A discussion of Statistical Mechanics of Complex Networks P. Part I


 Sharleen Doreen Robertson
 2 years ago
 Views:
Transcription
1 A discussion of Statistical Mechanics of Complex Networks Part I Review of Modern Physics, Vol. 74, 2002
2 Small Word Networks Clustering Coefficient ScaleFree Networks ErdösRényi model
3 cover only parts I, II, and IIIa (pages 19) more questions than answers...
4 Small Word Networks Clustering Coefficient ScaleFree Networks Small World Networks What is a smallworld network? relatively short path between any two nodes six degrees of separation distance the shortest path between two nodes diameter of graph longest distance between any two nodes no hard definition, but diameter similar to random graph ( ln N)
5 Clustering Coefficient Overview Small Word Networks Clustering Coefficient ScaleFree Networks How well do your friends know each other? a metric between 0.0 and 1.0 ratio of edges (E i ) over maximum possible (complete subgraph) ( ) ki for each node : C i E i / = 2E i 2 k i (k i 1) N for graph, take average over nodes C = 1 N Can be interpreted as i=1 the probability that two neighbor nodes are connected (p = C i ) C i
6 Clustering Coefficient Simulations Small Word Networks Clustering Coefficient ScaleFree Networks 0.8 Clustering for 20!node graph Clustering coefficient Number of random edges
7 Small Word Networks Clustering Coefficient ScaleFree Networks Clustering Coefficient Observations Metric is convenient to define, but C = 1 does NOT imply that graph is completely connected C = 0 does NOT imply that all nodes are isolated C is NOT monotonic as more edges are added (!) Shortcomings doesn t understand the notion of components uses only one generation of information allornothing metric may be too crude (?) Is this what we really want to measure...?
8 Weird Clustering Examples Small Word Networks Clustering Coefficient ScaleFree Networks a collection of isolated 3cycles has C = 1 a ndimensional grid has C = 0, although k = 2n example of graph where adding more edges lowers C take two disconnected subgraphs and bridge them
9 Clustering Examples Overview Small Word Networks Clustering Coefficient ScaleFree Networks Consider a graph with N vertices arranged in 1d ring: k=2, d(g) = N/2, C = d grid: k=4, d(g) = 2N, C = 0 3d cube: k=6, d(g) = 3 N 1/3, C = 0... nd hypercube: k=2n, d(g) = n N 1/n, C = 0 Is the last considered a smallworld network? 1 This is why WattsStrogatz used a 1d ring with 4 nearest neighbors to bump up C to 3/4.
10 Small Word Networks Clustering Coefficient ScaleFree Networks ScaleFree Networks Degree distributions not all nodes have same degree distribution function P(k) denotes probability that random node has k edges for random graphs, this is a Poisson distribution with a peak at k with value P( k ) for some real networks, the tail of P(k) follows a powerlaw distribution: P(k) 1/k γ for 1 < γ < 3 other real networks exhibit exponential tails graphs with P(k) different than Poisson distribution are termed scalefree
11 Small Word Networks Clustering Coefficient ScaleFree Networks Issues with ScaleFree Networks no hard definition why the big fuss? Because physics has properties with powerlaw tails... (statistical mechanics) where does the cutoff for k take effect...? the tail has tiny portion of nodes... is it really that relevant?
12 Complex Network Cheat Sheet Small Word Networks Clustering Coefficient ScaleFree Networks Random Graphs Real Graphs smallworld YES YES d(g) ln(n) d(g) d(g random ) clustering coeff LOW HIGH (C = p) scalefree NO YES Poisson dist. P(k) 1/k γ for 1 < γ < 3
13 Complex Network Cheat Sheet Small Word Networks Clustering Coefficient ScaleFree Networks Random Graphs Real Graphs nd lattices structure NO YES (?) YES smallworld YES YES NO (?) d(g) ln(n) d(g) d(g random ) d(g) N 1/n clustering coeff LOW HIGH 0.0 (C = p) n neighbors scalefree NO YES YES Poisson dist. P(k) 1/k γ for 1 < γ < 3 P(2n) = 1, 0 otherwise
14 Cases Studied WWW Internet movie actors science collaboration STDs cellular networks ecological networks phone call network citation networks linguistic networks power grid and neural nets protein folding
15 WWW Studies at various levels (internet domain, site level, hyperlinks) at the hyperlink level: largest network studied (2002) directed graph, very unsymmetric (k out k in ) both Pout (k) and P in (k) how powerlaw tails with γout 2.5 ± 0.25 and γ in = 2.1 Adamic (1999) computed clustering coefficients by making each edge bidirectional (!) Faloutsos (1999): an edge is drawn between two domains if there is a least one route that connects them (!)
