NCCI: Elastic critical moment for lateral torsional buckling
|
|
|
- Aubrie Jackson
- 8 years ago
- Views:
Transcription
1 NCCI: Elastic critical moment for lateral torsional buckling This NCCI gives the expression of the elastic critical moment for doubly symmetric crosssections. Values of the factors involved in the calculation are given for common cases. For a beam under a uniformly distributed load with end moments or a concentrated load at mid-span with end moments, the values for the factors are given in graphs. Contents 1. General. ethod for doubly symmetric sections 3. C 1 and C factors 4 4. References 1 Page 1
2 1. General For doubly symmetric cross-sections, the elastic critical moment cr may be calculated by the method given in paragraph. For cases not covered by the method given in paragraph, the elastic critical moment may be determined by a buckling analysis of the beam provided that the calculation accounts for all the parameters liable to affect the value of cr : geometry of the cross-section warping rigidity position of the transverse loading with regard to the shear centre restraint conditions The LTBeam software is specific software for the calculation of the critical moment cr. It may be downloaded free of charge from the following web site: ethod for doubly symmetric sections The method given hereafter only applies to uniform straight members for which the crosssection is symmetric about the bending plane. The conditions of restraint at each end are at least : restrained against lateral movement restrained against rotation about the longitudinal axis The elastic critical moment may be calculated from the following formula derived from the buckling theory : EI k I w kl GI t cr C1 C g C kl kw I EI g (1) where E is the Young modulus (E = N/mm ) G is the shear modulus (G = N/mm ) I I t is the second moment of area about the weak axis is the torsion constant I w is the warping constant Page
3 L is the beam length between points which have lateral restraint k and k w are effective length factors g is the distance between the point of load application and the shear centre. Note : for doubly symmetric sections, the shear centre coincides with the centroid. C 1 and C are coefficients depending on the loading and end restraint conditions (see 3). The factor k refers to end rotation on plan. It is analogous to the ratio of the buckling length to the system length for a compression member. k should be taken as not less than 1,0 unless less than 1,0 can be justified. The factor k w refers to end warping. Unless special provision for warping fixity is made, k w should be taken as 1,0. In the general case g is positive for loads acting towards the shear centre from their point of application (Figure.1). F S S F g > 0 g < 0 Figure.1 Point of application of the transverse load Page 3
4 In the common case of normal support conditions at the ends (fork supports), k and k w are taken equal to 1. cr C 1 EI L I I w L GI EI t C g C g () When the bending moment diagram is linear along a segment of a member delimited by lateral restraints, or when the transverse load is applied in the shear centre, C g = 0. The latter expression should be simplified as follows : EI I L GI w t cr C1 (3) L I EI For doubly symmetric I-profiles, the warping constant I w may be calculated as follows : I w I h t 4 f (4) where h t f is the total depth of the cross-section is the flange thickness 3. C 1 and C factors 3.1 General The C 1 and C factors depend on various parameters : section properties, support conditions, moment diagram It can be demonstrated that the C 1 and C factors depend on the ratio : EI GI w t L (5) The values given in this document have been calculated with the assumption that = 0. This assumption leads to conservative values of C 1. Page 4
5 3. ember with end moments only The factor C 1 may be determined from Table 3.1 for a member with end moment loading Figure 3.1 ember with end moments Table 3.1 Values of C 1 for end moment loading (for k = 1) C 1 +1,00 1,00 +0,75 1,14 +0,50 1,31 +0,5 1,5 0,00 1,77-0,5,05-0,50,33-0,75,57-1,00,55 Page 5
