Binary Search Trees. Definition Of Binary Search Tree. Complexity Of Dictionary Operations get(), put() and remove()
|
|
|
- Rebecca Burke
- 10 years ago
- Views:
Transcription
1 Binary Sar Trs Compxity O Ditionary Oprations t(), put() and rmov() Ditionary Oprations: ƒ t(ky) ƒ put(ky, vau) ƒ rmov(ky) Additiona oprations: ƒ asnd() ƒ t(indx) (indxd inary sar tr) ƒ rmov(indx) (indxd inary sar tr) Data Strutur Worst Cas Exptd Has Ta O(n) O() Binary Sar O(n) O(o n) Tr Baand Binary Sar Tr O(o n) O(o n) n is numr o mnts in ditionary Compxity O Otr Oprations asnd(), t(indx), rmov(indx) Dinition O Binary Sar Tr Data Strutur asnd t and rmov Has Ta O(D + n o n) O(D + n o n) Indxd BST O(n) O(n) Indxd Baand BST O(n) O(o n) A inary tr. Ea nod as a (ky, vau) pair. For vry nod x, a kys in t t sutr o x ar smar tan tat in x. For vry nod x, a kys in t rit sutr o x ar ratr tan tat in x. D is numr o ukts
2 Examp Binary Sar Tr 2 T Opration asnd() 2 Ony kys ar sown. Do an inordr travrsa. O(n) tim. T Opration t() 2 T Opration put() 2 Compxity is O(it) = O(n), wr n is numr o nods/mnts. Put a pair wos ky is.
3 T Opration put() 2 T Opration put() 2 Put a pair wos ky is. Put a pair wos ky is. T Opration put() T Opration rmov() 2 Tr ass: ƒ Emnt is in a a. ƒ Emnt is in a dr nod. ƒ Emnt is in a dr 2 nod. Compxity o put() is O(it).
4 Rmov From A La 2 Rmov From A La (ontd.) 2 Rmov a a mnt. ky = Rmov a a mnt. ky = Rmov From A Dr Nod 2 Rmov From A Dr Nod (ontd.) 2 Rmov rom a dr nod. ky = Rmov rom a dr nod. ky =
5 Rmov From A Dr 2 Nod 2 Rmov From A Dr 2 Nod 2 Rmov rom a dr 2 nod. ky = Rpa wit arst ky in t sutr (or smast in rit sutr). Rmov From A Dr 2 Nod 2 Rmov From A Dr 2 Nod 2 8 Rpa wit arst ky in t sutr (or smast in rit sutr). Rpa wit arst ky in t sutr (or smast in rit sutr).
6 Rmov From A Dr 2 Nod 2 Anotr Rmov From A Dr 2 Nod 2 8 Larst ky must in a a or dr nod. Rmov rom a dr 2 nod. ky = 2 Rmov From A Dr 2 Nod 2 Rmov From A Dr 2 Nod 2 Rpa wit arst in t sutr. Rpa wit arst in t sutr.
