# A discussion of Statistical Mechanics of Complex Networks P. Part I

Save this PDF as:

Size: px
Start display at page:

Download "A discussion of Statistical Mechanics of Complex Networks P. Part I"

## Transcription

1 A discussion of Statistical Mechanics of Complex Networks Part I Review of Modern Physics, Vol. 74, 2002

2 Small Word Networks Clustering Coefficient Scale-Free Networks Erdös-Rényi model

3 cover only parts I, II, and IIIa (pages 1-9) more questions than answers...

4 Small Word Networks Clustering Coefficient Scale-Free Networks Small World Networks What is a small-world network? relatively short path between any two nodes six degrees of separation distance the shortest path between two nodes diameter of graph longest distance between any two nodes no hard definition, but diameter similar to random graph ( ln N)

5 Clustering Coefficient Overview Small Word Networks Clustering Coefficient Scale-Free Networks How well do your friends know each other? a metric between 0.0 and 1.0 ratio of edges (E i ) over maximum possible (complete subgraph) ( ) ki for each node : C i E i / = 2E i 2 k i (k i 1) N for graph, take average over nodes C = 1 N Can be interpreted as i=1 the probability that two neighbor nodes are connected (p = C i ) C i

6 Clustering Coefficient Simulations Small Word Networks Clustering Coefficient Scale-Free Networks 0.8 Clustering for 20!node graph Clustering coefficient Number of random edges

7 Small Word Networks Clustering Coefficient Scale-Free Networks Clustering Coefficient Observations Metric is convenient to define, but C = 1 does NOT imply that graph is completely connected C = 0 does NOT imply that all nodes are isolated C is NOT monotonic as more edges are added (!) Shortcomings doesn t understand the notion of components uses only one generation of information all-or-nothing metric may be too crude (?) Is this what we really want to measure...?

8 Weird Clustering Examples Small Word Networks Clustering Coefficient Scale-Free Networks a collection of isolated 3-cycles has C = 1 a n-dimensional grid has C = 0, although k = 2n example of graph where adding more edges lowers C take two disconnected subgraphs and bridge them

9 Clustering Examples Overview Small Word Networks Clustering Coefficient Scale-Free Networks Consider a graph with N vertices arranged in 1-d ring: k=2, d(g) = N/2, C = d grid: k=4, d(g) = 2N, C = 0 3-d cube: k=6, d(g) = 3 N 1/3, C = 0... n-d hypercube: k=2n, d(g) = n N 1/n, C = 0 Is the last considered a small-world network? 1 This is why Watts-Strogatz used a 1-d ring with 4 nearest neighbors to bump up C to 3/4.

10 Small Word Networks Clustering Coefficient Scale-Free Networks Scale-Free Networks Degree distributions not all nodes have same degree distribution function P(k) denotes probability that random node has k edges for random graphs, this is a Poisson distribution with a peak at k with value P( k ) for some real networks, the tail of P(k) follows a power-law distribution: P(k) 1/k γ for 1 < γ < 3 other real networks exhibit exponential tails graphs with P(k) different than Poisson distribution are termed scale-free

11 Small Word Networks Clustering Coefficient Scale-Free Networks Issues with Scale-Free Networks no hard definition why the big fuss? Because physics has properties with power-law tails... (statistical mechanics) where does the cut-off for k take effect...? the tail has tiny portion of nodes... is it really that relevant?

12 Complex Network Cheat Sheet Small Word Networks Clustering Coefficient Scale-Free Networks Random Graphs Real Graphs small-world YES YES d(g) ln(n) d(g) d(g random ) clustering coeff LOW HIGH (C = p) scale-free NO YES Poisson dist. P(k) 1/k γ for 1 < γ < 3

13 Complex Network Cheat Sheet Small Word Networks Clustering Coefficient Scale-Free Networks Random Graphs Real Graphs n-d lattices structure NO YES (?) YES small-world YES YES NO (?) d(g) ln(n) d(g) d(g random ) d(g) N 1/n clustering coeff LOW HIGH 0.0 (C = p) n neighbors scale-free NO YES YES Poisson dist. P(k) 1/k γ for 1 < γ < 3 P(2n) = 1, 0 otherwise

14 Cases Studied WWW Internet movie actors science collaboration STDs cellular networks ecological networks phone call network citation networks linguistic networks power grid and neural nets protein folding

15 WWW Studies at various levels (internet domain, site level, hyperlinks) at the hyperlink level: largest network studied (2002) directed graph, very unsymmetric (k out k in ) both Pout (k) and P in (k) how power-law tails with γout 2.5 ± 0.25 and γ in = 2.1 Adamic (1999) computed clustering coefficients by making each edge bidirectional (!) Faloutsos (1999): an edge is drawn between two domains if there is a least one route that connects them (!)