6 3.3 ember with transverse loading Table 3. gives values of C 1 and C for some cases of a member with transverse loading, Table 3. Values of factors C 1 and C for cases with transverse loading (for k = 1) Loading and support conditions Bending moment diagram C 1 C 1,17 0,454,578 1,554 1,348 0,630 1,683 1,645 Note : the critical moment cr is calculated for the section with the maximal moment along the member 3.4 ember with end moments and transverse loading For combined loading of end moments and transverse loads as shown in Figure 3., values of C 1 and C may be obtained from the curves given hereafter. Two cases are considered: Case a) end moments with a uniformly distributed load Case b) end moments with a concentrated load at mid-span The moment distribution may be defined using two parameters : is the ratio of end moments. By definition, is the maximum end moment, and so : -1 1 ( = 1 for a uniform moment) is the ratio of the moment due to transverse load to the maximum end moment Case a) ql 8 Page 6
7 Case b) FL 4 Sign convention for : > 0 < 0 if and the transverse load (q or F), each supposed acting alone, bend the beam in the same direction (e.g. as shown in the figure below) otherwise The values of C 1 and C have been determined for k = 1 and k w = 1. q F L (a) L (b) Figure 3. End moments with a transverse load Page 7
8 3.0 C ,4 0,3 0, 0, ,8 0,7 0,6 0,5 1. 1, 1 1, > C ,9-1 -1, , ,7-0, ,5.5-0,3-0,4-1, ,1-0, -1,3-1,4-1,5-1,6-1,7-1, < 0 Figure 3.3 End moments and uniformly distributed load Factor C 1 Page 8
9 0.5 C , 1,5 1 0,9 0,7 0,8 0. 0,3 0,5 0,4 0, , 0, > 0.5 C -1,.0-1, ,8-0,9-1,3-1,5-1,4-1,6-1, ,8 - -0,7-0, ,5-0,4-0,3-0, -0, < 0 Figure 3.4 End moments and uniformly distributed load Factor C Page 9
10 3.0 C ,7 0,6 0,5 0,4 0,3 0, 0, ,9 0,8 1 1, 1,5 1 C 1.1 0, 0, > C ,1-1, -0, ,7-0,8-0,6.5-0,5-0,4-1,3-0,3-1,4-0, -1, ,1-1,6-1,7-1, < 0 Figure 3.5 End moments and point load at mid-span Factor C 1 Page 10
11 0.5 C 0.4 1,5 1, 0.3 0,6 1 0,9 0,8 0,7 0,5 0. 0,4 0, , 0, > 0.5 C.0-1, -1,4-1, ,3-1,5-1,7 - -1,8-1, ,9-0,8-0, ,6-0,5-0,4-0,3-0, -0, < 0 Figure 3.6 End moments and point load at mid-span Factor C Page 11
12 4. References 1 ENV Eurocode 3 : Design of steel structures Part 1.1 : General rules and rules for buildings. European Committee for Standardisation. Timoshenko, S.P. and Gere, J.. Theory of elastic stability. nd Edition. c Graw-Hill Djalaly, H. Calcul de la résistance ultime au déversement dans le cas de la flexion déviée. Revue Construction étallique n CTIC. 4 Galéa, Y. Déversement élastique d une poutre à section bi-symétrique soumise à des moments d extrémité et une charge repartee ou concentrée. Revue Construction étallique n -00. CTIC. Page 1
13 Quality Record RESOURCE TITLE NCCI: Elastic critical moment for lateral torsional buckling Reference(s) ORIGINAL DOCUENT Name Company Date Created by Alain Bureau CTIC Technical content checked by Yvan Galéa CTIC Editorial content checked by D C Iles SCI /3/05 Technical content endorsed by the following STEEL Partners: 1. UK G W Owens SCI 1/3/05. France A Bureau CTIC 1/3/05 3. Sweden A Olsson SBI 1/3/05 4. Germany C ueller RWTH 1/3/05 5. Spain J Chica Labein 1/3/05 Resource approved by Technical Coordinator G W Owens SCI 1/4/06 TRANSLATED DOCUENT This Translation made and checked by: Translated resource approved by: Corrigendum : Figure 3.4 Labels corrected (for curves 1.1 to 1.9) Page 13
14 Wrapper Information Title* NCCI: Elastic critical moment for lateral torsional buckling Series Description* Access Level* This NCCI gives the expression of the elastic critical moment for doubly symmetric crosssections. Values of the factors involved in the calculation are given for common cases. For a beam under a uniformly distributed load with end moments or a concentrat Expertise Identifiers* Filename P:\CP\CP554\Finaliation\SN files\003\.doc Format Category* Resource Type Viewpoint icrosoft Office Word; 14 Pages; 1400kb; Non Contradictory Complementary Information Subject* Application Area(s) ulti-storey buildings; Dates Created Date 1/10/010 Last odified Date Checked Date Valid From Valid To 03/0/005 Language(s)* Contacts Author Checked By Approved by Editor Last odified By Alain Bureau, CTIC Yvan Galéa, CTIC Keywords* See Also Lateral Torsional Buckling Eurocode Reference Worked Example(s) Commentary Discussion Other Coverage National Applicability Special Instructions Page 14