7 Rmov From A Dr 2 Nod Rmov From A Dr 2 Nod Rpa wit arst in t sutr. Compxity is O(it). Indxd Binary Sar Tr Binary sar tr. Ea nod as an additiona id. ƒ tsiz = numr o nods in its t sutr Examp Indxd Binary Sar Tr 2 tsiz vaus ar in rd
8 tsiz And Rank Rank o an mnt is its position in inordr (inordr = asndin ky ordr). rank(2) = rank() = 5 rank(2) = [2,,,8,,,,2,,,,] tsiz(x) = rank(x) wit rspt to mnts in sutr rootd at x tsiz And Rank 2 sortd ist = [2,,,8,,,,2,,,,] t(indx) And rmov(indx) 2 sortd ist = [2,,,8,,,,2,,,,] t(indx) And rmov(indx) i indx = x.tsiz dsird mnt is x.mnt i indx < x.tsiz dsird mnt is indx t mnt in t sutr o x i indx > x.tsiz dsird mnt is (indx - x.tsiz-) t mnt in rit sutr o x
9 Appiations (Compxitis Ar For Baand Trs) Bst-it in pakin in O(n o n) tim. Rprsntin a inar ist so tat t(indx), add(indx, mnt), and rmov(indx) run in O(o(ist siz)) tim (uss an indxd inary tr, not indxd inary sar tr). Can t us as tas or itr o ts appiations. Linar List As Indxd Binary Tr a d ist = [a,,,d,,,,,i,,k,] i k a d i k a d i k ist = [a,,,d,,,,,i,,k,] ist = [a,,,d,, m,,,,i,,k,] ind nod wit mnt ()
10 a d i ist = [a,,,d,, m,,,,i,,k,] ind nod wit mnt () k a d m i add m as rit id o ; ormr rit sutr o oms rit sutr o m k a d m i k Otr possiiitis xist. Must updat som tsiz vaus on pat rom root to nw nod. Compxity is O(it). add m as tmost nod in rit sutr o
Binary Search Trees. Definition Of Binary Search Tree. The Operation ascend() Example Binary Search Tree
Binary Sar Trs Compxity O Ditionary Oprations t(), put() and rmov() Ditionary Oprations: ƒ t(ky) ƒ put(ky, vau) ƒ rmov(ky) Additiona oprations: ƒ asnd() ƒ t(indx) (indxd inary sar tr) ƒ rmov(indx) (indxd
Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman
Cloud and Big Data Summr Scool, Stockolm, Aug., 2015 Jffry D. Ullman Givn a st of points, wit a notion of distanc btwn points, group t points into som numbr of clustrs, so tat mmbrs of a clustr ar clos
5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power
Prim numbrs W giv spcial nams to numbrs dpnding on how many factors thy hav. A prim numbr has xactly two factors: itslf and 1. A composit numbr has mor than two factors. 1 is a spcial numbr nithr prim
Application Note: Cisco A S A - Ce r t if ica t e T o S S L V P N Con n e ct ion P r of il e Overview: T h i s a p p l i ca ti o n n o te e x p l a i n s h o w to co n f i g u r e th e A S A to a cco m
Uses for Binary Trees -- Binary Search Trees
CS122 Algorithms n Dt Struturs MW 11:00 m 12:15 pm, MSEC 101 Instrutor: Xio Qin Ltur 10: Binry Srh Trs n Binry Exprssion Trs Uss or Binry Trs Binry Srh Trs n Us or storing n rtriving inormtion n Insrt,
Probabilistic maintenance and asset management on moveable storm surge barriers
Probabilistic maintnanc an asst managmnt on movabl storm surg barrirs Patrick Wbbrs Ministry of Transport, Public Works an Watr Managmnt Civil Enginring Division A n a l y s O n r h o u F a a l k a n s
WAVEGUIDES (& CAVITY RESONATORS)
CAPTR 3 WAVGUIDS & CAVIT RSONATORS AND DILCTRIC WAVGUIDS OPTICAL FIBRS 導 波 管 & 共 振 腔 與 介 質 導 波 管 光 纖 W t rqu is t irowv rg >4 G? t losss o wv i two-odutor trsissio li du to iprt odutor d loss diltri o
1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).
PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a
Department of Natural Resources
Dpartt o Natura Rsourcs DIVISION OF AGRICULTURE Northr Rio Oic 1648 S. Cusha St. #201 Fairbas, Aasa 99701-6206 Mai: 907.328.190 Far to Schoo Cha Ectroic Appicatio Istructios 1. Pas i out th ctroic survy
Menu Structure. Section 5. Introduction. General Functions Menu
Menu Structure Section 5 Introduction General Functions Menu Most workstation functions are accessed by menu selections. This section explains the menu structure and provides a tree structured view of
G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1
G S e r v i c i o C i s c o S m a r t C a r e u ي a d e l L a b o r a t o r i o d e D e m o s t r a c i n R ل p i d a V e r s i n d e l S e r v i c i o C i s c o S m a r t C a r e : 1 4 ع l t i m a A c
Vocational Rehabilitation
Vocational Rehabilitation Senate Education Appropriations Committee October 7, 2015 Emily Sikes, Chief Legislative Analyst, OPPAGA oppaga THE FLORIDA LEGISLATURE S OFFICE OF PROGRAM POLICY ANALYSIS & GOVERNMENT
ű Ű ű ű ű űű ű ő ő ű ű ő ő ő Ű ű ő ő Ű ő ű ű ő ű ű Ű ű Ő ű ű Ő Ű ű ű Ű Ű ő ű Ű ű ű ű Ű Ű Ű ő ő ű ő ű Ű Ő ő ő Ő ő ű ő ő Ő ű Ű ű ő Ű Ő ű ő ő ű Ő Ű ű ő ő ő Ő Ű Ő ű ő ű ű Ű Ű ű Ű ű Ű ű Ű Ű ű ű ű Ő ŰŐ ő Ű ő
First A S E M R e c to rs C o n f e re n c e : A sia E u ro p e H ig h e r E d u c a tio n L e a d e rsh ip D ia l o g u e Fre ie U n iv e rsitä t, B e rl in O c to b e r 2 7-2 9 2 0 0 8 G p A G e e a
SAT Math Must-Know Facts & Formulas
SAT Mat Must-Know Facts & Formuas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationas: fractions, tat is, anyting expressabe as a ratio of integers Reas: integers pus rationas
Upward Planar Drawings of Series-Parallel Digraphs with Maximum Degree Three
Upwr Plnr Drwins of ris-prlll Dirps wit Mximum Dr Tr (Extn Astrt) M. Aul Hssn m n M. iur Rmn Dprtmnt of Computr in n Eninrin, Bnls Univrsity of Eninrin n Tnoloy (BUET). {sm,siurrmn}@s.ut.. Astrt. An upwr
M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)
Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut
2013 Best Best & Krieger LLP. Telecommunications Law
2013 Best Best & Krieger LLP State Franchising: An idea whose time has past, whose benefits have failed to appear, but whose damages we see every day. PRESENTED BY Joseph Van Eaton Partner PREPARED BY
B R T S y s te m in S e o u l a n d In te g r a te d e -T ic k e tin g S y s te m
Symposium on Public Transportation in Indian Cities with Special focus on Bus Rapid Transit (BRT) System New Delhi 20-21 Jan 2010 B R T S y s te m in S e o u l a n d In te g r a te d e -T ic k e tin g
Practice Writing the Letter A
Aa Practice Writing the Letter A A a A a Write a in the blank to finish each word. c t re h d Write A in the blank to finish each word. nn US ndy Bb Practice Writing the Letter B B b B l P b Write b in
Lecture 20: Emitter Follower and Differential Amplifiers
Whits, EE 3 Lctur 0 Pag of 8 Lctur 0: Emittr Followr and Diffrntial Amplifirs Th nxt two amplifir circuits w will discuss ar ry important to lctrical nginring in gnral, and to th NorCal 40A spcifically.
CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions
CPS 22 Thory of Computation REGULAR LANGUAGES Rgular xprssions Lik mathmatical xprssion (5+3) * 4. Rgular xprssion ar built using rgular oprations. (By th way, rgular xprssions show up in various languags:
Traffic Flow Analysis (2)
Traffic Flow Analysis () Statistical Proprtis. Flow rat distributions. Hadway distributions. Spd distributions by Dr. Gang-Ln Chang, Profssor Dirctor of Traffic safty and Oprations Lab. Univrsity of Maryland,
Regional Electricity Forecasting
