Network Analysis. BCH 5101: Analysis of -Omics Data 1/34
|
|
|
- Charleen Strickland
- 10 years ago
- Views:
Transcription
1 Network Analysis BCH 5101: Analysis of -Omics Data 1/34
2 Network Analysis Graphs as a representation of networks Examples of genome-scale graphs Statistical properties of genome-scale graphs The search for meso-scale subgraphs/modules Network motifs 2/34
3 Networks Mathematically, a network is often represented as a graph, having: A set of vertices, or nodes typically corresponding to genes, mrnas, proteins, complexes, etc. A set of edges representing interactions, regulation, co-expression, co-location, etc. Edges may be directed (A B) orundirected (A B) 3/34
4 Common edge types and meanings Prot1 Prot2 Protein-protein interaction, or co-expression, or co-localization Gene1 Prot1 Gene 1 codes for protein 1 Prot1 Gene1 Protein 1 regulates gene 1, or protein 1 activates gene 1 Gene1 Prot1 Protein 1 represses gene 1 4/34
5 Networks (again) Mathematically, a network is often represented as a graph, having: A set of vertices, or nodes typically corresponding to genes, mrnas, proteins, complexes, etc. A set of edges representing interactions, regulation, co-expression, co-location, etc. Edges may be directed (A B) orundirected (A B) Sometimes, we want to extend this traditional notion of graphs: Edges may have types (e.g., activation or repression) Edges or vertices may be weighted (assigned a real number, indicating importance, evidence, relevance, etc.) Edges may point to other edges 5/34
6 Example: Uetz et al. yeast PPI network Uetz et al. (Nature,2000) performed two variants of yeast two-hybrid screening to test for interactions between proteins in S. cerevisiae They found 957 interactions (far fewer than there really are!) involving 1004 proteins 6/34
7 Yeast transcriptome Lee et al. (Nature, 2002) used ChIP-chip to determine transcription factor gene promoter binding relationships 106 of 141 known transcription factors were successfully tested, resulting in 4000 relationships at a stringent p-value threshold (Picture from Beyer lab website.) 7/34
8 Human co-expression network Prieto et al. (PLoS One, 2008) used microarrays on a set of human tissue samples to determine co-expression. They found high-confidence relationships between 3327 genes. 8/34
9 Typical structure of large-scale newtorks Such networks are often found to be approximately scale-free : A few vertices ( hubs ) have many edges Most vertices ( leaves ) have just a few Formally, the number vertices with k edges is proportional to 1/k α for some real number α>1 (See previous graphs, especially Uetz et al.) 9/34
10 Yeast co-expression network scale-free van Noort et al. (EMBO Rep, 2004) analyzed co-expression in the data of Hughes et al. (Cell, 2000) 4077 genes (nodes) are connected by 65,430 undirected edges using a correlation threshold of 0.6 At that level of correlation, and at other levels, the degree distribution is approximately scale-free 10 / 34
11 Scale-free topology of Yeast transcriptional network (Lee et al., Science2002) In-degree and out-degree of resulting graph shows hubs and leaves. (Ignore the open red circles; they re a null model.) 11 / 34
12 Barabasi Modern excitement over scale-free networks began with work of Barabasi (Nature, 1999; Science, 1999) Many other natural and artificial networks show scale-free degree distributions, e.g., internet, www, friendship, roads, metabolism, etc. Barabasi proposed preferential attachment, or rich grow richer model of network growth to explain scale-free nature new nodes more likely to make connections to existing high degree nodes 12 / 34
13 Preferential attachment The Barabasi-Albert model works as follows: We begin with a core connected network that is small We repeatedly add a new vertex to the graph, along with m edges The probability that an edge is added between the new vertex and existing vertex i (P i ) is proportional to the degree of i (d i ) P i = d i j d j Asymptotically, this produces graphs with a power-law degree distribution; the number of vertices with degree d is N(d) d 3.(Independentofm.) Other variants can produce different exponents, different average degrees, etc. 13 / 34
14 Are high-degree nodes in genome networks important? There have been attempts to relate graph structure / high-degree nodes to biological properties: Robustness: does the network survival deletion or mutation of a gene? Conservation: are higher-degree nodes more constrained? Expression: are higher-degree nodes expression more often? Results are mixed... High-degree nodes may also be promiscuous, sticky, nonspecific or experimental artifacts.... still, high-degree nodes are a natural place to start an investigation. 14 / 34
