Circuits 1 M H Miller
|
|
|
- Dustin Wright
- 10 years ago
- Views:
Transcription
1 Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents of a given network. A network comprised of B branches involves 2B unknowns, i.e., each of the branch voltages and currents. However the branch volt-ampere relations of the network, presumed to be known, relate the current and the voltage of each branch,. Hence a calculation of either B currents or B voltages (or some combination of B voltages and currents), and then substitution in the B branch volt-ampere relations, provides all the voltages and currents. In general however neither the B branch voltages nor the B branch currents are independent, i.e., some of the B voltage variables for example can be expressed as a combination of other voltages using KVL, and some of the branch currents can be related using KCL. Hence there generally are fewer than B independent unknowns. In the following notes we determine the minimum number of independent variables for a network analysis, the relationship between the independent and dependent variables, and efficient methods of obtaining independent equations to determine the variables. In doing so we make use of the mathematics of Graph Theory. Graph Theory A circuit graph is a description of the just the topology of the circuit, with details of the circuit elements suppressed. The graph contains branches and nodes. A branch is a curve drawn between two nodes to indicate an electrical connection between the nodes. A directed graph is one for which a polarity marking is assigned to all branches (usually an arrow) to distinguish between movement from node A to B and the converse movement from B to A. A connected graph is one in which there is a continuous path through all the branches (any of which may be traversed more than once) which touches all the nodes. A graph that is not connected in effect has completely separate parts, and for our purposes is more conveniently considered to be two (or more) independent graphs. We consider a directed, connected graph. An electrical circuit and its graph are illustrated to the right. The graph retains only topological information about the circuit. For reasons to appear branches are divided into two topological groups, tree branches and links. A tree of the graph is a subset of the branches such that all graph nodes are connected by branches but without forming a closed path. These branches then are the tree branches. The remaining branches (collectively called a co-tree) are the links. A tree and its links for the illustrative circuit are shown in the figure (labeled T and L respectively). For a network with B branches and N nodes the number of tree branches is N 1; this is the minimum number of branches needed to connect N nodes, and connecting another branch will form a loop. In general a graph contains many different trees, but for each of these trees there are N 1 tree branches. It follows then that there are B N+1 links. Circuits 1 M H Miller
2 Choosing Independent Current Variables: Given a network graph with B branches and N nodes select a tree, any one will do for the present purpose. Remove all the link branches so that, by definition, there are no loops formed by the remaining tree branches. It follows from the absence of any closed paths that all the branch currents become zero. Hence by 'controlling' just the link currents all the branch currents can be controlled. This control would not exist in general using fewer than all the link branches because a loop would be left over; depending on the nature of the circuit elements branches making up the loop current could circulate around the loop. Using more than the link branches is not necessary. Hence it should be possible to express all the branch currents in terms of just the link currents, i.e., there are B-N+1 independent current variables, and link currents provide one such set of independent variables. A straightforward formal procedure for describing tree branch currents in terms of link currents is illustrated as follows; the graph on the left side of the figure below is used for illustration. The first step is selection of a tree, e.g., the tree on the right of the figure above. The tree makes clear that a set of independent current variables is formed using link branches 2, 4, 5, and 7. (Branch numbering and specification of the branch polarity arrows is more or less arbitrarily.) Select a link; start with any one since each link is used in turn. Remove any other link used previously and then insert the single selected link to the tree to form a single loop. For example inserting link branch 2 defines a loop formed by branches 2, 3, 6, and 8. Write a KVK equation for this loop. As an aid for keeping track of information, particularly for larger graphs, we can use a matrix such as that shown below. The rows of the table define the N B+1 loops, four for the illustration, which will be formed by the links. Rows are labeled by the ID for the link branch used to form the loop, since this branch is unique for the loop so designated. The columns of the matrix correspond to the full set of graph branches. Since it is generally helpful to be systematic in these matters we choose to write all the KVL loop equations circulating about a loop in the direction of the link arrow. The loop equation will consist of a sum of loop branch voltage drops; the coefficient of a branch voltage drop will be +1 if circulation around the loop is in the same direction as the branch arrow, and 1 otherwise. Enter the coefficients into the table, row by row. Branches that are not in the loop for a given row will have no entry (or enter 0), indicating their lack of involvement in a particular loop. Circuits 2 M H Miller