New approaches in Eurocode 3 efficient global structural design
New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural
Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar
Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder
UNRESTRAINED BEAM DESIGN I
11 UNRESTRAINED BEA DESIGN I 1.0 INTRODUCTION Generally, a beam resists transverse loads by bending action. In a typical building frame, main beams are employed to span between adjacent columns; secondary
III. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.)
ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University it of Maryland Compression Members Following subjects are covered:
MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS
MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.
Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams
Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads
Eurocode 3: Design of steel structures
Eurocode 3: Design of steel structures David Brown, Associate Director, Steel Construction Institute Introduction Structural engineers should be encouraged that at least in steel, design conforming to
STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of composite beams
STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design of Multi-Storey Steel Buildings Part 10: Guidance to developers of software for the design
The performance of conventional discrete torsional bracings in steel-concrete composite bridges: a survey of Swedish bridges
The performance of conventional discrete torsional bracings in steel-concrete composite bridges: a survey of Swedish bridges Oscar Carlson and Lukasz Jaskiewicz Avdelningen för Konstruktionsteknik Lunds
Eurocode 3 for Dummies The Opportunities and Traps
Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email [email protected] Slides available on the web http://www2.umist.ac.uk/construction/staff/
Stresses in Beam (Basic Topics)
Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and
INTRODUCTION TO BEAMS
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis
Bending Stress in Beams
936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending
MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements
MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.
Optimising plate girder design
Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree
MATERIALS AND MECHANICS OF BENDING
HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL
Section 16: Neutral Axis and Parallel Axis Theorem 16-1
Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts
Preliminary steel concrete composite bridge design charts for Eurocodes
Preliminary steel concrete composite bridge 90 Rachel Jones Senior Engineer Highways & Transportation Atkins David A Smith Regional Head of Bridge Engineering Highways & Transportation Atkins Abstract
Design Analysis and Review of Stresses at a Point
Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to
Concrete Frame Design Manual
Concrete Frame Design Manual Turkish TS 500-2000 with Turkish Seismic Code 2007 For SAP2000 ISO SAP093011M26 Rev. 0 Version 15 Berkeley, California, USA October 2011 COPYRIGHT Copyright Computers and Structures,
Introduction. Background
Introduction Welcome to CFS, the comprehensive cold-formed steel component design software. The endless variety of shapes and sizes of cold-formed steel members, combined with the complex failure modes
Design of Members. Rui Simões. Department of Civil Engineering University of Coimbra
Design o embers Rui Simões Department o Civil Engineering Universit o Coimbra Eurocodes Design o steel buildings with worked examples Brussels, 6 7 October 04 Contents Introduction Design o columns Design
Optimum proportions for the design of suspension bridge
Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering
MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS
MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.