15 Explaining scaling in biological networks Could preferential attachment explain powerlaw scaling in biological networks? 15 / 34
16 Explaining scaling in biological networks Another answer: evolutionary drift Assume genes duplicated at random (singly, or in blocks) carrying their regulatory or interacting links with them Assume genes deleted at random Assume interactions have random chance of creation or deletion between existing genes Then one can show a power-law degree distribution will result (See, e.g., Wagner (Proc. R. Soc. Lond. B, 2003) for protein interaction networks.) Note: no explicit evolutionary selection for individual genes or for network structure as a whole! 16 / 34
Graph Theory and Networks in Biology
Graph Theory and Networks in Biology Oliver Mason and Mark Verwoerd March 14, 2006 Abstract In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss
Bioinformatics: Network Analysis
Bioinformatics: Network Analysis Graph-theoretic Properties of Biological Networks COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Outline Architectural features Motifs, modules,
General Network Analysis: Graph-theoretic. COMP572 Fall 2009
General Network Analysis: Graph-theoretic Techniques COMP572 Fall 2009 Networks (aka Graphs) A network is a set of vertices, or nodes, and edges that connect pairs of vertices Example: a network with 5
Understanding the dynamics and function of cellular networks
Understanding the dynamics and function of cellular networks Cells are complex systems functionally diverse elements diverse interactions that form networks signal transduction-, gene regulatory-, metabolic-
Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations
Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations Jurij Leskovec, CMU Jon Kleinberg, Cornell Christos Faloutsos, CMU 1 Introduction What can we do with graphs? What patterns
Graph theoretic approach to analyze amino acid network
Int. J. Adv. Appl. Math. and Mech. 2(3) (2015) 31-37 (ISSN: 2347-2529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Graph theoretic approach to
Protein Protein Interaction Networks
Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics
Healthcare Analytics. Aryya Gangopadhyay UMBC
Healthcare Analytics Aryya Gangopadhyay UMBC Two of many projects Integrated network approach to personalized medicine Multidimensional and multimodal Dynamic Analyze interactions HealthMask Need for sharing
Temporal Dynamics of Scale-Free Networks
Temporal Dynamics of Scale-Free Networks Erez Shmueli, Yaniv Altshuler, and Alex Sandy Pentland MIT Media Lab {shmueli,yanival,sandy}@media.mit.edu Abstract. Many social, biological, and technological
Introduction to Networks and Business Intelligence
Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 17th, 2015 Outline Network Science A Random History Network Analysis Network Topological
USE OF GRAPH THEORY AND NETWORKS IN BIOLOGY
USE OF GRAPH THEORY AND NETWORKS IN BIOLOGY Ladislav Beránek, Václav Novák University of South Bohemia Abstract In this paper we will present some basic concepts of network analysis. We will present some
Qualitative modeling of biological systems
Qualitative modeling of biological systems The functional form of regulatory relationships and kinetic parameters are often unknown Increasing evidence for robustness to changes in kinetic parameters.
Data Integration. Lectures 16 & 17. ECS289A, WQ03, Filkov
Data Integration Lectures 16 & 17 Lectures Outline Goals for Data Integration Homogeneous data integration time series data (Filkov et al. 2002) Heterogeneous data integration microarray + sequence microarray
Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network
, pp.273-284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and
Random graphs and complex networks
Random graphs and complex networks Remco van der Hofstad Honours Class, spring 2008 Complex networks Figure 2 Ye a s t p ro te in in te ra c tio n n e tw o rk. A m a p o f p ro tein p ro tein in tera c
Integrating DNA Motif Discovery and Genome-Wide Expression Analysis. Erin M. Conlon
Integrating DNA Motif Discovery and Genome-Wide Expression Analysis Department of Mathematics and Statistics University of Massachusetts Amherst Statistics in Functional Genomics Workshop Ascona, Switzerland
A Graph-Theoretic Analysis of the Human Protein-Interaction Network Using Multicore Parallel Algorithms
A Graph-Theoretic Analysis of the Human Protein-Interaction Network Using Multicore Parallel Algorithms David A. Bader and Kamesh Madduri College of Computing Georgia Institute of Technology, Atlanta,
