Interpreting the Information Element C/I
|
|
|
- Joleen Barrett
- 9 years ago
- Views:
Transcription
1 Prepared Date Rev Document no pproved File/reference 1(17) Interpreting the Information Element C/I This document primarily addresses users of TEMS Investigation.
2 2(17) 1 Introduction Why is my C/I so bad? During your first drive test with the new TEMS Investigation release, you notice that the C/I reading drops sharply in one particular area. You know that this indicates a high level of interference on the carrier frequency, but what is the reason for this? This document describes the most common causes of poor C/I values, and how these phenomena can be detected with the TEMS products. lso, it hints at how each of the underlying problems can be remedied. See chapters 2 9. What is interference? We must define what we mean by interference within the TEMS framework. Sometimes the meaning of the word is restricted, in that it refers exclusively to other signals from radio communication devices, and is distinguished from noise. Other terms are used to identify various categories of disturbances, such as long reflections causing problems with time dispersion, adjacent channel disturbances, etc. We use the word interference here as an umbrella term for any unwanted signals, that is, any signals other than the carrier itself, and the information element C/I is a generalized measure of the interference level (in particular, it does not refer exclusively to co-channel interference). C/I vs. speech quality C/I is not a measure of speech quality. For assessing the speech quality perceived by a human listener, the TEMS products offer another measure, the Speech Quality Index (SQI). lthough it is of course generally true that severe interference problems tend to degrade speech quality, and although low C/I values typically cause SQI drops, the C/I does not give a reliable estimate of the perceived speech quality. For instance, in a cell with five carriers using frequency hopping, one of the carriers can suffer from very low C/I without the speech quality being degraded, thanks to the channel coding and interleaving employed in GSM.
3 3(17) 2 Co-channel interference By co-channel interference is meant interference from other network cells using the same transmission frequency. In most environments (in fact almost anywhere except in very sparsely populated rural areas), co-channel interference is the factor that limits network capacity (the maximum number of simultaneous users). Mostly, in such cases, it is by far the most important source of interference. In GSM, there are two main channel types: broadcast channels with continuous output power, and traffic channels whose output power is dependent on the traffic load in the cell. During cell planning, different reuse patterns are often used for the two kinds of channel, but unless the broadcast channels are put in a separate band, they may still interfere with each other. When the interference stems from a broadcast channel, measuring the C/I is fairly straightforward thanks to the constant output power. However, if the interferer is a traffic channel, the C/I will vary according to the load on the interfering cell. This means that if, for example, you perform a drive test at night, when the amount of traffic is likely to be low, the interference situation can be totally different than during busy hour. Even functions such as downlink DTX and downlink power control can affect the interference situation. Using TEMS products s stated above, co-channel interference is by far the most common cause of low C/I, and one of the tasks to be handled by future TEMS products is to identify the source of the interfering signal (the actual cell where it originates). Until such a tool is available, however, you will have to study the cell plan to identify possible interfering cells. Countermeasures Some steps typically taken to reduce co-channel interference are: Improvement of cell planning Shrinking the interfering cell, e.g. by lowering its output power or tilting the antennas of its base station
4 4(17) ctivating downlink DTX on the traffic channels ctivating downlink power control on traffic channels.
5 5(17) 3 djacent channel interference (C/) GSM mobile station is designed to demodulate a signal with a 3 db bandwidth of approximately 170 khz. This means that a bandpass filter is applied to the RF channel, removing signal power outside the pass band. However, this filter is not perfect: it cannot remove the unwanted signal components completely. This means that signal power can leak from adjacent carriers into the passband. Such disturbances are called adjacent channel interference. djacent channel interference always originates from other carriers than the one the mobile is transmitting on. The GSM specification requires that the signal transmitted from the mobile s own base station be attenuated by at least 30 db on the nearest carriers (at +/ 200 khz) and by at least 60 db on carriers located at +/ 400 khz. The mobile station, in turn, is required to cope with fairly high levels of adjacent interference. It shall keep the bit error rate (BER) below 10-4 for each of the following C/ levels (GSM 05.05): C 9 db at +/ 200 khz C 41 db at +/ 400 khz C 49 db at +/ 600 khz. Using TEMS C/ can be presented directly in TEMS (if enabled on the mobile station property page). C/ can also be calculated by inspecting the channel bar chart in the Frequency Scanner window; see the example below. There is therefore no need to inspect C/I in order to detect C/ problems. However, if some C/ values drop low enough, this will of course show as a deterioration in the C/I as well.