Regional Electricity Forecasting presented to Michigan Forum on Economic Regulatory Policy January 29, 2010 presented by Doug Gotham State Utility Forecasting Group State Utility Forecasting Group Began
Analysis of Algorithms I: Optimal Binary Search Trees
Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search
DITCH BOTTOM INLET TYPES C, D, E & H
7 -" - -" - -0" -0" -0" PLN -" -" enter Of o - -" -" 5-5 -" -" -" -" PLN enter Of o 5-0" 5 - - -0" - - -0" -0" PLN / " enter Of o - -0" enter Of o 7-7" Of Pipes Pipe Spacing S 6-7" 6-7" PLN -0" -0" 5 /
SAT Math Facts & Formulas
Numbers, Sequences, Factors SAT Mat Facts & Formuas Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reas: integers pus fractions, decimas, and irrationas ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences:
schema binary search tree schema binary search trees data structures and algorithms 2015 09 21 lecture 7 AVL-trees material
scema binary searc trees data structures and algoritms 05 0 lecture 7 VL-trees material scema binary searc tree binary tree: linked data structure wit nodes containing binary searc trees VL-trees material
Big Data & Intelligence Driven Security. EMELIA Yamson My Email: [email protected]
Big Data & Intelligence Driven Security EMELIA Yamson My Email: [email protected] Introduction to Big Data 2013 AKAMA FASTER FORWARD TM Big Data - Introduction High volume, velocity and variety information
A Project Management framework for Software Implementation Planning and Management
PPM02 A Projct Managmnt framwork for Softwar Implmntation Planning and Managmnt Kith Lancastr Lancastr Stratgis [email protected] Th goal of introducing nw tchnologis into your company
HUFFMAN CODING AND HUFFMAN TREE
oding: HUFFMN OING N HUFFMN TR Reducing strings over arbitrary alphabet Σ o to strings over a fixed alphabet Σ c to standardize machine operations ( Σ c < Σ o ). inary representation of both operands and
Binary Search Trees. Adnan Aziz. Heaps can perform extract-max, insert efficiently O(log n) worst case
Binary Searc Trees Adnan Aziz 1 BST basics Based on CLRS, C 12. Motivation: Heaps can perform extract-max, insert efficiently O(log n) worst case Has tables can perform insert, delete, lookup efficiently
C H A P T E R 1 Writing Reports with SAS
C H A P T E R 1 Writing Rports with SAS Prsnting information in a way that s undrstood by th audinc is fundamntally important to anyon s job. Onc you collct your data and undrstand its structur, you nd
Enterprise Data Center A c h itec tu re Consorzio Operativo Gruppo MPS Case S t u d y : P r o g et t o D i sast er R ec o v er y Milano, 7 Febbraio 2006 1 Il G r u p p o M P S L a B a n c a M o n t e d
Finance 360 Problem Set #6 Solutions
Finance 360 Probem Set #6 Soutions 1) Suppose that you are the manager of an opera house. You have a constant margina cost of production equa to $50 (i.e. each additiona person in the theatre raises your
Case Study: Agile Request For Proposal (RFP) Process
Case Study: Agile Request For Proposal (RFP) Process Agile RFP-1 Iterations Feedback Reduce Waste Reduce Risk Agile Principles Just Enough Just In Time Where do Stories Come from? Stories Process Practices
Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means
Qian t al. Journal of Inqualitis and Applications (015) 015:1 DOI 10.1186/s1660-015-0741-1 R E S E A R C H Opn Accss Sharp bounds for Sándor man in trms of arithmtic, gomtric and harmonic mans Wi-Mao Qian
QUANTITATIVE METHODS CLASSES WEEK SEVEN
QUANTITATIVE METHODS CLASSES WEEK SEVEN Th rgrssion modls studid in prvious classs assum that th rspons variabl is quantitativ. Oftn, howvr, w wish to study social procsss that lad to two diffrnt outcoms.