DS/EN 1993-1-1 DK NA:2014
National Annex to Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings Foreword This national annex (NA) is a revision of DS/EN 1993-1-1 DK NA:2013 and replaces the
DISTRIBUTION OF LOADSON PILE GROUPS
C H A P T E R 7 DISTRIBUTION OF LOADSON PILE GROUPS Section I. DESIGN LOADS 7-1. Basic design. The load carried by an individual pile or group of piles in a foundation depends upon the structure concerned
Add-on Module STEEL EC3. Ultimate Limit State, Serviceability, Fire Resistance, and Stability Analyses According. Program Description
Version December 2014 Add-on Module STEEL EC3 Ultimate Limit State, Serviceability, Fire Resistance, and Stability Analyses According to Eurocode 3 Program Description All rights, including those of translations,
MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.
MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS
EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering
Finite Element Formulation for Plates - Handout 3 -
Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS
ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,
Deflections. Question: What are Structural Deflections?
Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the
Structural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:
Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems
Introduction to Mechanical Behavior of Biological Materials
Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure
ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those
Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges
7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience
bi directional loading). Prototype ten story
NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation
Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method
Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Yun-gang Zhan School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang,
Approximate Analysis of Statically Indeterminate Structures
Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis
16. Beam-and-Slab Design
ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil
The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.
9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase
Shear Forces and Bending Moments
Chapter 4 Shear Forces and Bending Moments 4.1 Introduction Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the
Canadian Standards Association
S6S1-10 10.10.2.2 Laterally supported members When continuous lateral support is provided to the compression flange of a member subjected to bending about its major axis, the factored moment resistance,
Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column
Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend
Finite Element Formulation for Beams - Handout 2 -
Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called
SSLV160 - bi--supported Beam subjected to a nodal force on its neutral fiber
Titre : SSLV160 - Poutre bi-appuyée soumise à une force no[...] Date : 24/07/2014 Page : 1/8 SSLV160 - bi--supported Beam subjected to a nodal force on its neutral fiber Abstract: This test makes it possible
Recitation #5. Understanding Shear Force and Bending Moment Diagrams
Recitation #5 Understanding Shear Force and Bending Moment Diagrams Shear force and bending moment are examples of interanl forces that are induced in a structure when loads are applied to that structure.
Compression Members: Structural elements that are subjected to axial compressive forces
CHAPTER 3. COMPRESSION MEMBER DESIGN 3.1 INTRODUCTORY CONCEPTS Compression Members: Structural elements that are subjected to axial compressive forces onl are called columns. Columns are subjected to axial
Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
CLASSIFICATION OF CROSS SECTIONS FOR STEEL BEAMS IN DIFFERENT DESIGN CODES
CLASSIFICATION OF CROSS SECTIONS FOR STEEL BEAMS IN DIFFERENT DESIGN CODES Kalju Loorits Rakenteiden Mekaniikka,Vol.28 No 1, 1995, pp. 19-33 ABSTRACT In the paper comparison of classification for!-sections
Technical Notes 3B - Brick Masonry Section Properties May 1993
Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications
Transverse web stiffeners and shear moment interaction for steel plate girder bridges
Transverse web stiffeners and shear moment 017 Chris R Hendy MA (Cantab) CEng FICE Head of Bridge Design and Technology Highways & Transportation Atkins Epsom, UK Francesco Presta CEng, MIStructE Senior
EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST
EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti
Numerical modelling of shear connection between concrete slab and sheeting deck
7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres
Overhang Bracket Loading. Deck Issues: Design Perspective
Deck Issues: Design Perspective Overhang Bracket Loading Deck overhangs and screed rails are generally supported on cantilever brackets during the deck pour These brackets produce an overturning couple
STEEL BUILDINGS IN EUROPE. Single-Storey Steel Buildings Part 5: Detailed Design of Trusses
STEEL BUILDIGS I EUROPE Single-Storey Steel Buildings Part 5: Detailed Design of Trusses Single-Storey Steel Buildings Part 5: Detailed Design of Trusses 5 - ii Part 5: Detailed Design of Trusses FOREWORD
Lecture 8 Bending & Shear Stresses on Beams
Lecture 8 Bending & hear tresses on Beams Beams are almost always designed on the asis of ending stress and, to a lesser degree, shear stress. Each of these stresses will e discussed in detail as follows.