6 6(17) Figure 1. Detecting a C/ problem in TEMS Investigation. In figure 1, showing the Frequency Scanner window in TEMS Investigation, the mobile is receiving on the channel with RFCN 18 (highlighted). The adjacent channel with RFCN 19 has a signal strength of 63 dbm, while the signal strength on the mobile s own channel is a mere 82 dbm. With this very high level of interference, the mobile will not be able to filter out the desired signal well enough to meet the bit error rate requirements. Countermeasures The measures taken to combat excessive adjacent channel interference are the same as those directed against co-channel interference (see page 3).
7 7(17) 4 Blocking Co-channel interference and adjacent channel interference both arise in the operator s own network. However, an interfering signal may also originate from other sources that are beyond his control typically from a different operator. If a mobile station comes very close to the antenna system of a non-designated base station which is transmitting on some frequency fairly close to the mobile s, it may happen that the transmissions from the base station completely overwhelm the mobile receiver. The typical situation where this is possible is when the base station antenna is positioned at ground level, and a mobile user passes by on the sidewalk. s is the case with adjacent channel interference, the problem would not exist if both transmitter and receiver filters had ideal characteristics. Unfortunately, this is not so. Using TEMS Blocking is conveniently detected using the Frequency Scanner bar chart. Figure 2. typical RF spectrum with a carrier causing receiver blocking. In figure 2, a very strong interferer is found at RFCN 19. The signal strength reading is 31 dbm, but in this case the signal is actually even stronger, since the scanner has reached the
8 8(17) high end of its measurement range. This interferer will drown ordinary transmission on all channels at a distance of up to +/ 15 RFCNs. Blocking might appear to be an extreme phenomenon, but it is not all that uncommon for instance in certain urban environments where carriers of different operators interfere heavily with each other.
9 9(17) 5 Noise (C/N) s was said in chapter 2, the factor most commonly limiting network capacity is the level of co-channel interference. In sufficiently sparsely populated areas, however, this ceases to apply. Here, capacity is instead limited simply by the range of the transmitters (compare walkie-talkies). In other words, the limit is set not by the amount of interference from other nearby callers, but by assorted random disturbances that are always present i.e. what is usually termed noise. This concept encompasses both the thermal noise generated within the circuits of the mobile station, and external background noise from a plethora of sources, including other man-made signals so faint that they merely add up to a quasi-random disturbance. In environments where the interference can be described as noise-like, the interference level is usually termed the C/N (carrier-to-noise) ratio or SNR (signal-to-noise ratio) instead of C/I. The noise is typically a broadband signal with stochastic variation, comparable to an WGN (average white Gaussian noise) signal. The level of the noise floor in a GSM mobile is determined by two parameters. The first is the thermal noise, which is dependent on the nature of the GSM RF channel (the temperature and the bandwidth of the signal). The second parameter is the amount of noise generated in the mobile station s hardware. The noise floor is obtained from the formula N receiver = 10 log( ktb) + NF receiver. (1) The 10 log( ktb) part corresponds to the thermal noise and is approximately 122 dbm (k = Boltzmann s constant, T = absolute temperature, and B = the 3 db bandwidth of the RF channel). The term NF receiver represents the hardware noise. In order to meet the BER requirement in the GSM specification at the reference sensitivity level ( 104 dbm, C/N 9 db), the value of must not exceed NF receiver NF receiver max = ( 122) = 9 db. (2)
10 10(17 This means that the noise floor in a GSM mobile lies at approximately 113 dbm (i.e. 122 dbm + 9 db according to eq. (1) above). However, in practice, a certain margin is required because of temperature variation, aging of the RF components in the receiver, etc. This means that in actuality the noise floor will be 2-3 db lower than 113 dbm (the exact value being manufacturer dependent). Using TEMS When there is a noise problem, the signal strength is often very low (say, below 100 dbm) while C/I is bad. Of course, if the background noise increases in intensity, the receiving conditions deteriorate. The image below shows a situation where the noise floor has risen from the expected level (according to (2)) to almost 100 dbm. Note that in current versions of the TEMS products, the lower range limit for presented signal strength is 110 dbm. Noise floor at approx. 100 dbm Figure 3. Example of a broadband signal raising the noise floor. Countermeasures If the noise problem exists only on the downlink, it can be remedied simply by increasing the base station output power, provided a) that the equipment is not already operating at
11 11(17 maximum power, and b) that the expanded cell can cope with the increased amount of traffic. If these conditions are not both fulfilled, improving coverage requires introducing new cells. In the example in figure 3, the source of the broadband signal has to be identified and eliminated.