3 For example the loop formed by inserting link branch 2 involves branches 2, 3, 6, and 8. Circulation about the loop CCW (as suggested by the link branch polarity arrow) passes though branch 6 in the same direction as the arrow for that branch, and passes in the reverse direction to the arrow for the other two branches. The branches forming a row of the matrix, i.e., the branches forming a loop for the link associated with the row, are called a 'tieset' for historical reasons. The independence of the KVL equations is assured because each loop involves at least one branch, a link, not associated with any other of the loops. Therefore no one loop equation can be obtained by a combination of the other loop equations. This 'tieset' procedure guarantees that the maximum number of independent KVL loop equations will be written directly and efficiently. No guessing or trial and error is involved. But in fact this procedure provides even more information; it provides in a similar assured and efficient manner the maximum number of independent KCL equations. This comes about in the following manner. a) The matrix rows are identified by the link inserted to form a loop with tree branches; the tree branches completing the loop are identified by the column entries for the given row. b) It follows that the row entries for a given column indicate the links that involve the use of the column branch to form a loop. c) From b) it follows that any closed path (loop) from one end of the column branch to the other (see diagram to right) must pass through the links which necessarily are part of the loops (one link per loop). Further the polarity of each link relative to the column branch is indicated by the sign of the column entry. Hence a KCL equation can be written using the column branch and the column links; these branches correspond to all the currents leaving (or entering) a closed volume. d) The equations so written are independent, since each contains a branch (the column branch) not contained in any other equation. Hence the link currents form the minimum number of independent current variables. For the circuit illustrated, I1 = -I4 + I5, I3 = -I2 +I7, I6 = I2 - I4 + I5, and I8 = -I2 + I4 + I7. e) The general conclusions can be verified in a specific instance very easily. Simply select a tree (column) branch and then reduce the length of all other tree branches to zero thus bringing their nodes together. This separates all the nodes into two groups clustered about the ends of the selected tree branch. To cross over from one of these node groups to the other requires using either the selected tree branch or a link. The figure to the left shows the nodes 'collapsed' on tree branch #6, and the branches that cross from one set of nodes to the other. Note that not all the links cross over. Circuits 3 M H Miller
4 In summary then: a) Select a tree and form the tieset matrix; the matrix columns correspond to all the circuit branches while the rows correspond to the link branches. In general it is easiest to fill in the matrix row by row; each row corresponds to a KVL equation written around a loop formed when the link corresponding to the row is added to the tree (all other links absent). There are B (N-1) KVL equations expressed in terms of tree branch voltages; these are independent equations since each equation involves a link voltage not involved in any other equation. b) From the matrix columns write N-1 KCL equations expressing the tree branch currents in terms of the link currents. The link currents thus form a set of variables by which all branch currents can be expressed. c) In addition to these equations there are B constitutive equations relating a branch voltage to a branch current. To solve these equations: a) Substitute for the branch voltages in the KVL equations to obtain B-(N-1) equations in terms of B branch current variables; b) Substitute from the N-1 KCL equations to eliminate all but the B-(N-1) link currents; c) Solve the B -(N-1) equations for the link current unknowns; d) Back substitute to calculate the remaining branch voltages and currents. While this may be a tedious procedure (typically it is) it has a number of rather important advantages. We are assured from the beginning that the procedure will converge to a solution, and that there is no uncertainty about the independence of the equations selected. Moreover for topologically complicated circuits filling in the matrix rows is simplified because only one loop is formed for each row. In summary then: a) Select a tree and form the tieset matrix; the matrix columns correspond to all the circuit branches while the rows correspond to the link branches. In general it is easiest to fill in the matrix row by row; each row corresponds to a KVL equation written around a loop formed when the link corresponding to the row is added to the tree (all other links absent). There are B (N-1) KVL equations expressed in terms of tree branch voltages; these are independent equations since each equation involves a link voltage not involved in any other equation. b) From the matrix columns write N-1 KCL equations expressing the tree branch currents in terms of the link currents. The link currents thus form a set of variables by which all branch currents can be expressed. c) In addition to these equations there are B constitutive equations relating a branch voltage to a branch current. To solve these equations: a) Substitute for the branch voltages in the KVL equations to obtain B-(N-1) equations in terms of B branch current variables; b) Substitute from the N-1 KCL equations to eliminate all but the B-(N-1) link currents; c) Solve the B -(N-1) equations for the link current unknowns; d) Back substitute to calculate the remaining branch voltages and currents. While this may be a tedious procedure (typically it is) it has a number of rather important advantages. We are assured from the beginning that the procedure will converge to a solution, and that there is no uncertainty about the independence of the equations selected. Moreover for topologically complicated circuits filling in the matrix rows is simplified because only one loop is formed for each row. Circuits 4 M H Miller