16 Movie Actor Collaboration Network Hooray for IMDb.com! Size: half a million actors (!) in 2000 two actors have an edge if they worked together on a film model does not take into account weighted edges (such as # of films worked on together) average distance is close to that of random graph
17 Observations of Table I key values: size (N) average degree ( k ) average distance (l) C C rand l l rand Things to look at: scatter plot of C vs. how dense the graph is ( k /N) scatter plot of density vs. l/l rand
18 Observations of Table II γ in = 2.1 is quite popular... 1 < γ < 3 for both γ in and γ out k (cutoff) seems pretty high, compared to k l power is not as good an estimator as l rand...
19 Random Graph Models ErdösRényi model ErdösRényi (1959) N nodes, n edges, chosen randomly from Binomial Model N nodes, every edge has p probability actual # of edges is a random variable Poisson distribution with expected value p( ( N 2 with p = n/ same? ( ) N possiblities 2 ) ) ( ) N this is similar to ErdösRényi, but is it the 2
20 Graph Enumeration Overview ErdösRényi model An undirected graph with N vertices, ( ) N has M = N(N 1)/2 possible edges 2 ( N(N 1) ) # of graphs with exactly n edges, is 2 = HUGE! n
21 Graph Enumeration Overview ErdösRényi model An undirected graph with N vertices, ( ) N has M = N(N 1)/2 possible edges 2 ( N(N 1) ) # of graphs with exactly n edges, is 2 = HUGE! n Given ( ) M M! n n!(m n)! Stirling s approximation: ln n! n(ln n 1), for large N
22 Graph Enumeration Examples ErdösRényi model Name Vertices k # graphs , ,132 10, ,332 math authors 70, ,200,000 movie actors 225, ,000,000 If every atom in the universe ( ) was a Petaflop computer, computing since the begining of time (13 billion years ago) you would just need such universes to enumerate the (100, 1 ) case...
23 ErdösRényi model Do we really know the landscape? HELP! we are looking at only tiny microcosm of graph space for simulations how robust are our conclusions? importance sampling (?) concern with 1d parameterization ala WattsStrogatz... what if we made random changes to a real network? How long before it starts losing its realness? would any of these metrics help...?
24 and Discussion is smallworld really relevant...? (social networks rarely interact beyond three links...) not clear if current metrics really capture the right thing... given (N, C, k, γ, l) what can one say about a network? introduce new(?) metrics that better recognize components and structure cluster coefficient should be extended for weighted, bidirectional graphs powertail distribution model needs high cutoff values for k what percentage of the available nodes is this?
25 ...? Why is this so hard...? because we are trying to theoritize arbitrary structure...
General Network Analysis: Graphtheoretic. COMP572 Fall 2009
General Network Analysis: Graphtheoretic Techniques COMP572 Fall 2009 Networks (aka Graphs) A network is a set of vertices, or nodes, and edges that connect pairs of vertices Example: a network with 5
More informationBig Data Analytics of MultiRelationship Online Social Network Based on MultiSubnet Composited Complex Network
, pp.273284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of MultiRelationship Online Social Network Based on MultiSubnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and
More informationIntroduction to Networks and Business Intelligence
Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 17th, 2015 Outline Network Science A Random History Network Analysis Network Topological
More informationSome questions... Graphs
Uni Innsbruck Informatik  1 Uni Innsbruck Informatik  2 Some questions... Peerto topeer Systems Analysis of unstructured P2P systems How scalable is Gnutella? How robust is Gnutella? Why does FreeNet
More informationComplex Networks Analysis: Clustering Methods
Complex Networks Analysis: Clustering Methods Nikolai Nefedov Spring 2013 ISI ETH Zurich nefedov@isi.ee.ethz.ch 1 Outline Purpose to give an overview of modern graphclustering methods and their applications
More informationOnline Social Networks and Network Economics. Aris Anagnostopoulos, Online Social Networks and Network Economics
Online Social Networks and Network Economics Who? Dr. Luca Becchetti Prof. Elias Koutsoupias Prof. Stefano Leonardi What will We Cover? Possible topics: Structure of social networks Models for social networks
More informationDECENTRALIZED SCALEFREE NETWORK CONSTRUCTION AND LOAD BALANCING IN MASSIVE MULTIUSER VIRTUAL ENVIRONMENTS
DECENTRALIZED SCALEFREE NETWORK CONSTRUCTION AND LOAD BALANCING IN MASSIVE MULTIUSER VIRTUAL ENVIRONMENTS Markus Esch, Eric Tobias  University of Luxembourg MOTIVATION HyperVerse project Massive Multiuser
More informationStatistical mechanics of complex networks
Statistical mechanics of complex networks Réka Albert* and AlbertLászló Barabási Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (Published 30 January 2002) REVIEWS OF MODERN
More informationDmitri Krioukov CAIDA/UCSD
Hyperbolic geometry of complex networks Dmitri Krioukov CAIDA/UCSD dima@caida.org F. Papadopoulos, M. Boguñá, A. Vahdat, and kc claffy Complex networks Technological Internet Transportation Power grid
More informationNetwork/Graph Theory. What is a Network? What is network theory? Graphbased representations. Friendship Network. What makes a problem graphlike?