16 Movie Actor Collaboration Network Hooray for IMDb.com! Size: half a million actors (!) in 2000 two actors have an edge if they worked together on a film model does not take into account weighted edges (such as # of films worked on together) average distance is close to that of random graph

17 Observations of Table I key values: size (N) average degree ( k ) average distance (l) C C rand l l rand Things to look at: scatter plot of C vs. how dense the graph is ( k /N) scatter plot of density vs. l/l rand

18 Observations of Table II γ in = 2.1 is quite popular... 1 < γ < 3 for both γ in and γ out k (cut-off) seems pretty high, compared to k l power is not as good an estimator as l rand...

19 Random Graph Models Erdös-Rényi model Erdös-Rényi (1959) N nodes, n edges, chosen randomly from Binomial Model N nodes, every edge has p probability actual # of edges is a random variable Poisson distribution with expected value p( ( N 2 with p = n/ same? ( ) N possiblities 2 ) ) ( ) N this is similar to Erdös-Rényi, but is it the 2

20 Graph Enumeration Overview Erdös-Rényi model An undirected graph with N vertices, ( ) N has M = N(N 1)/2 possible edges 2 ( N(N 1) ) # of graphs with exactly n edges, is 2 = HUGE! n

21 Graph Enumeration Overview Erdös-Rényi model An undirected graph with N vertices, ( ) N has M = N(N 1)/2 possible edges 2 ( N(N 1) ) # of graphs with exactly n edges, is 2 = HUGE! n Given ( ) M M! n n!(m n)! Stirling s approximation: ln n! n(ln n 1), for large N

22 Graph Enumeration Examples Erdös-Rényi model Name Vertices k # graphs , ,132 10, ,332 math authors 70, ,200,000 movie actors 225, ,000,000 If every atom in the universe ( ) was a Petaflop computer, computing since the begining of time (13 billion years ago) you would just need such universes to enumerate the (100, 1 ) case...

23 Erdös-Rényi model Do we really know the landscape? HELP! we are looking at only tiny microcosm of graph space for simulations how robust are our conclusions? importance sampling (?) concern with 1-d parameterization ala Watts-Strogatz... what if we made random changes to a real network? How long before it starts losing its realness? would any of these metrics help...?

24 and Discussion is small-world really relevant...? (social networks rarely interact beyond three links...) not clear if current metrics really capture the right thing... given (N, C, k, γ, l) what can one say about a network? introduce new(?) metrics that better recognize components and structure cluster coefficient should be extended for weighted, bidirectional graphs power-tail distribution model needs high cut-off values for k what percentage of the available nodes is this?

25 ...? Why is this so hard...? because we are trying to theoritize arbitrary structure...

### General Network Analysis: Graph-theoretic. COMP572 Fall 2009

General Network Analysis: Graph-theoretic Techniques COMP572 Fall 2009 Networks (aka Graphs) A network is a set of vertices, or nodes, and edges that connect pairs of vertices Example: a network with 5

### Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network

, pp.273-284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and

### Introduction to Networks and Business Intelligence

Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 17th, 2015 Outline Network Science A Random History Network Analysis Network Topological

### Some questions... Graphs

Uni Innsbruck Informatik - 1 Uni Innsbruck Informatik - 2 Some questions... Peer-to to-peer Systems Analysis of unstructured P2P systems How scalable is Gnutella? How robust is Gnutella? Why does FreeNet

### Complex Networks Analysis: Clustering Methods

Complex Networks Analysis: Clustering Methods Nikolai Nefedov Spring 2013 ISI ETH Zurich nefedov@isi.ee.ethz.ch 1 Outline Purpose to give an overview of modern graph-clustering methods and their applications