5 As an additional illustration the KVL and KCL equations are written below for same circuit graph used before, but with a different tree. v2 + v6 + v7 = 0 v1 + v3 - v4 + v6 + v7 = 0 v1 + v5 + v6 = 0 -v1 + v4 - v6 + v8 = 0 i1 = i3 + i5 - i8 i2 = i2 i3 = i3 i4 = -i3 + i8 i5 = i5 i6 = i2 + i3 + i5 - i8 i7 = i2 + i3 Circuits 5 M H Miller
6 Choosing Independent Voltage Variables: Voltages and current appear in the KCL and KVL in a formally symmetric fashion, and so it should not be surprising to find a procedure employing voltage variables dual to the tieset procedure for current variables. Thus consider again a network with B branches and N nodes, and select a tree for the graph. For an illustration we use the same graph as before and, although it is not necessary, for comparison to the preceding discussion we use the same tree as before. Whereas the link currents provide a set of independent current variable the N-1 tree branch voltages provide a set of independent voltage variables; setting these branch voltages to zero forces all branch voltages to zero. Remember that each link is a connection between nodes, and hence KVL enables each link voltage to be expressed in terms of only tree branch voltages. It is convenient to record these expressions in a ( cutset') matrix similarly to what was done for the current variables with a tieset matrix. The rows of the matrix are associated with the voltage drop across tree branches (in place of link currents for the tieset matrix) and the columns are the graph branches. A column entry in a given row is ' ',1, or -1, determined as follows. Insert each branch into the tree in turn; remove branches inserted earlier. Express the voltage drop across the inserted branch in terms of tree branch voltages. This is always possible since the inserted branch either is a tree branch, or it is a link and forms a loop with tree branches. The table for the illustrative network and the tree selected is shown to the left; the coefficients of the voltage expressions are entered into the table. The expressions for branch voltage drop in terms of tree branch voltages can be read back from the columns, e.g., v4 = v1 + v6 - v8 The rows of the matrix provide very useful information also; the group of branches corresponding to nonzero entries in a row is called a cutset. The voltage expression for each of the cutset branches requires use of the tree branch voltage corresponding to the row. Suppose all the tree branches shrink to zero length except the one corresponding to the row. This divide the graph nodes into two group such that a path from a node in one group to a node in the other group must pass through a cutset branch (see figure to right). Hence the cutset branches can be used to write KCL equations. For example for the cutset associated with tree branch 8 write Circuits 6 M H Miller
7 0 = i2 - i4 - i7 + i8 These KCL equations must be independent since each equation involves a tree branch not included in any other equations. In summary then: a) Select a tree and form the cutset matrix; the matrix columns correspond to all the circuit branches while the rows correspond to the tree branches. In general it is easiest to fill in the matrix column by column; each column corresponds to a KVL equation written to express each branch voltage in terms of tree branch voltages. The tree voltages form a set of voltage variables by which all branch voltages can be expressed. There are B-(N-1) KVL equations for the link branch voltages expressed in terms of tree branch voltages; these are independent equations since each equation involves a link voltage not involved in any other equation. b) From the matrix rows write N-1 independent KCL equations; the equations are independent because each equation involves a unique tree voltage. In addition to these equations there are B constitutive equations relating a branch voltage to a branch current. To solve these equations: a) Substitute for the branch currents in the KCL equations to obtain N-1 equations in terms of B branch voltage variables; b) Substitute from the B-(N-1) KVL equations to eliminate all but the N-1tree branch voltages. c) Solve the N-1 equations for the link current unknowns; d) Back substitute to calculate the remaining branch voltages and currents. Circuits 7 M H Miller
8 Circuits 9 M H Miller
9 Circuits 10 M H Miller
10 Circuits 11 M H Miller
11 Circuits 12 M H Miller
Mesh-Current Method (Loop Analysis)
Mesh-Current Method (Loop Analysis) Nodal analysis was developed by applying KCL at each non-reference node. Mesh-Current method is developed by applying KVL around meshes in the circuit. A mesh is a loop
2.1 Introduction. 2.2 Terms and definitions
.1 Introduction An important step in the procedure for solving any circuit problem consists first in selecting a number of independent branch currents as (known as loop currents or mesh currents) variables,
Series and Parallel Resistive Circuits
Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act
Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit:
Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Solution: We ll begin by choosing the bottom node to be the reference node. Next we ll label the