Structural constraints in complex networks
Structural constraints in complex networks Dr. Shi Zhou Lecturer of University College London Royal Academy of Engineering / EPSRC Research Fellow Part 1. Complex networks and three key topological properties
Visualizing Networks: Cytoscape. Prat Thiru
Visualizing Networks: Cytoscape Prat Thiru Outline Introduction to Networks Network Basics Visualization Inferences Cytoscape Demo 2 Why (Biological) Networks? 3 Networks: An Integrative Approach Zvelebil,
Systematic discovery of regulatory motifs in human promoters and 30 UTRs by comparison of several mammals
Systematic discovery of regulatory motifs in human promoters and 30 UTRs by comparison of several mammals Xiaohui Xie 1, Jun Lu 1, E. J. Kulbokas 1, Todd R. Golub 1, Vamsi Mootha 1, Kerstin Lindblad-Toh
ProteinQuest user guide
ProteinQuest user guide 1. Introduction... 3 1.1 With ProteinQuest you can... 3 1.2 ProteinQuest basic version 4 1.3 ProteinQuest extended version... 5 2. ProteinQuest dictionaries... 6 3. Directions for
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA [email protected]
Walk-Based Centrality and Communicability Measures for Network Analysis
Walk-Based Centrality and Communicability Measures for Network Analysis Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, Georgia, USA Workshop on Innovative Clustering
NOVEL GENOME-SCALE CORRELATION BETWEEN DNA REPLICATION AND RNA TRANSCRIPTION DURING THE CELL CYCLE IN YEAST IS PREDICTED BY DATA-DRIVEN MODELS
NOVEL GENOME-SCALE CORRELATION BETWEEN DNA REPLICATION AND RNA TRANSCRIPTION DURING THE CELL CYCLE IN YEAST IS PREDICTED BY DATA-DRIVEN MODELS Orly Alter (a) *, Gene H. Golub (b), Patrick O. Brown (c)
A General Framework for Weighted Gene Co-expression Network Analysis
Please cite: Statistical Applications in Genetics and Molecular Biology (2005). A General Framework for Weighted Gene Co-expression Network Analysis Bin Zhang and Steve Horvath Departments of Human Genetics
Feed Forward Loops in Biological Systems
Feed Forward Loops in Biological Systems Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 7 Table of Contents 1 INTRODUCTION...
SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH NATIONAL UNIVERSITY OF SINGAPORE
SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH NATIONAL UNIVERSITY OF SINGAPORE 2012 SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH (M.Sc., SFU, Russia) A THESIS
Graphical Modeling for Genomic Data
Graphical Modeling for Genomic Data Carel F.W. Peeters [email protected] Joint work with: Wessel N. van Wieringen Mark A. van de Wiel Molecular Biostatistics Unit Dept. of Epidemiology & Biostatistics
InSyBio BioNets: Utmost efficiency in gene expression data and biological networks analysis
InSyBio BioNets: Utmost efficiency in gene expression data and biological networks analysis WHITE PAPER By InSyBio Ltd Konstantinos Theofilatos Bioinformatician, PhD InSyBio Technical Sales Manager August
Bioinformatics: Network Analysis
Bioinformatics: Network Analysis Network Motifs COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Recall Not all subgraphs occur with equal frequency Motifs are subgraphs that
Genetomic Promototypes
Genetomic Promototypes Mirkó Palla and Dana Pe er Department of Mechanical Engineering Clarkson University Potsdam, New York and Department of Genetics Harvard Medical School 77 Avenue Louis Pasteur Boston,
Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of Sina Microblogging
Mathematical Problems in Engineering, Article ID 578713, 6 pages http://dx.doi.org/10.1155/2014/578713 Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of
Network Analysis and System Biology with Omics Data. Zhenqiu Liu Samuel Oschin Comprehensive Cancer Institute Cedars Sinai Medical Center
Network Analysis and System Biology with Omics Data Zhenqiu Liu Samuel Oschin Comprehensive Cancer Institute Cedars Sinai Medical Center Outline System biology: core concepts and basic ideas Networks:
Using graph theory to analyze biological networks
BioData Mining REVIEW Open Access Using graph theory to analyze biological networks Georgios A Pavlopoulos 1,2*, Maria Secrier 3, Charalampos N Moschopoulos 4,5, Theodoros G Soldatos 6, Sophia Kossida
1. Introduction Gene regulation Genomics and genome analyses Hidden markov model (HMM)
1. Introduction Gene regulation Genomics and genome analyses Hidden markov model (HMM) 2. Gene regulation tools and methods Regulatory sequences and motif discovery TF binding sites, microrna target prediction
Statistical Applications in Genetics and Molecular Biology