12 12(17 6 Intermodulation products Intermodulation (IM) products are unwanted disturbances that may arise when several signals with different frequencies are mixed. This mixing can occur in nonlinear components in both transmitters and receivers, and also in various metal objects encountered in the air interface (wire fences, railings, etc.). In the latter case, signals from different cellular systems may be mixed, and they might interfere with one another even if they belong to different frequency bands. The IM products are found at frequencies equal to linear combinations of the original frequencies, i.e. 2f 1 f 2, 2f 2 f 1, 3f 2 2f 1, etc. IM products containing n terms of the form a i f i are said to be of order n. The figure below shows some IM products generated by two signals with frequencies f 1 and f 2 : IM5 IM3 IM3 IM5 3f 1 2f 2 2f 1 f 2 f 1 f 2 2f 2 f 1 3f 2 2f 1 Figure 4. Example of intermodulation products. The strength of the IM products declines with higher order. In GSM, it is those of order 3 (and in part those of order 5) that cause problems; higher-order IM products need not be considered. set of three frequencies f 1 < f 2 < f 3 could create the following potentially harmful IM products of order 3: 2f 1 f 2, 2f 1 f 3, f 1 + f 2 f 3, 2f 2 f 3. Note that IM products do not disturb the signals that give rise to them, since they are located at totally different frequencies. They may, however, disturb other signals. Therefore, when choosing the downlink frequencies to be used in a cell, one must ensure that no IM products coincide with some uplink frequency in the cell. Obviously, the complexity of avoiding such problems grows rapidly with the number of frequencies involved. Using TEMS IM products can be detected in TEMS by using the scanning function to study the radio frequency spectrum. However, this is not an easy task and requires RF experience. One approach is
13 13(17 to use the fact that if the input signal is attenuated, an IM product will be attenuated more than the corresponding carriers. For example, if the carriers generating IM3 products are attenuated 10 db, the corresponding IM3 product will be attenuated 30 db. Countermeasures Frequency planning: One simply has to make sure that unfortunate combinations of frequencies are not used.
14 14(17 7 Time dispersion (C/R) If the transmitted radio wave is reflected by large objects in the service area, the mobile station will receive multiple copies of the wave at slightly different times. The bit stream from the direct wave may arrive a number of bit times earlier than the identical reflected bits (intersymbol interference). This phenomenon is known as time dispersion. Time dispersion complicates the task of the receiver. However, if the reflections are not too much delayed, it is possible, simply put, to separate the different copies of the signal from each other and improve the reconstruction of the transmitted signal by utilizing the information content in all the copies. In other words, the receiver can profit by the time dispersion phenomenon. It should be noted that, at least in urban areas, receiving the direct (line-of-sight) wave is actually fairly unusual, so that the receiver is dependent on picking up reflections. The GSM specification requires that the system should be able to handle a time dispersion of up to 15 μs, corresponding to a path difference of 4.5 km. This means that it shall be possible to handle a set of signal copies arriving within a 15 μs window (including or not including the direct wave) as independent sources of information for the reconstruction of the original. For this to be possible, reflections delayed longer than 15 μs must be sufficiently weak. GSM receiver must, according to the specification, be able to handle a level of interference where the total power of all reflections delayed more than 15 μs is at least 9 db weaker than the power of the signals within the 15 μs window. In other words, assuming no other interference, the C/R ratio must be at least 9 db. Typical causes of severe and thus problematic time dispersion are large buildings with reflecting surfaces (metal, glass) mountain ranges lakes with steeps or densely built-up shores
15 15(17 d 2 + d 3 - d 1 > 4.5 km => C/R risk! d 2 d 1 d 3 Figure 5. Time dispersion. Using TEMS Today, there is no way of measuring time dispersion in the TEMS products. This is one of the tasks that are under investigation for the future product portfolio. Countermeasures Cell planning. ntenna direction.
16 16(17 8 Receiver saturation If the signal strength from the serving cell becomes very high (say, > 30 dbm), it can be seen that the C/I goes down. This is due to the fact that the /D converter in the mobile has reached the limit of its dynamic range; it is said to be saturated. (It can also be remarked that the mobile cannot measure higher signal strengths than approx. 30 dbm.) s might be expected, receiver saturation is frequent in the immediate vicinity of base stations with a high output power (typically found in rural areas). The risk of encountering this problem in urban environments is smaller, since base stations in such places use a much lower power and are designed to allow mobiles to come much closer without upsetting their operation. Countermeasures There is in fact not much that can be done about this problem, since it is an unavoidable consequence of cellular system design.