What is a Network? Network/Graph Theory Network = graph Informally a graph is a set of nodes joined by a set of lines or arrows. 1 1 2 3 2 3 4 5 6 4 5 6 Graphbased representations Representing a problem
More informationStatistical Mechanics of Complex Networks
Statistical Mechanics of Complex Networks Réka Albert 1,2 and AlbertLászló Barabási 2 1 School of Mathematics, 127 Vincent Hall, University of Minnesota, Minneapolis, Minnesota 55455 2 Department of Physics,
More informationGraph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis
Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter
More informationAnalyzing the Facebook graph?
Logistics Big Data Algorithmic Introduction Prof. Yuval Shavitt Contact: shavitt@eng.tau.ac.il Final grade: 4 6 home assignments (will try to include programing assignments as well): 2% Exam 8% Big Data
More informationGraphs over Time Densification Laws, Shrinking Diameters and Possible Explanations
Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations Jurij Leskovec, CMU Jon Kleinberg, Cornell Christos Faloutsos, CMU 1 Introduction What can we do with graphs? What patterns
More informationSmallWorld Characteristics of Internet Topologies and Implications on Multicast Scaling
SmallWorld Characteristics of Internet Topologies and Implications on Multicast Scaling Shudong Jin Department of Electrical Engineering and Computer Science, Case Western Reserve University Cleveland,
More informationBioinformatics: Network Analysis
Bioinformatics: Network Analysis Graphtheoretic Properties of Biological Networks COMP 572 (BIOS 572 / BIOE 564)  Fall 2013 Luay Nakhleh, Rice University 1 Outline Architectural features Motifs, modules,
More informationIn the following we will only consider undirected networks.
Roles in Networks Roles in Networks Motivation for work: Let topology define network roles. Work by Kleinberg on directed graphs, used topology to define two types of roles: authorities and hubs. (Each
More informationChapter 29 ScaleFree Network Topologies with Clustering Similar to Online Social Networks
Chapter 29 ScaleFree Network Topologies with Clustering Similar to Online Social Networks Imre Varga Abstract In this paper I propose a novel method to model real online social networks where the growing
More informationUSING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE FREE NETWORKS AND SMALLWORLD NETWORKS
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE FREE NETWORKS AND SMALLWORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu
More informationDistance Degree Sequences for Network Analysis
Universität Konstanz Computer & Information Science Algorithmics Group 15 Mar 2005 based on Palmer, Gibbons, and Faloutsos: ANF A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02. Motivation
More informationarxiv:condmat/ v1 [condmat.disnn] 21 Oct 1999
Emergence of Scaling in Random Networks arxiv:condmat/9910332v1 [condmat.disnn] 21 Oct 1999 AlbertLászló Barabási and Réka Albert Department of Physics, University of NotreDame, NotreDame, IN 46556
More informationSocial Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
More informationNetwork Analysis and Visualization of Staphylococcus aureus. by Russ Gibson
Network Analysis and Visualization of Staphylococcus aureus by Russ Gibson Network analysis Based on graph theory Probabilistic models (random graphs) developed by Erdős and Rényi in 1959 Theory and tools
More informationSocial Network Mining
Social Network Mining Data Mining November 11, 2013 Frank Takes (ftakes@liacs.nl) LIACS, Universiteit Leiden Overview Social Network Analysis Graph Mining Online Social Networks Friendship Graph Semantics
More informationGraph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014
Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R.0, steen@cs.vu.nl Chapter 0: Version: April 8, 0 / Contents Chapter Description 0: Introduction