Circuit Analysis using the Node and Mesh Methods
Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The
Nodal and Loop Analysis
Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important
Analysis of a single-loop circuit using the KVL method
Analysis of a single-loop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power
Module 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide
TECHNIQUES OF. C.T. Pan 1. C.T. Pan
TECHNIQUES OF CIRCUIT ANALYSIS C.T. Pan 1 4.1 Introduction 4.2 The Node-Voltage Method ( Nodal Analysis ) 4.3 The Mesh-Current Method ( Mesh Analysis ) 4.4 Fundamental Loop Analysis 4.5 Fundamental Cutset
Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models
EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm
How To Find The Current Of A Circuit
The node voltage method Equivalent resistance Voltage / current dividers Source transformations Node voltages Mesh currents Superposition Not every circuit lends itself to short-cut methods. Sometimes
DC mesh current analysis
DC mesh current analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
Question 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010
Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun
EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy)
EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy) A completely analogous procedure can be used to find the state equations of electrical systems (and, ultimately, electro-mechanical systems
6 Series Parallel Circuits
6 Series Parallel Circuits This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/. Air Washington
120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY PROBLEMS SECTION 3.1
IRWI03_082132v3 8/26/04 9:41 AM Page 120 120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY Nodal analysis for an Nnode circuit Select one node in the Nnode circuit as the reference node. Assume
Thevenin Equivalent Circuits
hevenin Equivalent Circuits Introduction In each of these problems, we are shown a circuit and its hevenin or Norton equivalent circuit. he hevenin and Norton equivalent circuits are described using three
( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:
Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in
Solving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor
the points are called control points approximating curve
Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.
Electrical Fundamentals Module 3: Parallel Circuits
Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Recall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections
1.2 Solving a System of Linear Equations
1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables
DC Circuits (Combination of resistances)
Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti
3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or
These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.
DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms
Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits)
Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Administration: o Prayer o Turn in quiz Electricity and Electronics, Chapter 8, Introduction: o
The Graphical Method: An Example
The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005
Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division
SERIES-PARALLEL DC CIRCUITS
Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills
MATHEMATICS FOR ENGINEERS BASIC MATRIX THEORY TUTORIAL 2
MATHEMATICS FO ENGINEES BASIC MATIX THEOY TUTOIAL This is the second of two tutorials on matrix theory. On completion you should be able to do the following. Explain the general method for solving simultaneous
10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method
578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after
Dependent Sources: Introduction and analysis of circuits containing dependent sources.
Dependent Sources: Introduction and analysis of circuits containing dependent sources. So far we have explored timeindependent (resistive) elements that are also linear. We have seen that two terminal
Determinants can be used to solve a linear system of equations using Cramer s Rule.
2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution
FACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
How To Understand And Solve A Linear Programming Problem
At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0
1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral
SIGNAL FLOW GRAPHS. Prof. S. C.Pilli, Principal, Session: XI, 19/09/06 K.L.E.S. College of Engineering and Technology, Belgaum-590008.
SIGNA FOW GAPHS An alternate to block diagram is the signal flow graph due to S. J. Mason. A signal flow graph is a diagram that represents a set of simultaneous linear algebraic equations. Each signal
Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi
Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture - 9 Basic Scheduling with A-O-A Networks Today we are going to be talking
Linear Codes. Chapter 3. 3.1 Basics
Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length
LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective:
LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective: In this lab, you will become familiar with resistors and potentiometers and will learn how to measure resistance. You will also
OPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
ES250: Electrical Science. HW7: Energy Storage Elements
ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
Calibration and Linear Regression Analysis: A Self-Guided Tutorial
Calibration and Linear Regression Analysis: A Self-Guided Tutorial Part 1 Instrumental Analysis with Excel: The Basics CHM314 Instrumental Analysis Department of Chemistry, University of Toronto Dr. D.