17 17(17 9 mplitude Modulation of LN Operating Point The GSM specification states requirements on what is called M suppression. These are necessary to neutralize a special kind of disturbance which is caused by an intermittent interfering signal. In a GSM receiver, there is an amplifier called the LN (low noise amplifier), which is located after the antenna and the first RF bandpass filter. The LN is designed to work at an optimal operating point, which is adjusted continuously. There is, however, a limit to the speed at which the operating point can be adjusted. If a very strong interferer (even on an adjacent carrier) suddenly appears in the middle of a burst from the serving cell, the control of the operating point cannot keep up, so that the operating point temporarily becomes suboptimal (it is said to be amplitude modulated). Interference of this kind usually originates from a different base station whose output power is subject to abrupt changes. Unless it is kept in check, this sort of non-ideal amplifier behavior may have the effect of degrading performance in terms of bit error rate. However, the requirements in GSM are such that the control of the operating point in GSM receivers is good enough to eliminate this problem in practice.
EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak
Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed
A. Jraifi, R. A. Laamara, A. Belhaj, and E. H. Saidi Lab/UFR-groupe Canal Propagation Radio PHE, Faculté des Sciences, Rabat, Morocco
Progress In Electromagnetics Research C, Vol. 12, 15 25, 2010 A PROPOSAL SOLUTION FOR INTERFERENCE INTER-OPERATORS A. Jraifi, R. A. Laamara, A. Belhaj, and E. H. Saidi Lab/UFR-groupe Canal Propagation
Appendix C GSM System and Modulation Description
C1 Appendix C GSM System and Modulation Description C1. Parameters included in the modelling In the modelling the number of mobiles and their positioning with respect to the wired device needs to be taken
Maximizing Receiver Dynamic Range for Spectrum Monitoring
Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile
Lecture 1. Introduction to Wireless Communications 1
896960 Introduction to Algorithmic Wireless Communications Lecture 1. Introduction to Wireless Communications 1 David Amzallag 2 May 25, 2008 Introduction to cellular telephone systems. How a cellular
GSM frequency planning
GSM frequency planning Band : 890-915 and 935-960 MHz Channel spacing: 200 khz (but signal bandwidth = 400 khz) Absolute Radio Frequency Channel Number (ARFCN) lower band: upper band: F l (n) = 890.2 +
Bluetooth voice and data performance in 802.11 DS WLAN environment
1 (1) Bluetooth voice and data performance in 802.11 DS WLAN environment Abstract In this document, the impact of a 20dBm 802.11 Direct-Sequence WLAN system on a 0dBm Bluetooth link is studied. A typical
Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman
Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception
Location management Need Frequency Location updating
Lecture-16 Mobility Management Location management Need Frequency Location updating Fig 3.10 Location management in cellular network Mobility Management Paging messages Different paging schemes Transmission
Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform
Application Note Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform By: Richard Komar Introduction With the rapid development of wireless technologies, it has become
RF Communication System. EE 172 Systems Group Presentation
RF Communication System EE 172 Systems Group Presentation RF System Outline Transmitter Components Receiver Components Noise Figure Link Budget Test Equipment System Success Design Remedy Transmitter Components
1 Lecture Notes 1 Interference Limited System, Cellular. Systems Introduction, Power and Path Loss
ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2015 1 Lecture Notes 1 Interference Limited System, Cellular Systems Introduction, Power and Path Loss Reading: Mol 1, 2, 3.3, Patwari
COMPATIBILITY STUDY FOR UMTS OPERATING WITHIN THE GSM 900 AND GSM 1800 FREQUENCY BANDS
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY STUDY FOR UMTS OPERATING WITHIN THE GSM 900 AND GSM 1800 FREQUENCY
How To Understand The Theory Of Time Division Duplexing
Multiple Access Techniques Dr. Francis LAU Dr. Francis CM Lau, Associate Professor, EIE, PolyU Content Introduction Frequency Division Multiple Access Time Division Multiple Access Code Division Multiple
is the power reference: Specifically, power in db is represented by the following equation, where P0 P db = 10 log 10
RF Basics - Part 1 This is the first article in the multi-part series on RF Basics. We start the series by reviewing some basic RF concepts: Decibels (db), Antenna Gain, Free-space RF Propagation, RF Attenuation,
How To Understand And Understand The Power Of A Cdma/Ds System