More informationGENERATING AN ASSORTATIVE NETWORK WITH A GIVEN DEGREE DISTRIBUTION
International Journal of Bifurcation and Chaos, Vol. 18, o. 11 (2008) 3495 3502 c World Scientific Publishing Company GEERATIG A ASSORTATIVE ETWORK WITH A GIVE DEGREE DISTRIBUTIO JI ZHOU, XIAOKE XU, JIE
More informationarxiv:1402.2959v1 [cs.ne] 12 Feb 2014
Local Optima Networks: A New Model of Combinatorial Fitness Landscapes Gabriela Ochoa 1, Sébastien Verel 2, Fabio Daolio 3, and Marco Tomassini 3 arxiv:1402.2959v1 [cs.ne] 12 Feb 2014 1 Computing Science
More informationSelf similarity of complex networks & hidden metric spaces
Self similarity of complex networks & hidden metric spaces M. ÁNGELES SERRANO Departament de Química Física Universitat de Barcelona TERANET: Toward Evolutive Routing Algorithms for scalefree/internetlike
More informationGraph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003
Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation
More informationOutline. NPcompleteness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NPcompleteness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2pairs sum vs. general Subset Sum Reducing one problem to another Clique
More information! E6893 Big Data Analytics Lecture 10:! Linked Big Data Graph Computing (II)
E6893 Big Data Analytics Lecture 10: Linked Big Data Graph Computing (II) ChingYung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Mgr., Dept. of Network Science and
More informationApplying Social Network Analysis to the Information in CVS Repositories
Applying Social Network Analysis to the Information in CVS Repositories Luis LopezFernandez, Gregorio Robles, Jesus M. GonzalezBarahona GSyC, Universidad Rey Juan Carlos {llopez,grex,jgb}@gsyc.escet.urjc.es
More informationResearch Article A Comparison of Online Social Networks and RealLife Social Networks: A Study of Sina Microblogging
Mathematical Problems in Engineering, Article ID 578713, 6 pages http://dx.doi.org/10.1155/2014/578713 Research Article A Comparison of Online Social Networks and RealLife Social Networks: A Study of
More informationComplex Network Visualization based on Voronoi Diagram and Smoothedparticle Hydrodynamics
Complex Network Visualization based on Voronoi Diagram and Smoothedparticle Hydrodynamics Zhao Wenbin 1, Zhao Zhengxu 2 1 School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu
More informationUrban Road Network and Taxi Network Modeling Based on Complex Network Theory
Journal of Information Hiding and Multimedia Signal Processing c 2016 ISSN 20734212 Ubiquitous International Volume 7, Number 3, May 2016 Urban Road Network and Taxi Network Modeling Based on Complex
More informationMultilevel analysis of an interaction network between individuals in a mailinglist
2050Her/Teleco 62/34 14/03/07 13:48 Page 320 320 pp. 320344 Multilevel analysis of an interaction network between individuals in a mailinglist Rémi DORAT 1, 2, 3 Matthieu LATAPY 1, Bernard CONEIN
More informationPart 2: Community Detection
Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection  Social networks 
More informationGraph Theory Approaches to Protein Interaction Data Analysis
Graph Theory Approaches to Protein Interaction Data Analysis Nataša Pržulj Technical Report 322/04 Department of Computer Science, University of Toronto Completed on September 8, 2003 Report issued on
More informationThe LargeScale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
Cognitive Science 29 (2005) 41 78 Copyright 2005 Cognitive Science Society, Inc. All rights reserved. The LargeScale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
More informationThe Shape of the Network. The Shape of the Internet. Why study topology? Internet topologies. Early work. More on topologies..