Lecture 12: DC Analysis of BJT Circuits.
Whites, 320 Lecture 12 Page 1 of 9 Lecture 12: D Analysis of JT ircuits. n this lecture we will consider a number of JT circuits and perform the D circuit analysis. For those circuits with an active mode
Methods for Finding Bases
Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,
2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system
1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
Lecture 3: DC Analysis of Diode Circuits.
Whites, EE 320 Lecture 3 Page 1 of 10 Lecture 3: DC Analysis of Diode Circuits. We ll now move on to the DC analysis of diode circuits. Applications will be covered in following lectures. Let s consider
Kirchhoff s Laws Physics Lab IX
Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
Solving Systems of Linear Equations Using Matrices
Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.
Formal Languages and Automata Theory - Regular Expressions and Finite Automata -
Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
Important Financial Concepts
Part 2 Important Financial Concepts Chapter 4 Time Value of Money Chapter 5 Risk and Return Chapter 6 Interest Rates and Bond Valuation Chapter 7 Stock Valuation 130 LG1 LG2 LG3 LG4 LG5 LG6 Chapter 4 Time
FURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics
NOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
4.5 Linear Dependence and Linear Independence
4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then
Lecture L3 - Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
Systems of Linear Equations
Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11-]. Main points in this section: 1. Definition of Linear
Linear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development
MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!
1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.
1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points
1 Determinants and the Solvability of Linear Systems
1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
Math 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and
Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types
Basic Logic Gates Richard E. Haskell
BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
MATH 551 - APPLIED MATRIX THEORY
MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
Cloud Computing is NP-Complete
Working Paper, February 2, 20 Joe Weinman Permalink: http://www.joeweinman.com/resources/joe_weinman_cloud_computing_is_np-complete.pdf Abstract Cloud computing is a rapidly emerging paradigm for computing,
The Open University s repository of research publications and other research outputs
Open Research Online The Open University s repository of research publications and other research outputs The degree-diameter problem for circulant graphs of degree 8 and 9 Journal Article How to cite:
A Direct Numerical Method for Observability Analysis
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL 15, NO 2, MAY 2000 625 A Direct Numerical Method for Observability Analysis Bei Gou and Ali Abur, Senior Member, IEEE Abstract This paper presents an algebraic method
1. Introduction and Chapter Objectives
Real Analog Circuits 1 Chapter 1: Circuit Analysis Fundamentals 1. Introduction and Chapter Objectives In this chapter, we introduce all fundamental concepts associated with circuit analysis. Electrical
Lab 2: Resistance, Current, and Voltage
2 Lab 2: Resistance, Current, and Voltage I. Before you come to la.. A. Read the following chapters from the text (Giancoli): 1. Chapter 25, sections 1, 2, 3, 5 2. Chapter 26, sections 1, 2, 3 B. Read
Chapter 7 Direct-Current Circuits
Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9
Series and Parallel Circuits
Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There
5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
Decision trees DECISION NODES. Kluwer Academic Publishers 2001 10.1007/1-4020-0611-X_220. Stuart Eriksen 1, Candice Huynh 1, and L.
Kluwer Academic Publishers 21 1.17/1-42-611-X_22 Decision trees Stuart Eriksen 1, Candice Huynh 1, and L. Robin Keller 1 (1) University of California, Irvine, USA Without Abstract A decision tree is a
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
Factorising quadratics
Factorising quadratics An essential skill in many applications is the ability to factorise quadratic expressions. In this unit you will see that this can be thought of as reversing the process used to
3. Solve the equation containing only one variable for that variable.
Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated
Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.
_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Project Scheduling: PERT/CPM
Project Scheduling: PERT/CPM Project Scheduling with Known Activity Times (as in exercises 1, 2, 3 and 5 in the handout) and considering Time-Cost Trade-Offs (as in exercises 4 and 6 in the handout). This
Student Exploration: Circuits
Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these
. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9
Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a