CDMA Technology : Pr. Dr. W. Skupin www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : Introduction to Spread Spectrum Technology CDMA / DS : Principle
T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
Application Note Noise Frequently Asked Questions
: What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random
System Design in Wireless Communication. Ali Khawaja
System Design in Wireless Communication Ali Khawaja University of Texas at Dallas December 6, 1999 1 Abstract This paper deals with the micro and macro aspects of a wireless system design. With the growing
FURTHER READING: As a preview for further reading, the following reference has been provided from the pages of the book below:
FURTHER READING: As a preview for further reading, the following reference has been provided from the pages of the book below: Title: Cellular/PCS Management Author: Paul Beddel Publisher: McGraw-Hill
RECOMMENDATION ITU-R SM.1792. Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes
Rec. ITU-R SM.1792 1 RECOMMENDATION ITU-R SM.1792 Measuring sideband emissions of T-DAB and DVB-T transmitters for monitoring purposes (2007) Scope This Recommendation provides guidance to measurement
CS263: Wireless Communications and Sensor Networks
CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS
RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. 4y Springer Contents Preface xiii Chapter 1. Introduction 1 1.1. Wireless Systems 1 1.1.1. Mobile Communications
INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA
COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue
White Paper: Microcells A Solution to the Data Traffic Growth in 3G Networks?
White Paper: Microcells A Solution to the Data Traffic Growth in 3G Networks? By Peter Gould, Consulting Services Director, Multiple Access Communications Limited www.macltd.com May 2010 Microcells were
Multi-Carrier GSM with State of the Art ADC technology
Multi-Carrier GSM with State of the Art ADC technology Analog Devices, October 2002 revised August 29, 2005, May 1, 2006, May 10, 2006, November 30, 2006, June 19, 2007, October 3, 2007, November 12, 2007
GSM Frequency Planning with Band Segregation for the Broadcast Channel Carriers
GSM Frequency Planning with Band Segregation for the Broadcast Channel Carriers F. Galliano (1), N.P. Magnani (1), G. Minerva (1), A. Rolando (2), P. Zanini (3) (1) CSELT - Via G. Reiss Romoli, 274 - Torino
Implementing Digital Wireless Systems. And an FCC update
Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz
Tx/Rx A high-performance FM receiver for audio and digital applicatons
Tx/Rx A high-performance FM receiver for audio and digital applicatons This receiver design offers high sensitivity and low distortion for today s demanding high-signal environments. By Wayne C. Ryder
Implementation of Digital Signal Processing: Some Background on GFSK Modulation
Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering [email protected] Version 4 (February 7, 2013)
1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions
Rec. ITU-R SM.853-1 1 RECOMMENDATION ITU-R SM.853-1 NECESSARY BANDWIDTH (Question ITU-R 77/1) Rec. ITU-R SM.853-1 (1992-1997) The ITU Radiocommunication Assembly, considering a) that the concept of necessary
Coverage measurement systems. Radio Network Analyzer R&S TSMU. Interferences a frequent impairment in radio networks
MOBILE RADIO Coverage measurement systems 44820/2 FIG 1 The R&S TSMU automatically detects, analyzes and displays the results of co-channel and adjacent-channel interferences in GSM networks during a drive
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS
TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
Scanning with Sony Ericsson TEMS Phones. Technical Paper
Scanning with Sony Ericsson TEMS Phones Technical Paper Scanning with Sony Ericsson TEMS Phones 2009-05-13 Ascom 2009. All rights reserved. TEMS is a trademark of Ascom. All other trademarks are the property
Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B
CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation
Introduction to Receivers
Introduction to Receivers Purpose: translate RF signals to baseband Shift frequency Amplify Filter Demodulate Why is this a challenge? Interference (selectivity, images and distortion) Large dynamic range
Revision of Lecture Eighteen
Revision of Lecture Eighteen Previous lecture has discussed equalisation using Viterbi algorithm: Note similarity with channel decoding using maximum likelihood sequence estimation principle It also discusses
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
Optimizing IP3 and ACPR Measurements
Optimizing IP3 and ACPR Measurements Table of Contents 1. Overview... 2 2. Theory of Intermodulation Distortion... 2 3. Optimizing IP3 Measurements... 4 4. Theory of Adjacent Channel Power Ratio... 9 5.
