Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x
|
|
|
- Lesley Melton
- 10 years ago
- Views:
Transcription
1 Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written as: M k Mgsin 0 (4.1) or, equivalently in state space form: 1 (4.) asin 1b where 1, g k, a, and b. We study stability of the origin e 0. M Note that the latter is equivalent to studying stability of all the equilibrium points in the form: e l 0, l 0, 1,, Consider the total energy of the pendulum as a Lyapunov function candidate. 1 V asin ydy a1cos 1 (4.3) 0 Potential Kinetic It is clear that V is a positive definite function, (locally, around the origin). Its time derivative along the system trajectories is: V asin 11 b 0 (4.4) So, the time derivative is negative semidefinite. It is not strictly negative definite because V 0 for 0, irrespective of the value of 1. herefore, we can only conclude that the origin is a stable equilibrium, but not necessarily asymptotically stable. 10
2 However, using the phase portrait of the pendulum equation (or just common sense), we epect the origin to be asymptotically stable. he Lyapunov energy function argument fails to show it. On the other hand, we notice that for the system to maintain V 0 condition, the trajectory must be confined to the line 0. Using the system dynamics (4.) yields: 0 0sin Hence on the segment 1 of the line 0 the system can maintain the V 0 condition only at the origin 0. herefore, V t must decrease to toward 0 and, consequently, t 0 as t, which is consistent with the fact that, due to friction, energy cannot remain constant while the system is in motion. he forgoing argument shows that if in a domain about the origin we can find a Lyapunov function whose derivative along the system trajectories is negative semidefinite, and we can establish that no trajectory can stay identically at points where V 0, ecept at the origin, then the origin is asymptotically stable. his argument follows from the LaSalle s Invariance Principle which is applicable to autonomous systems of the form f, f 0 0 (4.5) Definition 4.1 n A set M is said to be an invariant set with respect to (4.5) if: a positively invariant set with respect to if: 0 M t M, t 0 M t M, t 0 heorem 4.1 (LaSalle s heorem) n Let D be a compact positively invariant set with respect to the system dynamics (4.5). Let V : D be a continuously differentiable function such that V t in. Let E be the set of all points in where V 0. Let 0 M E be the largest invariant set in E. hen every solution starting in approaches M as t, that is liminf t z 0 t zm dist t, M Notice that the inclusion of the sets in the LaSalle s theorem is: n M E D 11
3 In fact, a formal proof of the theorem reveals that all trajectories t are bounded and approach a positive limit set L M as t. he latter may contain asymptotically stable equilibriums and stable limit cycles. emark 4.1 Unlike Lyapunov theorems, LaSalle s theorem does not require the function be positive definite. V to Most often, our interest will be to show that t 0 as t. For that we will M 0. his is need to establish that the largest invariant set in E is the origin, that is: done by showing that no solution can stay identically in E other than the trivial solution t 0. heorem 4.1 (Barbashin-Krasovskii theorem) Let 0 be an equilibrium point for (4.5). Let V : D be a continuously n differentiable positive definite function on a domain D containing the origin, such that V t S D: V 0 and suppose that no other solution 0 in D. Let can stay in S, other than the trivial solution t 0. hen the origin is locally asymptotically stable. If, in addition, V is radially unbounded then the origin is globally asymptotically stable. Note that if V is negative definite then 0 S and the above theorem coincides with the Lyapunov nd theorem. Also note that the LaSalle s invariant set theorems are applicable to autonomous system only. Eample 4. Consider the 1 st order system a u together with its adaptive control law u kˆ t he dynamics of the adaptive gain ˆk t is ˆk where 0 is called the adaptation rate. hen the closed-loop system becomes: ˆ k t a ˆ k he line 0 represents the system equilibrium set. We want to show that the trajectories approach this equilibrium set, as t, which means that the adaptive 1