ú Ó Á É é ú ú É ú Á Á ú É É É ú É Ó É ó É Á ú ú ó Á Á ú Ó ú Ó ú É Á ú Á ú ó ú Á ú Á É Á Á Ó É Á ú ú é ú ú ú ú Á ú ó ú Ó Á Á Á Á ú ú ú é É ó é ó ú ú ú É é ú ú ú óú ú ú Ó Á ú ö é É ú ú ú úé ú ú É É Á É
Optimized Data Indexing Algorithms for OLAP Systems
Database Systems Journal vol. I, no. 2/200 7 Optimized Data Indexing Algoritms for OLAP Systems Lucian BORNAZ Faculty of Cybernetics, Statistics and Economic Informatics Academy of Economic Studies, Bucarest
Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)
con 37: Answr Ky for Problm St (Chaptr 2-3) Instructor: Kanda Naknoi Sptmbr 4, 2005. (2 points) Is it possibl for a country to hav a currnt account dficit at th sam tim and has a surplus in its balanc
SCHOOL PESTICIDE SAFETY AN D IN TEG R ATED PEST M AN AG EM EN T Statutes put into law by the Louisiana Department of Agriculture & Forestry to ensure the safety and well-being of children and school personnel
PIN #1 ID FIDUCIAL LOCATED IN THIS AREA TOP VIEW. ccc C SIDE VIEW
Packag iagrams ruary 20 all W Packag Option : i0 P imnsions in illimtrs ata ht r PI # I IUI OT I TI R (X) 2 OTTO VIW. X Ø s TOP VIW Ø.0 Ø.0 I VIW OT:. IIO TOR PR Y. 99. 2. IIO R I IITR. IIO I UR T T XIU
Previous Lectures. B-Trees. External storage. Two types of memory. B-trees. Main principles
B-Trees Algorithms and data structures for external memory as opposed to the main memory B-Trees Previous Lectures Height balanced binary search trees: AVL trees, red-black trees. Multiway search trees:
root node level: internal node edge leaf node CS@VT Data Structures & Algorithms 2000-2009 McQuain
inary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from each
Unit 16 : Software Development Standards O b jec t ive T o p r o v id e a gu ide on ho w t o ac h iev e so f t wa r e p r o cess improvement through the use of software and systems engineering standards.
Open Source Software Open Standards
after and there's Open Source Software Open Standards Open Content Jan Willem Broekema e- government From open to closed source software Hardware was limited to few models, if more than one Business models
From Last Time: Remove (Delete) Operation
CSE 32 Lecture : More on Search Trees Today s Topics: Lazy Operations Run Time Analysis of Binary Search Tree Operations Balanced Search Trees AVL Trees and Rotations Covered in Chapter of the text From
i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner
í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ$Æo
2.1: The Derivative and the Tangent Line Problem
.1.1.1: Te Derivative and te Tangent Line Problem Wat is te deinition o a tangent line to a curve? To answer te diiculty in writing a clear deinition o a tangent line, we can deine it as te iting position
Purpose of presentation
ECONOMIC REGULATION Purpose of presentation To provide the Status Quo on Economic Regulation To indicate the ideal situation WHERE DOES THE MANDATE COME FROM? Constitution Water Services Act Section 10
Simulation of Derivative Characteristics of Broadband Quantum Dot Lasers
USOD 007 wark D Simuation of Drivativ Charactristics of Broadband Quantum Dot Lasrs C. L. an Y. Wan H. S. Di* B. S. Ooi Cntr for Optica chnoois and Dpartmnt of ctrica and Computr ninrin Lhih Univrsity
MAXIMAL CHAINS IN THE TURING DEGREES
MAXIMAL CHAINS IN THE TURING DEGREES C. T. CHONG AND LIANG YU Abstract. W study th problm of xistnc of maximal chains in th Turing dgrs. W show that:. ZF + DC+ Thr xists no maximal chain in th Turing dgrs
ACE-1/onearm #show service-policy client-vips
M A C E E x a m Basic Load Balancing Using O ne A r m M ode w it h S ou r ce N A T on t h e C isco A p p licat ion C ont r ol E ngine Goal Configure b a s ic l oa d b a l a nc ing (L a y er 3 ) w h ere
Clustered Standard Errors
Clustered Standard Errors 1. The Attraction of Differences in Differences 2. Grouped Errors Across Individuals 3. Serially Correlated Errors 1. The Attraction of Differences in Differences Estimates Typically
DUAL N-CHANNEL AND DUAL P-CHANNEL MATCHED MOSFET PAIR
DVNCD INR DVICS, INC. D113 DU N-CHNN ND DU P-CHNN MTCHD MOSFT PIR GNR DSCRIPTION Th D113 is a monolithic dual N-channl and dual P-channl matchd transistor pair intndd for a road rang of analog applications.