APPLICATION NOTE. RF System Architecture Considerations ATAN0014. Description
APPLICATION NOTE RF System Architecture Considerations ATAN0014 Description Highly integrated and advanced radio designs available today, such as the Atmel ATA5830 transceiver and Atmel ATA5780 receiver,
Compliance with TIS and TRP Requirements
White Paper Compliance with TIS and TRP Requirements This document describes the issues related to meeting Total Isotropic Sensitivity and Total Radiated Power requirements for cellular products. May 2006
LTE Evolution for Cellular IoT Ericsson & NSN
LTE Evolution for Cellular IoT Ericsson & NSN LTE Evolution for Cellular IoT Overview and introduction White Paper on M2M is geared towards low cost M2M applications Utility (electricity/gas/water) metering
Introduction to RF Engineering. Andrew CLEGG
Introduction to RF Engineering Andrew CLEGG 1 Comparing the Lingo Radio Astronomers Speak a Unique Vernacular We are receiving interference from your transmitter at a level of 10 janskys What the ^#$&
COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND RADIO MICROPHONES IN BANDS IV AND V
European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY AND SHARING ANALYSIS BETWEEN DVB T AND RADIO MICROPHONES
HF Receiver Testing. Issues & Advances. (also presented at APDXC 2014, Osaka, Japan, November 2014)
HF Receiver Testing: Issues & Advances (also presented at APDXC 2014, Osaka, Japan, November 2014) Adam Farson VA7OJ/AB4OJ Copyright 2014 North Shore Amateur Radio Club 1 HF Receiver Performance Specs
Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse
Cellular Network Organization Cellular Wireless Networks Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of
RESULTS OF TESTS WITH DOMESTIC RECEIVER IC S FOR DVB-T. C.R. Nokes BBC R&D, UK ABSTRACT
RESULTS OF TESTS WITH DOMESTIC RECEIVER IC S FOR DVB-T C.R. Nokes BBC R&D, UK ABSTRACT Digital terrestrial television services using the DVB-T standard will be launched later this year in the UK, followed
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range. Application Note
Agilent AN 1315 Optimizing RF and Microwave Spectrum Analyzer Dynamic Range Application Note Table of Contents 3 3 3 4 4 4 5 6 7 7 7 7 9 10 10 11 11 12 12 13 13 14 15 1. Introduction What is dynamic range?
communication over wireless link handling mobile user who changes point of attachment to network
Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet
SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO ASTRONOMY IN THE 1.6 GHz BAND. Paris, May 1992
European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) SHARING BETWEEN TERRESTRIAL FLIGHT TELEPHONE SYSTEM (TFTS) AND RADIO
MATRIX TECHNICAL NOTES
200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR
Radio Frequency Operations and Technology
Radio Frequency Operations and Technology Mobile Device Investigations Program (b)(6) Senior Instructor Technical Operations Division DHS - FLETC RF Operation and Technology Radio propagation the eletromagnetic
4G LTE Opportunities & Challenges in DTT arena
4G LTE Opportunities & Challenges in DTT arena DigiTAG Workshop Istanbul 14-15 November 2013 Stan Baaijens, CEO Funke 1 Why 4G LTE (Long Term Evolution) The unrelenting growth of smartphone and tablet
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
An Algorithm for Automatic Base Station Placement in Cellular Network Deployment
An Algorithm for Automatic Base Station Placement in Cellular Network Deployment István Törős and Péter Fazekas High Speed Networks Laboratory Dept. of Telecommunications, Budapest University of Technology
DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch
DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods
GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving
GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving 1 Space Division Multiple Access of the signals from the MSs A BTS with n directed antennae covers mobile stations
General Survey of Radio Frequency Bands 30 MHz to 3 GHz
General Survey of Radio Frequency Bands 30 MHz to 3 GHz Version 2.0 September 23, 2010 Prepared by: Shared Spectrum Company 1595 Spring Hill Road Suite 110 Vienna, VA 22182-2228 703-761-2818 Fax: 703-761-2817
DVB-T. The echo performance of. receivers. Theory of echo tolerance. Ranulph Poole BBC Research and Development
The echo performance of DVB-T Ranulph Poole BBC Research and Development receivers This article introduces a model to describe the way in which a single echo gives rise to an equivalent noise floor (ENF)
MODULATION Systems (part 1)
Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,
Timing Errors and Jitter
Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big
Some Measurements on DVB-T Dongles with E4000 and R820T Tuners:
Some Measurements on DVB-T Dongles with E4000 and R820T Tuners: Image Rejection, Internal Signals, Sensitivity, Overload, 1dB Compression, Intermodulation Contents: 1. Motivation 2. Test Setup 3. Image
Multiple Access Techniques
Chapter 8 Multiple Access Techniques Multiple access techniques are used to allow a large number of mobile users to share the allocated spectrum in the most efficient manner. As the spectrum is limited,
GSM Network and Services
GSM Network and Services Cellular networks GSM Network and Services 2G1723 Johan Montelius 1 The name of the game The number one priority for mobile/cellular networks is to implement full-duplex voice
The design objective of early mobile radio systems was to achieve a large coverage
03_57_104_final.fm Page 57 Tuesday, December 4, 2001 2:17 PM C HAPTER 3 The Cellular Concept System Design Fundamentals The design objective of early mobile radio systems was to achieve a large coverage
Site Survey Report MAH
Site Survey Report MAH Index 1. Introduction...3 1.1 Contact Information... 3 1.2 Scope of Survey and Spectrum... 3 1.3 Validity... 3 2. Report...4 2.1 Coverage... 4 2.1.1 Signal Strength vs. Signal to
MANAGEMENT OF BI-DIRECTIONAL AMPLIFIERS IN THE LAND MOBILE SERVICE IN THE FREQUENCY RANGE 29.7 MHz TO 520 MHz
RALI : LM 6 DATE OF EFFECT :.13/03/96 Sequence Number :.66 Radiocommunications Assignment and Licensing Instruction MANAGEMENT OF BI-DIRECTIONAL AMPLIFIERS IN THE LAND MOBILE SERVICE IN THE FREQUENCY RANGE
RECOMMENDATION ITU-R S.524-5. (Questions ITU-R 48/4 and ITU-R 70/4)
Rec. ITU-R S.524-5 1 RECOMMENDATION ITU-R S.524-5 MAXIMUM PERMISSIBLE LEVELS OF OFF-AXIS e.i.r.p. DENSITY FROM EARTH STATIONS IN THE FIXED-SATELLITE SERVICE TRANSMITTING IN THE 6 AND 14 GHz FREQUENCY BANDS
DSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services
Application Note DSAM Digital Quality Index (DQI) A New Technique for Assessing Downstream Digital Services Overview As cable operators move to digital simulcast and all digital networks, the majority
ACRS 2.0 User Manual 1
ACRS 2.0 User Manual 1 FCC Regulatory Information This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference,
RADIO FREQUENCY INTERFERENCE AND CAPACITY REDUCTION IN DSL
RADIO FREQUENCY INTERFERENCE AND CAPACITY REDUCTION IN DSL Padmabala Venugopal, Michael J. Carter*, Scott A. Valcourt, InterOperability Laboratory, Technology Drive Suite, University of New Hampshire,
In 3G/WCDMA mobile. IP2 and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers 3G SPECIFICATIONS
From June 009 High Frequency Electronics Copyright 009 Summit Technical Media, LLC IP and IP3 Nonlinearity Specifications for 3G/WCDMA Receivers By Chris W. Liu and Morten Damgaard Broadcom Corporation
Audio processing and ALC in the FT-897D
Audio processing and ALC in the FT-897D I recently bought an FT-897D, and after a period of operation noticed problems with what I perceived to be a low average level of output power and reports of muffled
Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight
TEC Voice services over Adaptive Multi-user Orthogonal Sub channels An Insight HP 4/15/2013 A powerful software upgrade leverages quaternary modulation and MIMO techniques to improve network efficiency
Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction
Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit
Evolution of Satellite Communication Systems
Mathieu DERVIN Brussels, 6th May 2015 Brussels, May 2015 Agenda I. From Sputnik to wideband satellite services: The key technological evolutions II. Increase the satellite system capacity: A global system
Understanding Noise Figure
Understanding Noise Figure Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul One of the most frequently discussed forms of noise is known as Thermal Noise. Thermal noise is a random fluctuation in
ETSI EN 302 774 V1.2.1 (2012-02)
EN 302 774 V1.2.1 (2012-02) Harmonized European Standard Broadband Wireless Access Systems (BWA) in the 3 400 MHz to 3 800 MHz frequency band; Base Stations; Harmonized EN covering the essential requirements
MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) [email protected]
MSB MODULATION DOUBLES CABLE TV CAPACITY Harold R. Walker and Bohdan Stryzak Pegasus Data Systems ( 5/12/06) [email protected] Abstract: Ultra Narrow Band Modulation ( Minimum Sideband Modulation ) makes