Stress Strain Relationships
Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the
DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia
DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements
CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES
Nordic Steel Construction Conference 2012 Hotel Bristol, Oslo, Norway 5-7 September 2012 CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES Ina Birkeland a,*, Arne Aalberg
Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0
Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description Design a gantry crane meeting the geometry presented in Figure 1 on page #325 of the course textbook
Eurocode 4: Design of composite steel and concrete structures
Eurocode 4: Design of composite steel and concrete structures Dr Stephen Hicks, Manager Structural Systems, Heavy Engineering Research Association, New Zealand Introduction BS EN 1994 (Eurocode 4) is the
Detailing of Reinforcment in Concrete Structures
Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For
Forensic engineering of a bored pile wall
NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Forensic engineering of a bored pile wall Willem Robert de Bruin Geovita AS, Norway,
m i: is the mass of each particle
Center of Mass (CM): The center of mass is a point which locates the resultant mass of a system of particles or body. It can be within the object (like a human standing straight) or outside the object
Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods
Impacts of Tunnelling on Ground and Groundwater and Control Measures Part 1: Estimation Methods Steve Macklin Principal Engineering Geologist GHD Melbourne 1. Introduction, scope of Part 1 2. Terminology
ENGINEERING COUNCIL CERTIFICATE LEVEL
ENGINEERING COUNCIL CERTIICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL - BASIC STUDIES O STRESS AND STRAIN You should judge your progress by completing the self assessment exercises. These may be sent
Mechanics of Materials Summary
Mechanics of Materials Summary 1. Stresses and Strains 1.1 Normal Stress Let s consider a fixed rod. This rod has length L. Its cross-sectional shape is constant and has area. Figure 1.1: rod with a normal
COMPARISON OF STRESS BETWEEN WINKLER-BACH THEORY AND ANSYS FINITE ELEMENT METHOD FOR CRANE HOOK WITH A TRAPEZOIDAL CROSS-SECTION
COMPARISON OF STRESS BETWEEN WINKLER-BACH THEORY AND ANSYS FINITE ELEMENT METHOD FOR CRANE HOOK WITH A TRAPEZOIDAL CROSS-SECTION Yogesh Tripathi 1, U.K Joshi 2 1 Postgraduate Student, 2 Associate Professor,
Finite Element Simulation of Simple Bending Problem and Code Development in C++
EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 013 ISSN 86-48, www.euacademic.org IMPACT FACTOR: 0.485 (GIF) Finite Element Simulation of Simple Bending Problem and Code Development in C++ ABDUL
How To Calculate Tunnel Longitudinal Structure
Calculation and Analysis of Tunnel Longitudinal Structure under Effect of Uneven Settlement of Weak Layer 1,2 Li Zhong, 2Chen Si-yang, 3Yan Pei-wu, 1Zhu Yan-peng School of Civil Engineering, Lanzhou University
Chapter 8. Flexural Analysis of T-Beams
Chapter 8. Flexural Analysis of T-s 8.1. Reading Assignments Text Chapter 3.7; ACI 318, Section 8.10. 8.2. Occurrence and Configuration of T-s Common construction type.- used in conjunction with either
SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:
SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the
Structural Design Calculation For Pergola
Structural Design Calculation For Pergola Revision :5 Prepared by :EC Date : 8/10/009 CONTENTS 1. Introduction... Design Code and Reference 3. Design Synopsis 4. Design Parameters 4.1 Design Load. 4. Design
PRACTICAL METHODS FOR CRITICAL LOAD DETERMINATION AND STABILITY EVALUATION OF STEEL STRUCTURES PEDRO FERNANDEZ
PRACTICAL METHODS FOR CRITICAL LOAD DETERMINATION AND STABILITY EVALUATION OF STEEL STRUCTURES By PEDRO FERNANDEZ B.S., Instituto Tecnologico y de Estudios Superiores de Occidente, 1992 A Thesis submitted