4 controller regulates t to zero in the presence of constant uncertainty in a. Consider the Lyapunov function candidate V, kˆ 1 1 k ˆ b where b a. he time derivative of V along the trajectories of the system is given by 1 V ˆ ˆ, k kbkˆ kˆa kˆb ba0 V, k ˆ is positive definite and radially unbounded function, whose derivative Since V, ˆ k 0 is semi-negative, then, ˆ :, ˆ c k V k c is compact, positively invariant set. hus, taking c, all the conditions of LaSalle s heorem are satisfied. E, kˆ : 0. Since any point on the line 0 is an he set E is given by c equilibrium point, E is an invariant set. herefore, in this eample M E. From LaSalle s heorem we conclude that every trajectory starting in approaches E, as t, that is 0 t as t. Moreover, since, ˆ c V k is radially unbounded, the 0, k ˆ 0 because the 0, kˆ 0 c. conclusion is global, that is it holds for all initial conditions constant c in the definition of can be chosen large enough that Homework: Simulate the closed-loop system from Eample 4.. 0, k ˆ 0. est different initial conditions c un simulations of the system while increasing the rate of adaptation 0 until high frequency oscillations and / or system departure occurs. ry to quantify imum allowable as a function of the initial conditions. un simulations of the system while increasing the control time delay 0, that is using control in the form ut kˆ t t. ry to quantify imum allowable time delay, (as a function of the initial conditions and rate of adaptation), before the system starts to oscillate or departs. 5. Boundedness and Ultimate Boundedness Consider the nonautonomous system f t, (5.1) n where f :0, D is piecewise continuous in t, locally Lipschitz in on n 0, D, and D is a domain that contains the origin 0. If the origin is the equilibrium point for (5.1) then by definition: f t,0 0, t 0. On the other hand, even if there is no equilibrium at the origin, Lyapunov analysis can still be used to show boundedness of the system trajectories. We begin with a motivating eample. 13
5 Eample 5.1 Consider the IVP with nonautonomous scalar dynamics sin t (5.) t 0 a 0 he system has no equilibrium points. he IVP eplicit solution can be easily found and shown to be bounded for all t t0, uniformly in t 0, that is with a bound b independent of t 0. In this case, the solution is said to be uniformly ultimately bounded (UUB), and b is called the ultimate bound, (Homework: Prove this statement). he UUB property of (5.) can be established via Lyapunov analysis and without using eplicit solutions of the state equation. Starting with V, we calculate the time derivative of V along the system trajectories. V sin t sin t It immediately follows that V 0, In other words, the time derivative of V is negative outside the set B, or equivalently, all solutions that start outside of B will reenter the set within a finite time, and will remain their afterward. Formally, it can be stated as follows. Choose Since V is negative on the set boundary then all solutions starting in the set Bc V c B c c. will remain therein for all future time. Hence the solutions are uniformly bounded. Moreover, an ultimate bound of these solutions can also be found. Choose such that c hen V is negative in the annulus set V c, which implies that in this set V t will decrease monotonically in time until the solution enters the set V. From that time on, the solution cannot leave the set because V is negative on its boundary V. Since V, we can conclude that these solutions are UUB with the ultimate bound. Definition 5.1 he solutions of (5.1) are 14
6 Uniformly Bounded if there eists a positive constant c, independent of t 0 0, and for every a 0, c, there is a 0, independent of t 0, such that t0 a t, t t0 (5.3) Globally Uniformly Bounded if (5.3) holds for arbitrarily large a. Uniformly Ultimately Bounded with ultimate bound b if there eist positive constants b and c, independent of 0 0 a 0, c, there is a, b, independent of t 0, such that 0 0 t, and for every t a t b, t t (5.4) Globally Uniformly Ultimately Bounded if (5.4) holds for arbitrarily large a. Figure 5.1: UUB Concept In the definition above, the term uniform indicates that the bound b does not depend on t 0. he term ultimate means that boundedness holds after the lapse of a certain time. he constant c defines a neighborhood of the origin, independent of t 0, such that all trajectories starting in the neighborhood will remain bounded in time. If c can be chosen arbitrarily large then the UUB notion becomes global. Basically, UUB can be considered as a milder form of stability in the sense of Lyapunov (SISL). A comparison summary between SISL and UUB concepts is given below. SISL is defined with respect to an equilibrium, while UUB is not. Asymptotic SISL is a strong property that is very difficult to achieve in practical dynamical systems. 15