### Online Social Networks and Network Economics. Aris Anagnostopoulos, Online Social Networks and Network Economics

Online Social Networks and Network Economics Who? Dr. Luca Becchetti Prof. Elias Koutsoupias Prof. Stefano Leonardi What will We Cover? Possible topics: Structure of social networks Models for social networks

### DECENTRALIZED SCALE-FREE NETWORK CONSTRUCTION AND LOAD BALANCING IN MASSIVE MULTIUSER VIRTUAL ENVIRONMENTS

DECENTRALIZED SCALE-FREE NETWORK CONSTRUCTION AND LOAD BALANCING IN MASSIVE MULTIUSER VIRTUAL ENVIRONMENTS Markus Esch, Eric Tobias - University of Luxembourg MOTIVATION HyperVerse project Massive Multiuser

### Statistical mechanics of complex networks

Statistical mechanics of complex networks Réka Albert* and Albert-László Barabási Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (Published 30 January 2002) REVIEWS OF MODERN

### Dmitri Krioukov CAIDA/UCSD

Hyperbolic geometry of complex networks Dmitri Krioukov CAIDA/UCSD dima@caida.org F. Papadopoulos, M. Boguñá, A. Vahdat, and kc claffy Complex networks Technological Internet Transportation Power grid

### Network/Graph Theory. What is a Network? What is network theory? Graph-based representations. Friendship Network. What makes a problem graph-like?

What is a Network? Network/Graph Theory Network = graph Informally a graph is a set of nodes joined by a set of lines or arrows. 1 1 2 3 2 3 4 5 6 4 5 6 Graph-based representations Representing a problem

### Statistical Mechanics of Complex Networks

Statistical Mechanics of Complex Networks Réka Albert 1,2 and Albert-László Barabási 2 1 School of Mathematics, 127 Vincent Hall, University of Minnesota, Minneapolis, Minnesota 55455 2 Department of Physics,

### Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis

Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter

Logistics Big Data Algorithmic Introduction Prof. Yuval Shavitt Contact: shavitt@eng.tau.ac.il Final grade: 4 6 home assignments (will try to include programing assignments as well): 2% Exam 8% Big Data

### Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations

Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations Jurij Leskovec, CMU Jon Kleinberg, Cornell Christos Faloutsos, CMU 1 Introduction What can we do with graphs? What patterns

### Small-World Characteristics of Internet Topologies and Implications on Multicast Scaling

Small-World Characteristics of Internet Topologies and Implications on Multicast Scaling Shudong Jin Department of Electrical Engineering and Computer Science, Case Western Reserve University Cleveland,

### Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Graph-theoretic Properties of Biological Networks COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Outline Architectural features Motifs, modules,

### In the following we will only consider undirected networks.

Roles in Networks Roles in Networks Motivation for work: Let topology define network roles. Work by Kleinberg on directed graphs, used topology to define two types of roles: authorities and hubs. (Each

### Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks

Chapter 29 Scale-Free Network Topologies with Clustering Similar to Online Social Networks Imre Varga Abstract In this paper I propose a novel method to model real online social networks where the growing

### USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS

USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA natarajan.meghanathan@jsums.edu

### Distance Degree Sequences for Network Analysis

Universität Konstanz Computer & Information Science Algorithmics Group 15 Mar 2005 based on Palmer, Gibbons, and Faloutsos: ANF A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02. Motivation

### arxiv:cond-mat/ v1 [cond-mat.dis-nn] 21 Oct 1999

Emergence of Scaling in Random Networks arxiv:cond-mat/9910332v1 [cond-mat.dis-nn] 21 Oct 1999 Albert-László Barabási and Réka Albert Department of Physics, University of Notre-Dame, Notre-Dame, IN 46556

### Social Media Mining. Graph Essentials

Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

### Network Analysis and Visualization of Staphylococcus aureus. by Russ Gibson

Network Analysis and Visualization of Staphylococcus aureus by Russ Gibson Network analysis Based on graph theory Probabilistic models (random graphs) developed by Erdős and Rényi in 1959 Theory and tools