The Shape of the Internet Slides assembled by Jeff Chase Duke University (thanks to and ) The Shape of the Network Characterizing shape : ASlevel topology: who connects to whom Routerlevel topology:
More informationThe Network Structure of Hard Combinatorial Landscapes
The Network Structure of Hard Combinatorial Landscapes Marco Tomassini 1, Sebastien Verel 2, Gabriela Ochoa 3 1 University of Lausanne, Lausanne, Switzerland 2 University of Nice SophiaAntipolis, France
More informationA mixture model for random graphs
A mixture model for random graphs JJ Daudin, F. Picard, S. Robin robin@inapg.inra.fr UMR INAPG / ENGREF / INRA, Paris Mathématique et Informatique Appliquées Examples of networks. Social: Biological:
More informationGraph Mining Techniques for Social Media Analysis
Graph Mining Techniques for Social Media Analysis Mary McGlohon Christos Faloutsos 1 11 What is graph mining? Extracting useful knowledge (patterns, outliers, etc.) from structured data that can be represented
More informationSTT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
More informationx if x 0, x if x < 0.
Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the
More informationRecent Progress in Complex Network Analysis. Models of Random Intersection Graphs
Recent Progress in Complex Network Analysis. Models of Random Intersection Graphs Mindaugas Bloznelis, Erhard Godehardt, Jerzy Jaworski, Valentas Kurauskas, Katarzyna Rybarczyk Adam Mickiewicz University,
More informationFrom Random Graphs to Complex Networks:
Unterschrift des Betreuers DIPLOMARBEIT From Random Graphs to Complex Networks: A Modelling Approach Ausgeführt am Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien unter
More informationAn Alternative Web Search Strategy? Abstract
An Alternative Web Search Strategy? V.H. Winterer, Rechenzentrum Universität Freiburg (Dated: November 2007) Abstract We propose an alternative Web search strategy taking advantage of the knowledge on
More informationSocial Media Mining. Network Measures
Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the likeminded users
More informationProbabilistic Response of Interdependent Infrastructure Networks
Probabilistic Response of Interdependent Infrastructure Networks Leonardo DueñasOsorio, James I. Craig, and Barry J. Goodno ABSTRACT Interdependent infrastructures constitute one of the most visible examples
More information1 Six Degrees of Separation
Networks: Spring 2007 The SmallWorld Phenomenon David Easley and Jon Kleinberg April 23, 2007 1 Six Degrees of Separation The smallworld phenomenon the principle that we are all linked by short chains
More informationDistributed Computing over Communication Networks: Topology. (with an excursion to P2P)
Distributed Computing over Communication Networks: Topology (with an excursion to P2P) Some administrative comments... There will be a Skript for this part of the lecture. (Same as slides, except for today...
More informationSocial and Economic Networks: Lecture 1, Networks?
Social and Economic Networks: Lecture 1, Networks? Alper Duman Izmir University Economics, February 26, 2013 Conventional economics assume that all agents are either completely connected or totally isolated.
More informationTopological Properties
Advanced Computer Architecture Topological Properties Routing Distance: Number of links on route Node degree: Number of channels per node Network diameter: Longest minimum routing distance between any
More informationJoan Paola Cruz, Camilo Olaya
A SYSTEM DYNAMICS MODEL FOR STUDYING THE STRUCTURE OF NETWORK MARKETING ORGANIZATIONS Joan Paola Cruz, Camilo Olaya Universidad de los Andes, Dpto. de Ingeniería Industrial Carrera 1 N 18A 10 Bogotá, Colombia
More informationIntroduction to Graph Mining
Introduction to Graph Mining What is a graph? A graph G = (V,E) is a set of vertices V and a set (possibly empty) E of pairs of vertices e 1 = (v 1, v 2 ), where e 1 E and v 1, v 2 V. Edges may contain
More informationComplex Network Analysis of Brain Connectivity: An Introduction LABREPORT 5
Complex Network Analysis of Brain Connectivity: An Introduction LABREPORT 5 Fernando FerreiraSantos 2012 Title: Complex Network Analysis of Brain Connectivity: An Introduction Technical Report Authors:
More informationarxiv:physics/0601033 v1 6 Jan 2006
Analysis of telephone network traffic based on a complex user network Yongxiang Xia, Chi K. Tse, Francis C. M. Lau, Wai Man Tam, Michael Small arxiv:physics/0601033 v1 6 Jan 2006 Department of Electronic
More informationOpen Source Software Developer and Project Networks
Open Source Software Developer and Project Networks Matthew Van Antwerp and Greg Madey University of Notre Dame {mvanantw,gmadey}@cse.nd.edu Abstract. This paper outlines complex network concepts and how
More informationGraph theoretic approach to analyze amino acid network