7 SISL requires the ability to keep the state arbitrarily close to the system equilibrium by starting sufficiently close to it. his is still too strong a requirement for practical systems operating in the presence of unknown disturbances. he main difference between UUB and SISL is that the UUB bound b cannot be made arbitrarily small by starting closer to the equilibrium or the origin. In practical systems, the bound b depends on disturbances and system uncertainties. o demonstrate how Lyapunov analysis can be used to study UUB, consider a continuously differentiable positive definite function V, choose 0 c, and suppose that the sets V and c c V c are compact. Let V c and suppose that it is known that the time derivative of V t along the trajectories of the nonautonomous dynamical system (5.1) is negative definite inside, that is V t W t 0,, t t 0 where W t is a continuous positive definite function. Since V is negative in, a trajectory starting in must move in the direction of decreasing V t. It can be shown that in the set the trajectory behaves as if the origin was uniformly asymptotically stable, (which it does not have to be in this case). Consequently, the function V t will continue decreasing until the trajectory enters the set in finite time and stays there for all future time. Hence, the solutions of (5.1) are UUB with the ultimate bound b. A sketch of the sets, c, is shown in Figure 5.. Figure 5.: UUB by Lyapunov Analysis In many problems, the relation V t, W is derived and shown to be valid on a domain, which is specified in terms of a Euclidian norm. In such cases, UUB analysis involves finding the corresponding domains of attraction and an ultimate bound. 16
8 n his analysis will be performed net. Let denote a bounded domain and suppose that the system dynamics are: t, AB (5.5) m where A is Hurwitz. Also suppose that t, is a bounded function on. Let QQ 0 and consider V P (5.6) where P P 0 is the unique positive definite symmetric solution of the algebraic Lyapunov equation. PA A P Q (5.7) hen the time derivative of V evaluated along the system (5.1) trajectories satisfies the following relation: V Q PB t,,, t t (5.8) 0 Suppose that 0 is chosen such that the sphere S is inside the domain, that is: S (5.9) Also suppose that t, for all S formally prove that all the solutions t of (5.1) that start in a subset of S are UUB., uniformly in t. hen one can In order to prove the UUB property, we assume that. hen for any symmetric positive definite matri P and for all vectors, min P P P (5.10) where min P, P denote the smallest and the largest eigenvalues of P, respectively. An upper bound for V in (5.8) can be calculated, for. V min Q PB min Q PB (5.11) Define a sphere. PB Sr r min Q (5.1) It follows from (5.11) that V r S S (5.13) Let b r P r and let b V 0, r b r r. hen Sr b r. In fact, if Sr then using the right hand side of (5.10) yields: P P Pr b r (5.14) Hence, b r and the inclusion Sr b r is proven. 17
9 Let b min P and define b V b b. hen then using the left hand side of (5.10), yields: Hence, min. In fact, if min P PV b P (5.15), that is S, and the inclusion b S is proven. Net, we need to ensure that br b, that is: br P r min P B (5.16) or, equivalently: r min P (5.17) P he above inequality can be viewed as a restriction placed on the eigenvalues of P and the constants r and. his relation ensures the desired set inclusions: Sr b r b S (5.18) Graphical representation of the four sets is given in Figure 5.. b S Figure 5.: epresentation of the sets S S and the Ultimate Bound M r br b Net, we show that all solutions starting in b will enter b r and remain there afterwards. If t 0 b then since V 0 in r b b, V t is a decreasing r function of time outside of. herefore, solutions that start in will remain there. Suppose that t0. Inequality (5.11) implies: b r b r 18
10 hus, where V min Q PB min Q PB P min P P V min P V min Q PB V V P min P V t 0 satisfies the following differential inequality, (as a function of time): V av g V min Q PB a and g are positive constants. Let W V P P hen (5.0) is equivalent to Define hen because of (5.1), Solving (5.) for W yields, and, therefore: (5.19) (5.0) min 0. a g W W (5.1) a Z W W (5.) g Z t, t t0 (5.3) a t a 0 t t t t0 W t W t e e Z d (5.4) 0 t t t a g t t 0 g g a t a 0 t0 W t W t e e Z d W t e e d W t e e a t a a a tt0 g t tt0 g tt a t0 e W t a a a 0 o1 o1 Consequently, as t : g P PB P a min Q min P min P t P t o1 o1 r o1 r (5.5) (5.6) Choose 0. hen it is easy to see that there eists independent of t 0 such that o1 and, consequently 19