### Social Network Mining

Social Network Mining Data Mining November 11, 2013 Frank Takes (ftakes@liacs.nl) LIACS, Universiteit Leiden Overview Social Network Analysis Graph Mining Online Social Networks Friendship Graph Semantics

### Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014

Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R.0, steen@cs.vu.nl Chapter 0: Version: April 8, 0 / Contents Chapter Description 0: Introduction

### GENERATING AN ASSORTATIVE NETWORK WITH A GIVEN DEGREE DISTRIBUTION

International Journal of Bifurcation and Chaos, Vol. 18, o. 11 (2008) 3495 3502 c World Scientific Publishing Company GEERATIG A ASSORTATIVE ETWORK WITH A GIVE DEGREE DISTRIBUTIO JI ZHOU, XIAOKE XU, JIE

### arxiv:1402.2959v1 [cs.ne] 12 Feb 2014

Local Optima Networks: A New Model of Combinatorial Fitness Landscapes Gabriela Ochoa 1, Sébastien Verel 2, Fabio Daolio 3, and Marco Tomassini 3 arxiv:1402.2959v1 [cs.ne] 12 Feb 2014 1 Computing Science

### Self similarity of complex networks & hidden metric spaces

Self similarity of complex networks & hidden metric spaces M. ÁNGELES SERRANO Departament de Química Física Universitat de Barcelona TERA-NET: Toward Evolutive Routing Algorithms for scale-free/internet-like

### Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003

Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation

### Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

### ! E6893 Big Data Analytics Lecture 10:! Linked Big Data Graph Computing (II)

E6893 Big Data Analytics Lecture 10: Linked Big Data Graph Computing (II) Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Mgr., Dept. of Network Science and

### Applying Social Network Analysis to the Information in CVS Repositories

Applying Social Network Analysis to the Information in CVS Repositories Luis Lopez-Fernandez, Gregorio Robles, Jesus M. Gonzalez-Barahona GSyC, Universidad Rey Juan Carlos {llopez,grex,jgb}@gsyc.escet.urjc.es

### Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of Sina Microblogging

Mathematical Problems in Engineering, Article ID 578713, 6 pages http://dx.doi.org/10.1155/2014/578713 Research Article A Comparison of Online Social Networks and Real-Life Social Networks: A Study of

### Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics

Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics Zhao Wenbin 1, Zhao Zhengxu 2 1 School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu

### Urban Road Network and Taxi Network Modeling Based on Complex Network Theory

Journal of Information Hiding and Multimedia Signal Processing c 2016 ISSN 2073-4212 Ubiquitous International Volume 7, Number 3, May 2016 Urban Road Network and Taxi Network Modeling Based on Complex

### Multi-level analysis of an interaction network between individuals in a mailing-list

2050-Her/Teleco 62/3-4 14/03/07 13:48 Page 320 320 pp. 320-344 Multi-level analysis of an interaction network between individuals in a mailing-list Rémi DORAT 1, 2, 3 Matthieu LATAPY 1, Bernard CONEIN

### Part 2: Community Detection

Chapter 8: Graph Data Part 2: Community Detection Based on Leskovec, Rajaraman, Ullman 2014: Mining of Massive Datasets Big Data Management and Analytics Outline Community Detection - Social networks -

### Graph Theory Approaches to Protein Interaction Data Analysis

Graph Theory Approaches to Protein Interaction Data Analysis Nataša Pržulj Technical Report 322/04 Department of Computer Science, University of Toronto Completed on September 8, 2003 Report issued on

### The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth

Cognitive Science 29 (2005) 41 78 Copyright 2005 Cognitive Science Society, Inc. All rights reserved. The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth

### The Shape of the Network. The Shape of the Internet. Why study topology? Internet topologies. Early work. More on topologies..