Statistical Applications in Genetics and Molecular Biology Volume 4, Issue 1 2005 Article 17 A General Framework for Weighted Gene Co-Expression Network Analysis Bin Zhang Steve Horvath Departments of
Unraveling protein networks with Power Graph Analysis
Unraveling protein networks with Power Graph Analysis PLoS Computational Biology, 2008 Loic Royer Matthias Reimann Bill Andreopoulos Michael Schroeder Schroeder Group Bioinformatics 1 Complex Networks
Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003
Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation
Dmitri Krioukov CAIDA/UCSD
Hyperbolic geometry of complex networks Dmitri Krioukov CAIDA/UCSD [email protected] F. Papadopoulos, M. Boguñá, A. Vahdat, and kc claffy Complex networks Technological Internet Transportation Power grid
How To Cluster Of Complex Systems
Entropy based Graph Clustering: Application to Biological and Social Networks Edward C Kenley Young-Rae Cho Department of Computer Science Baylor University Complex Systems Definition Dynamically evolving
Some Examples of Network Measurements
Some Examples of Network Measurements Example 1 Data: Traceroute measurements Objective: Inferring Internet topology at the router-level Example 2 Data: Traceroute measurements Objective: Inferring Internet
Statistical Analysis of Network Data
Statistical Analysis of Network Data A Brief Overview Eric D. Kolaczyk Dept of Mathematics and Statistics, Boston University [email protected] Introduction Focus of this Talk In this talk I will present
The Topology of Large-Scale Engineering Problem-Solving Networks
The Topology of Large-Scale Engineering Problem-Solving Networks by Dan Braha 1, 2 and Yaneer Bar-Yam 2, 3 1 Faculty of Engineering Sciences Ben-Gurion University, P.O.Box 653 Beer-Sheva 84105, Israel
A discussion of Statistical Mechanics of Complex Networks P. Part I
A discussion of Statistical Mechanics of Complex Networks Part I Review of Modern Physics, Vol. 74, 2002 Small Word Networks Clustering Coefficient Scale-Free Networks Erdös-Rényi model cover only parts
On Network Tools for Network Motif Finding: A Survey Study
On Network Tools for Network Motif Finding: A Survey Study Elisabeth A. Wong 1,2, Brittany Baur 1,3 1 2010 NSF Bio-Grid REU Research Fellows at Univ of Connecticut 2 Bowdoin College 3 Manhattanville College
Complex Networks Analysis: Clustering Methods
Complex Networks Analysis: Clustering Methods Nikolai Nefedov Spring 2013 ISI ETH Zurich [email protected] 1 Outline Purpose to give an overview of modern graph-clustering methods and their applications
IC05 Introduction on Networks &Visualization Nov. 2009. <[email protected]>
IC05 Introduction on Networks &Visualization Nov. 2009 Overview 1. Networks Introduction Networks across disciplines Properties Models 2. Visualization InfoVis Data exploration
Graph Mining Techniques for Social Media Analysis
Graph Mining Techniques for Social Media Analysis Mary McGlohon Christos Faloutsos 1 1-1 What is graph mining? Extracting useful knowledge (patterns, outliers, etc.) from structured data that can be represented
Interaktionen von RNAs und Proteinen
Sonja Prohaska Computational EvoDevo Universitaet Leipzig June 9, 2015 Studying RNA-protein interactions Given: target protein known to bind to RNA problem: find binding partners and binding sites experimental
How To Understand The Network Of A Network
Roles in Networks Roles in Networks Motivation for work: Let topology define network roles. Work by Kleinberg on directed graphs, used topology to define two types of roles: authorities and hubs. (Each
The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
Cognitive Science 29 (2005) 41 78 Copyright 2005 Cognitive Science Society, Inc. All rights reserved. The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
Social Media Mining. Network Measures
Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users
DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS
International Scientific Conference & International Workshop Present Day Trends of Innovations 2012 28 th 29 th May 2012 Łomża, Poland DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS Lubos Takac 1 Michal Zabovsky
MINFS544: Business Network Data Analytics and Applications
MINFS544: Business Network Data Analytics and Applications March 30 th, 2015 Daning Hu, Ph.D., Department of Informatics University of Zurich F Schweitzer et al. Science 2009 Stop Contagious Failures in
Guide for Data Visualization and Analysis using ACSN
Guide for Data Visualization and Analysis using ACSN ACSN contains the NaviCell tool box, the intuitive and user- friendly environment for data visualization and analysis. The tool is accessible from the
transcription networks