11 P (5.7) t P t r, t t0, min P Since the above relation is valid for all solutions that start in, it is also valid for the solution which starts in and imizes the left hand side of the inequality. In other words P t P t r (5.8) B min P On the other hand t P t P t (5.9) Hence B P P P B,, (5.30) t M r t t0 min Consequently, all solutions of (5.1) are UUB with the ultimate bound M. he bound is shown in Figure 5.. Summarizing all formally proven results, we state the following theorem. heorem 5.1 Let P P 0 and QQ 0 be symmetric positive definite matrices that satisfy the Lyapunov algebraic equation (5.7), and let V t, (5.5) and suppose that where 0 suppose that is chosen such that r min P P P. Consider the dynamics in, uniformly in t, and for all S, PB S. Let Sr r and min Q. hen those solutions of (5.5) that start in the bounded set b V b min P are UUB, with the ultimate bound M, as it is defined in (5.30). b b 6. Invariance like heorems For autonomous systems, the LaSalle s invariance set theorems allow asymptotic stability conclusions to be drawn even when V is only negative semi-definite in a domain. In that case, the system trajectory approaches the largest invariant set E, which is a subset of all points where V 0. However the invariant set theorems are not applicable to nonautonomous systems. In the case of the latter, it may not even be clear how to define a set E, since V may eplicitly depend on both t and. Even when V V does not eplicitly depend on t the nonautonomous nature of the system dynamics precludes the use of the LaSalle s invariant set theorems. 0
12 Eample 6.1 he closed-loop error dynamics of an adaptive control system for 1 st order plant with one unknown parameter is e e wt ew t wt is a bounded function of time t. Due to where e represents the tracking error and the presence of wt, the system dynamics is nonautonomous. Consider the Lyapunov function candidate V e, e Its time derivative along the system trajectories is V e, ee ee wt ewt e 0 his implies that V is a decreasing function of time, and therefore, both et and t are bounded signals of time. But due to the nonautonomous nature of the system dynamics, the LaSalle s invariance set theorems cannot be used to conclude the convergence of et to the origin., 0 then we may epect that the trajectory of the system approaches the set 0, as t. Before we formulate main results, we state a lemma that is interesting in its own sake. he lemma is an important result about asymptotic properties of functions and their derivatives and it is known as the Barbalat s lemma. We begin with the definition of a uniform continuity. In general, if V t W W Definition 6.1 (uniform continuity) A function f t is said to be uniformly continuous if : 0 0 t t1 f t f t1 Note that t 1 and t play a symmetric role in the definition of the uniform continuity. Lemma 6.1 (Barbalat) Let f t : is be differentiable and has a finite limit, as t. If f t uniformly continuous then f t 0, as t. Lemma 6. If f t is bounded then f t is uniformly continuous. An immediate and a very practical corollary of Barbalat s lemma can now be stated. Corollary 6.1 1
13 If f : t is twice differentiable, has a finite limit, and its nd derivative is bounded then f t 0 as t. In general, the fact that derivative tends to zero does not imply that the function has a limit. Also, the converse is not true. In other words: f t C f t Eample 6. As t, f t sin ln t 0 cos ln t does not have a limit, while f t 0 t. t t f t e sin e 0 f t e t sin e t e t cos e t. As t,, while
Lecture 13 Linear quadratic Lyapunov theory
EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time
15 Limit sets. Lyapunov functions
15 Limit sets. Lyapunov functions At this point, considering the solutions to ẋ = f(x), x U R 2, (1) we were most interested in the behavior of solutions when t (sometimes, this is called asymptotic behavior
Lecture 7: Finding Lyapunov Functions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1
t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).
1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
4 Lyapunov Stability Theory
4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We
Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability. p. 1/?
Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability p. 1/? p. 2/? Definition: A p p proper rational transfer function matrix G(s) is positive
Stability. Chapter 4. Topics : 1. Basic Concepts. 2. Algebraic Criteria for Linear Systems. 3. Lyapunov Theory with Applications to Linear Systems
Chapter 4 Stability Topics : 1. Basic Concepts 2. Algebraic Criteria for Linear Systems 3. Lyapunov Theory with Applications to Linear Systems 4. Stability and Control Copyright c Claudiu C. Remsing, 2006.
Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand
Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such
Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve
QUALITATIVE THEORY OF DYAMICAL SYSTEMS 2, 61 66 (2001) ARTICLE O. 11 Rotation Rate of a Trajectory of an Algebraic Vector Field Around an Algebraic Curve Alexei Grigoriev Department of Mathematics, The
CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
Fuzzy Differential Systems and the New Concept of Stability
Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida
Separation Properties for Locally Convex Cones
Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
LIMITS AND CONTINUITY
LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from
THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING
THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN. E.V. Grigorieva. E.N. Khailov
DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Supplement Volume 2005 pp. 345 354 OPTIMAL CONTROL OF A COMMERCIAL LOAN REPAYMENT PLAN E.V. Grigorieva Department of Mathematics
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
How To Prove The Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
Nonlinear Systems of Ordinary Differential Equations
Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally
Notes from February 11
Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The
Lecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
How To Find Out How To Calculate A Premeasure On A Set Of Two-Dimensional Algebra
54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue
Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems
Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems In Chapters 8 and 9 of this book we have designed dynamic controllers such that the closed-loop systems display the desired transient
Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi
Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization
Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative
NOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
Online Convex Optimization
E0 370 Statistical Learning heory Lecture 19 Oct 22, 2013 Online Convex Optimization Lecturer: Shivani Agarwal Scribe: Aadirupa 1 Introduction In this lecture we shall look at a fairly general setting
A Simple Model of Price Dispersion *
Federal Reserve Bank of Dallas Globalization and Monetary Policy Institute Working Paper No. 112 http://www.dallasfed.org/assets/documents/institute/wpapers/2012/0112.pdf A Simple Model of Price Dispersion
Quasi-static evolution and congested transport
Quasi-static evolution and congested transport Inwon Kim Joint with Damon Alexander, Katy Craig and Yao Yao UCLA, UW Madison Hard congestion in crowd motion The following crowd motion model is proposed
Numerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number
Mathematics for Econometrics, Fourth Edition
Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents
Mathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
4.5 Linear Dependence and Linear Independence
4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then
V(x)=c 2. V(x)=c 1. V(x)=c 3
University of California Department of Mechanical Engineering Linear Systems Fall 1999 (B. Bamieh) Lecture 6: Stability of Dynamic Systems Lyapunov's Direct Method 1 6.1 Notions of Stability For a general
3. Reaction Diffusion Equations Consider the following ODE model for population growth
3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent
Stability Analysis of Nonlinear Systems with Linear Programming
Stability Analysis of Nonlinear Systems with Linear Programming A Lyapunov Functions Based Approach Von der Fakultät für Naturwissenschaften - Institut für Mathematik der Gerhard-Mercator-Universität Duisburg
Persuasion by Cheap Talk - Online Appendix
Persuasion by Cheap Talk - Online Appendix By ARCHISHMAN CHAKRABORTY AND RICK HARBAUGH Online appendix to Persuasion by Cheap Talk, American Economic Review Our results in the main text concern the case
Dimension Theory for Ordinary Differential Equations
Vladimir A. Boichenko, Gennadij A. Leonov, Volker Reitmann Dimension Theory for Ordinary Differential Equations Teubner Contents Singular values, exterior calculus and Lozinskii-norms 15 1 Singular values
GROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
A Passivity Measure Of Systems In Cascade Based On Passivity Indices
49th IEEE Conference on Decision and Control December 5-7, Hilton Atlanta Hotel, Atlanta, GA, USA A Passivity Measure Of Systems In Cascade Based On Passivity Indices Han Yu and Panos J Antsaklis Abstract
COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:
COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Hello, my name is Olga Michasova and I present the work The generalized model of economic growth with human capital accumulation.
