No large scale integration with electronics Large for passive elements (AWG, ring resonators, etc) Detector, Waveguide, Modulator Massive electronic integration No source: need for InP heterointegration or Ge sources Good optical performance Large scale integration with electronics for free Compact for passive elements (AWG, ring resonators, etc) Cost Power consumption Higher due to individual device testing, Low yield for PICs Low for electro-absorption modulator, higher for Mach-Zehnder type modulator Wafer scale testing CMOS processing & monitoring for free Foundry model for volume production will drive cost down Novel modulator design results in low drive voltage

Our Vision on Silicon PICs Silicon photonics approach: Mature CMOS fabrication process Available key building blocks: modulators, detectors, low loss passive waveguides, wavelength multiplexers/demultiplexers Lack of efficient lasers sources on silicon Sources for silicon photonics Geon silicon lasers and Epitaxyof III-V layers on silicon through a buffer layers: very promising results, but still requiring developments Hybrid III-V/Si integration using wafer bodning: most efficient solution today Hybrid III-V/Si integration combing advantages of III-V and Si III-V: providing optical gain Si: providing wavelength selection and tuning using passive silicon waveguides Dies to wafer or wafer to wafer bonding proven to be a reliable process for SOI wafers => a new classeof tunablelasers with large tuning range, high SMSR and compact size = > PIC transmitter integrating tunablelasers and silicon modulators Page 26

Heterogeneous integration Growth of the III- V wafers III-V die or wafer bonding on SOI (unprocessed) InP substrate removal Processing of SOI wafers (modulators, detectors, passive waveguides, etc.) Processing of III-V dies/wafer Metallization of lasers, modulators and detectors

Growth of III-V wafers for hybrid integration Growth of active layer in a reverse order compared to classical InP devices Example of a 6 QW MBE grown wafer InP (n) SCH MQW SCH InP (p) cladding InGaAs contact Substrate Strained MQW InGaAsP/InP for 1.3 and 1.5 µm operation using MBE Strained MQW InGaAlAs/InP for 1.3 operation using MOVPE Page 28

Processing of SOI wafers SOI substrate 1-Processed SOI substrate: etching and implantation of silicon waveguide Typicalthicknessof siliconwaveguidesfor couplingwithiii-v waveguidesbetween400 and 500 nm 2- PECVD silica deposition 3- CMP planarization Typical thickness of silica above RIB silicon waveguide between 30 and 100 nm Page 29

III-V / Si heterogeneous integration: wafer bonding SOI wafer Low temperature bonding III-V heterostructure PECVD silica deposition Thin layer 10 nm (roughness < 0.5 nm RMS) Annealing and Substrate removal Page 30

Bonded III-V wafers/dies on SOI Wafer to wafer bonding Dies to wafer bonding Page 31

Bonding of III-V dies on SOI wafer III-V dies SiO2 BOX Si waveguide

Laser cutting of 8 wafers into 3 wafers, ready to be processed in a III-V foundry Processing of III-V lasers on silicon

Hybrid laser structure M. Lamponi, et al., IEEE PTL, Jan. 2012 Straight active section, typically 2-3µm width, for optical amplification Passive SOI rib waveguides Double taper structure for both InP and Si waveguides or single taper structure for Si waveguide to efficiently couple light from III-V to silicon

Power vs current of a Fabry-Perot sample at 1.3 µm (InGaAlAs/InP) Threshold current of 12mA at room temperature for 500 µm devices Maximum out power at 20 C: 10 mwat CW conditions and 16 mwfor I = 150 maat pulse conditions Operating up to 80 at CW conditions Still reflections in the III-V/Si waveguide transition areas Page 35

Power vscurrent of a Fabry-Perot sample at 1.5 µm (InGaAsP/InP) Photodiode coupled output power (mw) 14 12 10 8 6 4 2 15 C 20 C 30 C 40 C 50 C 60 C 70 C 80 C 0 0 50 100 150 Current (ma) 200 Threshold current: 23mA at room temperature for 800 µm devices Maximum out power at 20 C: 18 mwat CW conditions Operating up to 65 at CW conditions Still reflections in the III-V/Si waveguide transition areas Page 36

Tunablelasers with 45 nm tuning range Heater/Ring resonator 2 Gain section Heater/Ring resonator 1 Grating coupler A. Le Liepvre, et al., GFP Conference, Aug. 2012

Wavelength selectable laser Wavelength selectable source : Si AWG inside the laser cavityas a filter Broadband bragg reflectors for feedback Si AWG : 5 channels, 400GHz spacing Vertical bragggratingsfor on wafer scale testing Simple wavelength tuning for access networks Can also be used as multiwavelength source Page 38

Wavelengthselectablelaser laser : spectrum Spectrum for each channel with 110mA injection Single mode operationwith > 30 db SMSR 390GHz spacing between channels 0 Power coupled to fibre (dbm) 0-10 -20-30 -40-50 -60-70 -80 1514 1516 1518 1520 1522 1524 Wavelength (nm) Power coupled in fibre (dbm) -10-20 L5 I=110mA L4 I=110mA -30 L3 I=110mA L2 I=110mA -40 L1 I=110mA -50-60 -70-80 1480 1500 1520 1540 1560 1580 1600 Wavelength (nm) Spectrum for each channel Page 39

Tunable transmitter chip Back Bragg reflector III-V waveguide Hybrid III-V/Si laser Front Bragg reflector Silicon MZ modulator Output waveguide Laser Ring resonator Mach-Zehnder Modulator G. H. Duan, et al., ECOC 2012 Page 40

BER and eye diagrammeat at 10 Gb/s Log(BER) -2-3 -4-5 -6 Ref. λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8-7 -8-9 -10-32 -30-28 -26-24 -22-20 -18-16 Received Power (dbm) λ1 λ3 λ5 λ7 λ2 λ4 λ6 λ8 Page 41

Technology roadmap Demonstrators 4x25G Active optical cable 4x100 G WDM transceiver 2 Tb/s WDM transceivesr Optical Network on Chip Design & integration Photonic PDK Photonic Electronic integration Photonic IP libraries Complete Design flow Building blocks Avalanche photodiode High temperature laser Low power 40G modulator Plasmonics 2013 2015 2017

Acknowledgements European projects: Plat4M, Fabulous, Sequoia French national projects: ANR Ultimate (QPSK QAM transmitter) III-V Lab: A. Accard, P. Kaspar, F. Poingt, D. Make, F. Lelarge, G. Levaufre, N. Girard, C. Jany, A. Le Liepvre, M. Lamponi, A. Shen, R. Brenot, F. Mallecot CEA: S. Olivier, S. Malhuitre, S. Messaoudene, D. Bordel, and J.-M. Fedeli, C Kopp, B. Ben Bakir, L. Fulbert IEF: L. Vivien, D. Morini Page 43