ELECTRONIC FUND TRANSFERS YOUR RIGHTS AND RESPONSIBILITIES. l l. l l
ELECTRONIC FUND TRANSFERS YOUR RIGHTS AND RESPONSIBILITIES The Eectronic Fund Transfers we are capabe of handing for consumers are indicated beow some of which may not appy your account Some of these may
State Corporate Income Tax-Calculation
State Corporate Income Tax-Calculation 1 Because it takes all elements (a*b*c) to calculate the personal or corporate income tax, no one element of the corporate income tax can be analyzed separately from
Binary Heaps. CSE 373 Data Structures
Binary Heaps CSE Data Structures Readings Chapter Section. Binary Heaps BST implementation of a Priority Queue Worst case (degenerate tree) FindMin, DeleteMin and Insert (k) are all O(n) Best case (completely
Binary Heap Algorithms
CS Data Structures and Algorithms Lecture Slides Wednesday, April 5, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks [email protected] 2005 2009 Glenn G. Chappell
Roof Terraces. Structural assemblies 04-2012
C Roo Trrs Strutur ssms 04-2012 Prt soutons rom n xprt sour Sütr-Systms s n rn nm or ntnt strutur ssms on ons n trrs sn 1983. Tt yr, Wrnr Sütr nvnt t Sütr -TROBA mt, t rst rn mt or t r rn o ons n trrs.
Seion. A Statistical Method for Alarm System Optimisation. White Paper. Dr. Tim Butters. Data Assimilation & Numerical Analysis Specialist
Seion A Statistical Method for Alarm System Optimisation By Dr. Tim Butters Data Assimilation & Numerical Analysis Specialist [email protected] www.sabisu.co Contents 1 Introduction 2 2 Challenge 2
Binary Trees. Wellesley College CS230 Lecture 17 Thursday, April 5 Handout #28. PS4 due 1:30pm Tuesday, April 10 17-1
inary Trees Wellesley ollege S230 Lecture 17 Thursday, pril 5 Handout #28 PS4 due 1:30pm Tuesday, pril 10 17-1 Motivation: Inefficiency of Linear Structures Up to this point our focus has been linear structures:
H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct
H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili
Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu
O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u i s p r z» t a n i a o b i e k t ó w G d y s k i e C eo n t r u m S p o r t us I S t a d i o n p i ł k a r s k i
P h o t o g r a p h y. Vá c l a v J i r á s e k 瓦 茨 拉 夫 伊 拉 塞 克 I n f e c t i o n. I n d u s t r i a. U p s y c h 蔓. 工 业. 痴
P h o t o g r a p h y Vá c l a v J i r á s e k 瓦 茨 拉 夫 伊 拉 塞 克 I n f e c t i o n. I n d u s t r i a. U p s y c h 蔓. 工 业. 痴 Vá c l a v J i r á s e k 瓦 茨 拉 夫 伊 拉 塞 克 I n f e c t i o n. I n d u s t r i a.
Compute the derivative by definition: The four step procedure
Compute te derivative by definition: Te four step procedure Given a function f(x), te definition of f (x), te derivative of f(x), is lim 0 f(x + ) f(x), provided te limit exists Te derivative function
SIV for VoiceXM 3.0: a n g u a g e a n d A p p l ica t ion D es ig n C on s id era t ion s Ken Rehor C i s c o S y s t em s, I nc. [email protected] March 05, 2009 G VoiceXM Application Architecture PSTN
CREATE SHAPE VISUALIZE
SHAPE VISUALIZE B I M E q u i t y BIM Workflow Guide SHAPE VISUALIZE Introduction We o e to t e r t ook i t e BIM Workflow erie I t e o owi ter we wi o er e eryt i eeded or you to ter t e i o re ti i d
Inventory Management Subject to Uncertain Demand
Inventr Management Sbjet t Unertain emand Esma el Pınar Keskinak 7 ISYE 34 - all Inventr Cntrl Sbjet t Unertain emand In te presene nertain demand te bjetive is t minimie te epeted st r t maimie te epeted
CIVIL ENGINEERING GRADUATE PROGRAMS. Fall 2014. Department of Civil, Construction, and Environmental Engineering North Carolina State University
CIVIL ENGINEERING GRADUATE PROGRAMS Fall 2014 Department of Civil, Construction, and Environmental Engineering North Carolina State University Introductions Dr. Ranji Ranjithan (Mann 202-B) [email protected]
Symbian phone Security
ITSX Overview Symbian OS. Risks and Features. Taking it apart. Conclusions. Symbian History Psion owner of EPOC OS, originally from 1989, released EPOC32 in 1996 EPOC32 was designed with OO in C++ 1998:
CARE QUALITY COMMISSION ESSENTIAL STANDARDS OF QUALITY AND SAFETY. Outcome 10 Regulation 11 Safety and Suitability of Premises
CARE QUALITY COMMISSION ESSENTIAL STANDARDS OF QUALITY AND SAFETY Outcom 10 Rgulation 11 Safty and Suitability of Prmiss CQC Rf 10A 10A(1) Lad Dirctor / Lad Officr Rspons Impact Liklihood Lvl of Concrn
AN EVALUATION OF SHORT TERM TREATMENT PROGRAM FOR PERSONS DRIVING UNDER THE INFLUENCE OF ALCOHOL 1978-1981. P. A. V a le s, Ph.D.