Hello, my name is Olga Michasova and I present the work The generalized model of economic growth with human capital accumulation. 1 Without any doubts human capital is a key factor of economic growth because
Metric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
G. GRAPHING FUNCTIONS
G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression
Dynamical Systems. Chapter 7
150 Chapter 7 Dynamical Systems Mathematical models of scientific systems often lead to differential equations in which the independent variable is time. Such systems arise in astronomy, biology, chemistry,
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
Online Learning, Stability, and Stochastic Gradient Descent
Online Learning, Stability, and Stochastic Gradient Descent arxiv:1105.4701v3 [cs.lg] 8 Sep 2011 September 9, 2011 Tomaso Poggio, Stephen Voinea, Lorenzo Rosasco CBCL, McGovern Institute, CSAIL, Brain
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
LECTURE 15: AMERICAN OPTIONS
LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These
Inner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
ON FIBER DIAMETERS OF CONTINUOUS MAPS
ON FIBER DIAMETERS OF CONTINUOUS MAPS PETER S. LANDWEBER, EMANUEL A. LAZAR, AND NEEL PATEL Abstract. We present a surprisingly short proof that for any continuous map f : R n R m, if n > m, then there
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
Adaptive Online Gradient Descent
Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650
Factorization Theorems
Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization
Numerical Methods for Differential Equations
Numerical Methods for Differential Equations Chapter 1: Initial value problems in ODEs Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical
Orbits of the Lennard-Jones Potential
Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials
On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems
Dynamics at the Horsetooth Volume 2, 2010. On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Eric Hanson Department of Mathematics Colorado State University
Lecture 8 : Dynamic Stability
Lecture 8 : Dynamic Stability Or what happens to small disturbances about a trim condition 1.0 : Dynamic Stability Static stability refers to the tendency of the aircraft to counter a disturbance. Dynamic
Random graphs with a given degree sequence
Sourav Chatterjee (NYU) Persi Diaconis (Stanford) Allan Sly (Microsoft) Let G be an undirected simple graph on n vertices. Let d 1,..., d n be the degrees of the vertices of G arranged in descending order.
Inner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao [email protected]
Integer Polynomials June 9, 007 Yufei Zhao [email protected] We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
Chapter 7 Nonlinear Systems
Chapter 7 Nonlinear Systems Nonlinear systems in R n : X = B x. x n X = F (t; X) F (t; x ; :::; x n ) B C A ; F (t; X) =. F n (t; x ; :::; x n ) When F (t; X) = F (X) is independent of t; it is an example
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
CPC/CPA Hybrid Bidding in a Second Price Auction
CPC/CPA Hybrid Bidding in a Second Price Auction Benjamin Edelman Hoan Soo Lee Working Paper 09-074 Copyright 2008 by Benjamin Edelman and Hoan Soo Lee Working papers are in draft form. This working paper
Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems
Using the Theory of Reals in Analyzing Continuous and Hybrid Systems Ashish Tiwari Computer Science Laboratory (CSL) SRI International (SRI) Menlo Park, CA 94025 Email: [email protected] Ashish Tiwari
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7
(67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition
THE CENTRAL LIMIT THEOREM TORONTO
THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................
An example of a computable
An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept
Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
Math 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
Moving Least Squares Approximation
Chapter 7 Moving Least Squares Approimation An alternative to radial basis function interpolation and approimation is the so-called moving least squares method. As we will see below, in this method the
Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10
Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction
Network Traffic Modelling
University of York Dissertation submitted for the MSc in Mathematics with Modern Applications, Department of Mathematics, University of York, UK. August 009 Network Traffic Modelling Author: David Slade
Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj
Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
Continuity of the Perron Root
Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
The cover SU(2) SO(3) and related topics
The cover SU(2) SO(3) and related topics Iordan Ganev December 2011 Abstract The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover of SO(3). This allows a simple computation of
1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.
Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve
Scheduling Real-time Tasks: Algorithms and Complexity
Scheduling Real-time Tasks: Algorithms and Complexity Sanjoy Baruah The University of North Carolina at Chapel Hill Email: [email protected] Joël Goossens Université Libre de Bruxelles Email: [email protected]
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
4: SINGLE-PERIOD MARKET MODELS
4: SINGLE-PERIOD MARKET MODELS Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2015 B. Goldys and M. Rutkowski (USydney) Slides 4: Single-Period Market
LINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)
Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p
Duality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
Properties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and
General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
On a conjecture by Palis
1179 2000 103-108 103 On a conjecture by Palis (Shuhei Hayashi) Introduction Let $M$ be a smooth compact manifold without boundary and let Diff1 $(M)$ be the set of $C^{1}$ diffeomorphisms with the $C^{1}$