Int. J. Adv. Appl. Math. and Mech. 2(3) (2015) 3137 (ISSN: 23472529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Graph theoretic approach to
More informationTopological Analysis of the Subway Network of Madrid
Topological Analysis of the Subway Network of Madrid Mary Luz Mouronte Departamento de Ingeniería y Arquitecturas Telemáticas. Escuela Técnica Superior de Ingeniería y Sistemas detelecomunicación Universidad
More informationSPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH NATIONAL UNIVERSITY OF SINGAPORE
SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH NATIONAL UNIVERSITY OF SINGAPORE 2012 SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH (M.Sc., SFU, Russia) A THESIS
More informationBusiness Intelligence and Process Modelling
Business Intelligence and Process Modelling F.W. Takes Universiteit Leiden Lecture 7: Network Analytics & Process Modelling Introduction BIPM Lecture 7: Network Analytics & Process Modelling Introduction
More informationStructure of a large social network
PHYSICAL REVIEW E 69, 036131 2004 Structure of a large social network Gábor Csányi 1, * and Balázs Szendrői 2, 1 TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3
More informationStrategies for Optimizing Public Train Transport Networks in China: Under a Viewpoint of Complex Networks
Strategies for Optimizing Public Train Transport Networks in China: Under a Viewpoint of Complex Networks Zhichong ZHAO, Jie LIU Research Centre of Nonlinear Science, College of Science, Wuhan University
More informationGraph Theory and Complex Networks: An Introduction. Chapter 08: Computer networks
Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 08: Computer networks Version: March 3, 2011 2 / 53 Contents
More informationSmallWorld, ScaleFree and Beyond Xiao Fan Wang and Guanrong Chen
Feature Complex Networks: SmallWorld, ScaleFree and Beyond Xiao Fan Wang and Guanrong Chen DIGITAL VISION, LTD. Abstract In the past few years, the discovery of smallworld and scalefree properties
More informationDegree distribution in random Apollonian networks structures
Degree distribution in random Apollonian networks structures Alexis Darrasse joint work with Michèle Soria ALÉA 2007 Plan 1 Introduction 2 Properties of reallife graphs Distinctive properties Existing
More informationA SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS INTRODUCTION
A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS Kyoungjin Park Alper Yilmaz Photogrammetric and Computer Vision Lab Ohio State University park.764@osu.edu yilmaz.15@osu.edu ABSTRACT Depending
More informationNETWORK SCIENCE THE SCALEFREE PROPERTY
4 ALBERTLÁSZLÓ BARABÁSI NETWORK SCIENCE THE SCALEFREE PROPERTY ACKNOWLEDGEMENTS MÁRTON PÓSFAI GABRIELE MUSELLA MAURO MARTINO ROBERTA SINATRA SARAH MORRISON AMAL HUSSEINI PHILIPP HOEVEL INDEX Introduction
More informationMining SocialNetwork Graphs
342 Chapter 10 Mining SocialNetwork Graphs There is much information to be gained by analyzing the largescale data that is derived from social networks. The bestknown example of a social network is
More informationThe Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
More informationExploration, testing, and prediction: the many roles of statistics in Network Science
Exploration, testing, and prediction: the many roles of statistics in Network Science Aaron Clauset inferred community inferred community 2 inferred community 3 Assistant Professor of Computer Science
More informationGraph Theory and Networks in Biology
Graph Theory and Networks in Biology Oliver Mason and Mark Verwoerd March 14, 2006 Abstract In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss
More informationCharacter Image Patterns as Big Data
22 International Conference on Frontiers in Handwriting Recognition Character Image Patterns as Big Data Seiichi Uchida, Ryosuke Ishida, Akira Yoshida, Wenjie Cai, Yaokai Feng Kyushu University, Fukuoka,
More informationMINFS544: Business Network Data Analytics and Applications
MINFS544: Business Network Data Analytics and Applications March 30 th, 2015 Daning Hu, Ph.D., Department of Informatics University of Zurich F Schweitzer et al. Science 2009 Stop Contagious Failures in
More informationRandom graphs and complex networks
Random graphs and complex networks Remco van der Hofstad Honours Class, spring 2008 Complex networks Figure 2 Ye a s t p ro te in in te ra c tio n n e tw o rk. A m a p o f p ro tein p ro tein in tera c
More informationarxiv:condmat/0212469v1 [condmat.disnn] 19 Dec 2002
Generating correlated networks from uncorrelated ones A. Ramezanpour and V. Karimipour arxiv:condmat/0212469v1 [condmat.disnn] 19 Dec 2002 Department of Physics, Sharif University of Technology, P.O.Box
More information1 Definitions. Supplementary Material for: Digraphs. Concept graphs
Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.