The Shape of the Internet Slides assembled by Jeff Chase Duke University (thanks to and ) The Shape of the Network Characterizing shape : AS-level topology: who connects to whom Router-level topology:

### The Network Structure of Hard Combinatorial Landscapes

The Network Structure of Hard Combinatorial Landscapes Marco Tomassini 1, Sebastien Verel 2, Gabriela Ochoa 3 1 University of Lausanne, Lausanne, Switzerland 2 University of Nice Sophia-Antipolis, France

### A mixture model for random graphs

A mixture model for random graphs J-J Daudin, F. Picard, S. Robin robin@inapg.inra.fr UMR INA-PG / ENGREF / INRA, Paris Mathématique et Informatique Appliquées Examples of networks. Social: Biological:

### Graph Mining Techniques for Social Media Analysis

Graph Mining Techniques for Social Media Analysis Mary McGlohon Christos Faloutsos 1 1-1 What is graph mining? Extracting useful knowledge (patterns, outliers, etc.) from structured data that can be represented

### STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

### x if x 0, x if x < 0.

Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

### Recent Progress in Complex Network Analysis. Models of Random Intersection Graphs

Recent Progress in Complex Network Analysis. Models of Random Intersection Graphs Mindaugas Bloznelis, Erhard Godehardt, Jerzy Jaworski, Valentas Kurauskas, Katarzyna Rybarczyk Adam Mickiewicz University,

### From Random Graphs to Complex Networks:

Unterschrift des Betreuers DIPLOMARBEIT From Random Graphs to Complex Networks: A Modelling Approach Ausgeführt am Institut für Diskrete Mathematik und Geometrie der Technischen Universität Wien unter

### An Alternative Web Search Strategy? Abstract

An Alternative Web Search Strategy? V.-H. Winterer, Rechenzentrum Universität Freiburg (Dated: November 2007) Abstract We propose an alternative Web search strategy taking advantage of the knowledge on

### Social Media Mining. Network Measures

Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

### Probabilistic Response of Interdependent Infrastructure Networks

Probabilistic Response of Interdependent Infrastructure Networks Leonardo Dueñas-Osorio, James I. Craig, and Barry J. Goodno ABSTRACT Interdependent infrastructures constitute one of the most visible examples

### 1 Six Degrees of Separation

Networks: Spring 2007 The Small-World Phenomenon David Easley and Jon Kleinberg April 23, 2007 1 Six Degrees of Separation The small-world phenomenon the principle that we are all linked by short chains

### Distributed Computing over Communication Networks: Topology. (with an excursion to P2P)

Distributed Computing over Communication Networks: Topology (with an excursion to P2P) Some administrative comments... There will be a Skript for this part of the lecture. (Same as slides, except for today...

### Social and Economic Networks: Lecture 1, Networks?

Social and Economic Networks: Lecture 1, Networks? Alper Duman Izmir University Economics, February 26, 2013 Conventional economics assume that all agents are either completely connected or totally isolated.

### Topological Properties

Advanced Computer Architecture Topological Properties Routing Distance: Number of links on route Node degree: Number of channels per node Network diameter: Longest minimum routing distance between any

### Joan Paola Cruz, Camilo Olaya

A SYSTEM DYNAMICS MODEL FOR STUDYING THE STRUCTURE OF NETWORK MARKETING ORGANIZATIONS Joan Paola Cruz, Camilo Olaya Universidad de los Andes, Dpto. de Ingeniería Industrial Carrera 1 N 18A 10 Bogotá, Colombia

### Introduction to Graph Mining

Introduction to Graph Mining What is a graph? A graph G = (V,E) is a set of vertices V and a set (possibly empty) E of pairs of vertices e 1 = (v 1, v 2 ), where e 1 E and v 1, v 2 V. Edges may contain

### Complex Network Analysis of Brain Connectivity: An Introduction LABREPORT 5

Complex Network Analysis of Brain Connectivity: An Introduction LABREPORT 5 Fernando Ferreira-Santos 2012 Title: Complex Network Analysis of Brain Connectivity: An Introduction Technical Report Authors:

### arxiv:physics/0601033 v1 6 Jan 2006

Analysis of telephone network traffic based on a complex user network Yongxiang Xia, Chi K. Tse, Francis C. M. Lau, Wai Man Tam, Michael Small arxiv:physics/0601033 v1 6 Jan 2006 Department of Electronic

### Open Source Software Developer and Project Networks

Open Source Software Developer and Project Networks Matthew Van Antwerp and Greg Madey University of Notre Dame {mvanantw,gmadey}@cse.nd.edu Abstract. This paper outlines complex network concepts and how

### Graph theoretic approach to analyze amino acid network

Int. J. Adv. Appl. Math. and Mech. 2(3) (2015) 31-37 (ISSN: 2347-2529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Graph theoretic approach to