AN EVALUATION OF SHORT TERM TREATMENT PROGRAM FOR PERSONS DRIVING UNDER THE INFLUENCE OF ALCOHOL 1978-1981 P. A. V a le s, Ph.D. SYNOPSIS Two in d ep en d en t tre a tm e n t g ro u p s, p a r t ic ip
CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #5: En-ty/Rela-onal Models- - - Part 1
CS 4604: Introduc0on to Database Management Systems B. Aditya Prakash Lecture #5: En-ty/Rela-onal Models- - - Part 1 Announcements- - - Project Goal: design a database system applica-on with a web front-
NC State Onboarding Center. Shared Service Center
NC State Onboarding Center Shared Service Center Onboarding Center Synergy is the interaction of multiple elements in a system to produce an effect different from or greater than the sum of their individual
PROFESSIONAL ENGINEERS AND LAND SURVEYORS RE: CERTIFICATE OF AUTHORIZATION
Division of Consumer Affairs JON S. CORZINE State Board of Professional Engineers and and Surveyors ANNE MIGRAM Governor 124 Halsey Street, 3 rd Floor, Newark, NJ 07102 Attorney General www.njconsumeraffairs.gov
CIVIL ENGINEERING GRADUATE PROGRAMS. Fall 2015. Department of Civil, Construction, and Environmental Engineering North Carolina State University
CIVIL ENGINEERING GRADUATE PROGRAMS Fall 2015 Department of Civil, Construction, and Environmental Engineering North Carolina State University Introductions Dr. Ranji Ranjithan (Mann 202-B) [email protected]
B-Trees. Algorithms and data structures for external memory as opposed to the main memory B-Trees. B -trees
B-Trees Algorithms and data structures for external memory as opposed to the main memory B-Trees Previous Lectures Height balanced binary search trees: AVL trees, red-black trees. Multiway search trees:
8 / c S t a n d a r d w y m a g a ń - e g z a m i n c z e l a d n i c z y dla zawodu Ś L U S A R Z Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów
Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6
Rin Stion 9.6 Minimum Spnnin Trs Outlin Minimum Spnnin Trs Prim s Alorithm Kruskl s Alorithm Extr:Distriut Shortst-Pth Alorithms A Fil Shrin Prolm Sy unh o usrs wnt to istriut il monst thmslvs. Btwn h
ETSI SR 003 091 V1.1.2 (2013-03)
SR 003 091 V1.1.2 (2013-03) Special Report Electronic Signatures and Infrastructures (ESI); Recommendations on Governance and Audit Regime for CAB Forum Extended Validation and Baseline Certificates 2
d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o
P o s t a w y s p o і e c z e t s t w a w o b e c o s у b n i e p e і n o s p r a w n y c h z e s z c z e g у l n y m u w z g lb d n i e n i e m o s у b z z e s p o і e m D o w n a T h e a t t i t uodf
Agenda. Three License Types Concepts for ThinManager Licensing License Activation Demo
Licensing Agenda Three License Types Concepts for ThinManager Licensing License Activation Demo Three Licenses ACP ThinManager Allows terminal to boot Microsoft Allows terminals to start sessions Application