Global l structure t of sensory transcription networks 02/7/2012 Counting possible graph patterns in an n-node graph One 1-node Three 2-node graph pattern graph patterns Thirteen 3-node graph patterns
USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS
USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA [email protected] ABSTRACT This
Exercise with Gene Ontology - Cytoscape - BiNGO
Exercise with Gene Ontology - Cytoscape - BiNGO This practical has material extracted from http://www.cbs.dtu.dk/chipcourse/exercises/ex_go/goexercise11.php In this exercise we will analyze microarray
Quantitative proteomics background
Proteomics data analysis seminar Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post transcriptional regulation of key cellular processes de Groot, M., Daran
Emergence of Complexity in Financial Networks
Emergence of Complexity in Financial Networks Guido Caldarelli 1, Stefano Battiston 2, Diego Garlaschelli 3 and Michele Catanzaro 1 1 INFM UdR Roma1 Dipartimento di Fisica Università La Sapienza P.le Moro
Applying Statistics Recommended by Regulatory Documents
Applying Statistics Recommended by Regulatory Documents Steven Walfish President, Statistical Outsourcing Services [email protected] 301-325 325-31293129 About the Speaker Mr. Steven
NETWORK SCIENCE DEGREE CORRELATION
7 ALBERT-LÁSZLÓ BARABÁSI NETWORK SCIENCE DEGREE CORRELATION ACKNOWLEDGEMENTS MÁRTON PÓSFAI GABRIELE MUSELLA MAURO MARTINO NICOLE SAMAY ROBERTA SINATRA SARAH MORRISON AMAL HUSSEINI PHILIPP HOEVEL INDEX
Distance Degree Sequences for Network Analysis
Universität Konstanz Computer & Information Science Algorithmics Group 15 Mar 2005 based on Palmer, Gibbons, and Faloutsos: ANF A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02. Motivation
A box-covering algorithm for fractal scaling in scale-free networks
CHAOS 17, 026116 2007 A box-covering algorithm for fractal scaling in scale-free networks J. S. Kim CTP & FPRD, School of Physics and Astronomy, Seoul National University, NS50, Seoul 151-747, Korea K.-I.
Comparing Methods for Identifying Transcription Factor Target Genes
Comparing Methods for Identifying Transcription Factor Target Genes Alena van Bömmel (R 3.3.73) Matthew Huska (R 3.3.18) Max Planck Institute for Molecular Genetics Folie 1 Transcriptional Regulation TF
Effects of node buffer and capacity on network traffic
Chin. Phys. B Vol. 21, No. 9 (212) 9892 Effects of node buffer and capacity on network traffic Ling Xiang( 凌 翔 ) a), Hu Mao-Bin( 胡 茂 彬 ) b), and Ding Jian-Xun( 丁 建 勋 ) a) a) School of Transportation Engineering,
BIOINF 525 Winter 2016 Foundations of Bioinformatics and Systems Biology http://tinyurl.com/bioinf525-w16
Course Director: Dr. Barry Grant (DCM&B, [email protected]) Description: This is a three module course covering (1) Foundations of Bioinformatics, (2) Statistics in Bioinformatics, and (3) Systems
Network VisualizationS
Network VisualizationS When do they make sense? Where to start? Clement Levallois, Assist. Prof. EMLYON Business School v. 1.1, January 2014 Bio notes Education in economics, management, history of science
Network/Graph Theory. What is a Network? What is network theory? Graph-based representations. Friendship Network. What makes a problem graph-like?
What is a Network? Network/Graph Theory Network = graph Informally a graph is a set of nodes joined by a set of lines or arrows. 1 1 2 3 2 3 4 5 6 4 5 6 Graph-based representations Representing a problem
14.10.2014. Overview. Swarms in nature. Fish, birds, ants, termites, Introduction to swarm intelligence principles Particle Swarm Optimization (PSO)
Overview Kyrre Glette kyrrehg@ifi INF3490 Swarm Intelligence Particle Swarm Optimization Introduction to swarm intelligence principles Particle Swarm Optimization (PSO) 3 Swarms in nature Fish, birds,
Statistical Inference for Networks Graduate Lectures. Hilary Term 2009 Prof. Gesine Reinert
Statistical Inference for Networks Graduate Lectures Hilary Term 2009 Prof. Gesine Reinert 1 Overview 1: Network summaries. What are networks? Some examples from social science and from biology. The need
MORPHEUS. http://biodev.cea.fr/morpheus/ Prediction of Transcription Factors Binding Sites based on Position Weight Matrix.
MORPHEUS http://biodev.cea.fr/morpheus/ Prediction of Transcription Factors Binding Sites based on Position Weight Matrix. Reference: MORPHEUS, a Webtool for Transcripton Factor Binding Analysis Using
arxiv:cs.dm/0204001 v1 30 Mar 2002
A Steady State Model for Graph Power Laws David Eppstein Joseph Wang arxiv:cs.dm/0000 v 0 Mar 00 Abstract Power law distribution seems to be an important characteristic of web graphs. Several existing