Visual System Simulator White Paper
Visual System Simulator White Paper UNDERSTANDING AND CORRECTLY PREDICTING CRITICAL METRICS FOR WIRELESS RF LINKS Understanding and correctly predicting cellular, radar, or satellite RF link performance
Implementation of Mobile Measurement-based Frequency Planning in GSM
Implementation of Mobile Measurement-based Frequency Planning in GSM Comp.Eng. Serkan Kayacan (*), Prof. Levent Toker (**) (*): Ege University, The Institute of Science, Computer Engineering, M.S. Student
Exercise 2 Common Fundamentals: Multiple Access
Exercise 2 Common Fundamentals: Multiple Access Problem 1: TDMA, guard time. To set up a GSM-connection, the base station (BTS) and the mobile station (MS) use the following short access burst in a TDMA-slot
Chapter 4 Solution to Problems
Chapter 4 Solution to Problems Question #1. A C-band earth station has an antenna with a transmit gain of 54 db. The transmitter output power is set to 100 W at a frequency of 6.100 GHz. The signal is
Antenna Properties and their impact on Wireless System Performance. Dr. Steven R. Best. Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013
Antenna Properties and their impact on Wireless System Performance Dr. Steven R. Best Cushcraft Corporation 48 Perimeter Road Manchester, NH 03013 Phone (603) 627-7877 FAX: (603) 627-1764 Email: [email protected]
Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System
Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source
Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.
Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet
VOICE OVER WI-FI CAPACITY PLANNING
VOICE OVER WI-FI CAPACITY PLANNING Version 1.0 Copyright 2003 Table of Contents Introduction...3 Wi-Fi RF Technology Options...3 Spectrum Availability and Non-Overlapping Wi-Fi Channels...4 Limited
RECOMMENDATION ITU-R F.1113. (Question ITU-R 157/9) b) that systems using this mode of propagation are already in service for burst data transmission,
Rec. ITU-R F.1113 1 RECOMMENDATION ITU-R F.1113 RADIO SYSTEMS EMPLOYING METEOR-BURST PROPAGATION (Question ITU-R 157/9) (1994) Rec. ITU-R F.1113 The ITU Radiocommunication Assembly, considering a) that
CDMA TECHNOLOGY. Brief Working of CDMA
CDMA TECHNOLOGY History of CDMA The Cellular Challenge The world's first cellular networks were introduced in the early 1980s, using analog radio transmission technologies such as AMPS (Advanced Mobile
AM TRANSMITTERS & RECEIVERS
Reading 30 Ron Bertrand VK2DQ http://www.radioelectronicschool.com AM TRANSMITTERS & RECEIVERS Revision: our definition of amplitude modulation. Amplitude modulation is when the modulating audio is combined
Packet Queueing Delay in Wireless Networks with Multiple Base Stations and Cellular Frequency Reuse
Packet Queueing Delay in Wireless Networks with Multiple Base Stations and Cellular Frequency Reuse Abstract - Cellular frequency reuse is known to be an efficient method to allow many wireless telephone
THE BCS PROFESSIONAL EXAMINATIONS BCS Level 5 Diploma in IT. October 2009 EXAMINERS' REPORT. Computer Networks
THE BCS PROFESSIONAL EXAMINATIONS BCS Level 5 Diploma in IT October 2009 EXAMINERS' REPORT Computer Networks General Comments The responses to questions were of marginally better quality than April 2009
AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz
AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2
COMPATIBILITY BETWEEN CERTAIN RADIOCOMMUNICATIONS SYSTEMS OPERATING IN ADJACENT BANDS EVALUATION OF DECT / GSM 1800 COMPATIBILITY
European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY BETWEEN CERTAIN RADIOCOMMUNICATIONS SYSTEMS OPERATING IN
Using TEMS Pocket. Johan Montelius
Using TEMS Pocket Johan Montelius Introduction In this laboration you will get acquainted with the TEMS Pocket tool. You will examine both the Monaco network and a commercial network. Since this is your
CDMA Network Planning
CDMA Network Planning by AWE Communications GmbH www.awe-com.com Contents Motivation Overview Network Planning Module Air Interface Cell Load Interference Network Simulation Simulation Results by AWE Communications
Electronic Communications Committee (ECC) within the Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (05)08 (replacing recommendations T/R 20-08 and 22-07)
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems
Application Note: Spread Spectrum Oscillators Reduce EMI for High Speed Digital Systems Introduction to Electro-magnetic Interference Design engineers seek to minimize harmful interference between components,