More informationExtracting Information from Social Networks
Extracting Information from Social Networks Aggregating site information to get trends 1 Not limited to social networks Examples Google search logs: flu outbreaks We Feel Fine Bullying 2 Bullying Xu, Jun,
More informationGreedy Routing on Hidden Metric Spaces as a Foundation of Scalable Routing Architectures
Greedy Routing on Hidden Metric Spaces as a Foundation of Scalable Routing Architectures Dmitri Krioukov, kc claffy, and Kevin Fall CAIDA/UCSD, and Intel Research, Berkeley Problem Highlevel Routing is
More information136 CHAPTER 4. INDUCTION, GRAPHS AND TREES
136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics
More informationScalable Source Routing
Scalable Source Routing January 2010 Thomas Fuhrmann Department of Informatics, SelfOrganizing Systems Group, Technical University Munich, Germany Routing in Networks You re there. I m here. Scalable
More informationDiscrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
More informationMining Social Network Graphs
Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand
More informationThe average distances in random graphs with given expected degrees
Classification: Physical Sciences, Mathematics The average distances in random graphs with given expected degrees by Fan Chung 1 and Linyuan Lu Department of Mathematics University of California at San
More informationV. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
More informationLoad balancing in a heterogeneous computer system by selforganizing Kohonen network
Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by selforganizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.
More informationANALYSIS OF THE STRUCTURE AND EVOLUTION OF AN OPENSOURCE COMMUNITY
Proceedings of the ASME 2 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2 August 5 September 8, 2, Montreal, Quebec, CA DETC2/CIE28272
More informationStudying Recommendation Algorithms by Graph Analysis
Studying Recommendation Algorithms by Graph Analysis Batul J. Mirza Department of Computer Science Virginia Tech Blacksburg, VA 24061 bmirza@csgrad.cs.vt.edu Naren Ramakrishnan Department of Computer Science
More informationStationary random graphs on Z with prescribed iid degrees and finite mean connections
Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the nonnegative
More informationCharacterization of Latent Social Networks Discovered through Computer Network Logs
Characterization of Latent Social Networks Discovered through Computer Network Logs Kevin M. Carter MIT Lincoln Laboratory 244 Wood St Lexington, MA 02420 kevin.carter@ll.mit.edu Rajmonda S. Caceres MIT
More informationStructural constraints in complex networks
Structural constraints in complex networks Dr. Shi Zhou Lecturer of University College London Royal Academy of Engineering / EPSRC Research Fellow Part 1. Complex networks and three key topological properties
More informationPUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS
Vol. 36 (2005) ACTA PHYSICA POLONICA B No 5 PUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS Julian Sienkiewicz and Janusz
More informationOption 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret.
Programming project Task Option 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret. Obtaining data This project focuses upon cocktail ingredients. Data was
More informationhttp://www.elsevier.com/copyright
This article was published in an Elsevier journal. The attached copy is furnished to the author for noncommercial research and education use, including for instruction at the author s institution, sharing
More informationHealthcare Analytics. Aryya Gangopadhyay UMBC
Healthcare Analytics Aryya Gangopadhyay UMBC Two of many projects Integrated network approach to personalized medicine Multidimensional and multimodal Dynamic Analyze interactions HealthMask Need for sharing
More informationIntroduced by Stuart Kauffman (ca. 1986) as a tunable family of fitness landscapes.
68 Part II. Combinatorial Models can require a number of spin flips that is exponential in N (A. Haken et al. ca. 1989), and that one can in fact embed arbitrary computations in the dynamics (Orponen 1995).
More informationTemporal Dynamics of ScaleFree Networks
Temporal Dynamics of ScaleFree Networks Erez Shmueli, Yaniv Altshuler, and Alex Sandy Pentland MIT Media Lab {shmueli,yanival,sandy}@media.mit.edu Abstract. Many social, biological, and technological
More informationData Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 by Tan, Steinbach, Kumar 1 What is Cluster Analysis? Finding groups of objects such that the objects in a group will
More information