### Topological Analysis of the Subway Network of Madrid

Topological Analysis of the Subway Network of Madrid Mary Luz Mouronte Departamento de Ingeniería y Arquitecturas Telemáticas. Escuela Técnica Superior de Ingeniería y Sistemas detelecomunicación Universidad

### SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH NATIONAL UNIVERSITY OF SINGAPORE

SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH NATIONAL UNIVERSITY OF SINGAPORE 2012 SPANNING CACTI FOR STRUCTURALLY CONTROLLABLE NETWORKS NGO THI TU ANH (M.Sc., SFU, Russia) A THESIS

### Business Intelligence and Process Modelling

Business Intelligence and Process Modelling F.W. Takes Universiteit Leiden Lecture 7: Network Analytics & Process Modelling Introduction BIPM Lecture 7: Network Analytics & Process Modelling Introduction

### Structure of a large social network

PHYSICAL REVIEW E 69, 036131 2004 Structure of a large social network Gábor Csányi 1, * and Balázs Szendrői 2, 1 TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3

### Strategies for Optimizing Public Train Transport Networks in China: Under a Viewpoint of Complex Networks

Strategies for Optimizing Public Train Transport Networks in China: Under a Viewpoint of Complex Networks Zhichong ZHAO, Jie LIU Research Centre of Nonlinear Science, College of Science, Wuhan University

### Graph Theory and Complex Networks: An Introduction. Chapter 08: Computer networks

Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 08: Computer networks Version: March 3, 2011 2 / 53 Contents

### Small-World, Scale-Free and Beyond Xiao Fan Wang and Guanrong Chen

Feature Complex Networks: Small-World, Scale-Free and Beyond Xiao Fan Wang and Guanrong Chen DIGITAL VISION, LTD. Abstract In the past few years, the discovery of small-world and scale-free properties

### Degree distribution in random Apollonian networks structures

Degree distribution in random Apollonian networks structures Alexis Darrasse joint work with Michèle Soria ALÉA 2007 Plan 1 Introduction 2 Properties of real-life graphs Distinctive properties Existing

### A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS INTRODUCTION

A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS Kyoungjin Park Alper Yilmaz Photogrammetric and Computer Vision Lab Ohio State University park.764@osu.edu yilmaz.15@osu.edu ABSTRACT Depending

### NETWORK SCIENCE THE SCALE-FREE PROPERTY

4 ALBERTLÁSZLÓ BARABÁSI NETWORK SCIENCE THE SCALEFREE PROPERTY ACKNOWLEDGEMENTS MÁRTON PÓSFAI GABRIELE MUSELLA MAURO MARTINO ROBERTA SINATRA SARAH MORRISON AMAL HUSSEINI PHILIPP HOEVEL INDEX Introduction

### Mining Social-Network Graphs

342 Chapter 10 Mining Social-Network Graphs There is much information to be gained by analyzing the large-scale data that is derived from social networks. The best-known example of a social network is

### The Basics of Graphical Models

The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures

### Exploration, testing, and prediction: the many roles of statistics in Network Science

Exploration, testing, and prediction: the many roles of statistics in Network Science Aaron Clauset inferred community inferred community 2 inferred community 3 Assistant Professor of Computer Science

### Graph Theory and Networks in Biology

Graph Theory and Networks in Biology Oliver Mason and Mark Verwoerd March 14, 2006 Abstract In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss

### Character Image Patterns as Big Data

22 International Conference on Frontiers in Handwriting Recognition Character Image Patterns as Big Data Seiichi Uchida, Ryosuke Ishida, Akira Yoshida, Wenjie Cai, Yaokai Feng Kyushu University, Fukuoka,

### MINFS544: Business Network Data Analytics and Applications

MINFS544: Business Network Data Analytics and Applications March 30 th, 2015 Daning Hu, Ph.D., Department of Informatics University of Zurich F Schweitzer et al. Science 2009 Stop Contagious Failures in

### Random graphs and complex networks

Random graphs and complex networks Remco van der Hofstad Honours Class, spring 2008 Complex networks Figure 2 Ye a s t p ro te in in te ra c tio n n e tw o rk. A m a p o f p ro tein p ro tein in tera c

### arxiv:cond-mat/0212469v1 [cond-mat.dis-nn] 19 Dec 2002

Generating correlated networks from uncorrelated ones A. Ramezanpour and V. Karimipour arxiv:cond-mat/0212469v1 [cond-mat.dis-nn] 19 Dec 2002 Department of Physics, Sharif University of Technology, P.O.Box

### 1 Definitions. Supplementary Material for: Digraphs. Concept graphs

Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.

### Extracting Information from Social Networks

Extracting Information from Social Networks Aggregating site information to get trends 1 Not limited to social networks Examples Google search logs: flu outbreaks We Feel Fine Bullying 2 Bullying Xu, Jun,

### Greedy Routing on Hidden Metric Spaces as a Foundation of Scalable Routing Architectures

Greedy Routing on Hidden Metric Spaces as a Foundation of Scalable Routing Architectures Dmitri Krioukov, kc claffy, and Kevin Fall CAIDA/UCSD, and Intel Research, Berkeley Problem High-level Routing is

### 136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

### Scalable Source Routing

Scalable Source Routing January 2010 Thomas Fuhrmann Department of Informatics, Self-Organizing Systems Group, Technical University Munich, Germany Routing in Networks You re there. I m here. Scalable

### Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

### Mining Social Network Graphs

Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand

### The average distances in random graphs with given expected degrees

Classification: Physical Sciences, Mathematics The average distances in random graphs with given expected degrees by Fan Chung 1 and Linyuan Lu Department of Mathematics University of California at San

V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

### Load balancing in a heterogeneous computer system by self-organizing Kohonen network

Bull. Nov. Comp. Center, Comp. Science, 25 (2006), 69 74 c 2006 NCC Publisher Load balancing in a heterogeneous computer system by self-organizing Kohonen network Mikhail S. Tarkov, Yakov S. Bezrukov Abstract.

### ANALYSIS OF THE STRUCTURE AND EVOLUTION OF AN OPEN-SOURCE COMMUNITY

Proceedings of the ASME 2 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2 August 5 September 8, 2, Montreal, Quebec, CA DETC2/CIE-28272

### Studying Recommendation Algorithms by Graph Analysis

Studying Recommendation Algorithms by Graph Analysis Batul J. Mirza Department of Computer Science Virginia Tech Blacksburg, VA 24061 bmirza@csgrad.cs.vt.edu Naren Ramakrishnan Department of Computer Science

### Stationary random graphs on Z with prescribed iid degrees and finite mean connections

Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative

### Characterization of Latent Social Networks Discovered through Computer Network Logs

Characterization of Latent Social Networks Discovered through Computer Network Logs Kevin M. Carter MIT Lincoln Laboratory 244 Wood St Lexington, MA 02420 kevin.carter@ll.mit.edu Rajmonda S. Caceres MIT

### Structural constraints in complex networks

Structural constraints in complex networks Dr. Shi Zhou Lecturer of University College London Royal Academy of Engineering / EPSRC Research Fellow Part 1. Complex networks and three key topological properties

### PUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS

Vol. 36 (2005) ACTA PHYSICA POLONICA B No 5 PUBLIC TRANSPORT SYSTEMS IN POLAND: FROM BIAŁYSTOK TO ZIELONA GÓRA BY BUS AND TRAM USING UNIVERSAL STATISTICS OF COMPLEX NETWORKS Julian Sienkiewicz and Janusz

### Option 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret.

Programming project Task Option 1: empirical network analysis. Task: find data, analyze data (and visualize it), then interpret. Obtaining data This project focuses upon cocktail ingredients. Data was

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing

### Healthcare Analytics. Aryya Gangopadhyay UMBC

Healthcare Analytics Aryya Gangopadhyay UMBC Two of many projects Integrated network approach to personalized medicine Multidimensional and multimodal Dynamic Analyze interactions HealthMask Need for sharing

### Introduced by Stuart Kauffman (ca. 1986) as a tunable family of fitness landscapes.

68 Part II. Combinatorial Models can require a number of spin flips that is exponential in N (A. Haken et al. ca. 1989), and that one can in fact embed arbitrary computations in the dynamics (Orponen 1995).