Structural Integrity Analysis
Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces
MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES OF STRESS AND STRAIN
MECHANICAL PRINCIPLES HNC/D PRELIMINARY LEVEL TUTORIAL 1 BASIC STUDIES O STRESS AND STRAIN This tutorial is essential for anyone studying the group of tutorials on beams. Essential pre-requisite knowledge
Laterally Loaded Piles
Laterally Loaded Piles 1 Soil Response Modelled by p-y Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil
STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION
Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable
Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able
Lab for Deflection and Moment of Inertia
Deflection and Moment of Inertia Subject Area(s) Associated Unit Lesson Title Physics Wind Effects on Model Building Lab for Deflection and Moment of Inertia Grade Level (11-12) Part # 2 of 3 Lesson #
8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
Shear Force and Moment Diagrams
C h a p t e r 9 Shear Force and Moment Diagrams In this chapter, you will learn the following to World Class standards: Making a Shear Force Diagram Simple Shear Force Diagram Practice Problems More Complex
Lap Fillet Weld Calculations and FEA Techniques
Lap Fillet Weld Calculations and FEA Techniques By: MS.ME Ahmad A. Abbas Sr. Analysis Engineer [email protected] www.advancedcae.com Sunday, July 11, 2010 Advanced CAE All contents Copyright
DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,
DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared
5 Steel elements. 5.1 Structural design At present there are two British Standards devoted to the design of strucof tural steel elements:
5 Steel elements 5.1 Structural design At present there are two British Standards devoted to the design of strucof steelwork tural steel elements: BS 449 The use of structural steel in building. BS 5950
9.3 Two-way Slabs (Part I)
9.3 Two-way Slabs (Part I) This section covers the following topics. Introduction Analysis and Design Features in Modeling and Analysis Distribution of Moments to Strips 9.3.1 Introduction The slabs are
APOLLO SALES LTD SITE SCAFFOLD STEP DESIGN CHECK CALCULATIONS
Alan White Design APOLLO SALES LTD SITE SCAFFOLD STEP DESIGN CHECK CALCULATIONS Alan N White B.Sc., M.Eng., C.Eng., M.I.C.E., M.I.H.T. Feb 2014 Somerset House 11 Somerset Place GLASGOW G3 7JT Tel:0141
vulcanhammer.net This document downloaded from
This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works
BEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL)
LECTURE Third Edition BES: SHER ND OENT DIGRS (GRPHICL). J. Clark School of Engineering Department of Civil and Environmental Engineering 3 Chapter 5.3 by Dr. Ibrahim. ssakkaf SPRING 003 ENES 0 echanics
How to Design Helical Piles per the 2009 International Building Code
ABSTRACT How to Design Helical Piles per the 2009 International Building Code by Darin Willis, P.E. 1 Helical piles and anchors have been used in construction applications for more than 150 years. The
SIMPLE ANALYSIS OF FRAMED-TUBE STRUCTURES WITH MULTIPLE INTERNAL TUBES
SIMPLE ANALYSIS OF FRAMED-TUBE STRUCTURES WITH MULTIPLE INTERNAL TUBES By Kang-Kun Lee, Yew-Chaye Loo 2, and Hong Guan 3 ABSTRACT: Framed-tube system with multiple internal tubes is analysed using an orthotropic
Eurocode 2: Design of concrete structures
Eurocode 2: Design of concrete structures Owen Brooker, The Concrete Centre Introduction The transition to using the Eurocodes is a daunting prospect for engineers, but this needn t be the case. Industry
Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3.
Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.3 Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is
Vibrations of a Free-Free Beam
Vibrations of a Free-Free Beam he bending vibrations of a beam are described by the following equation: y EI x y t 4 2 + ρ A 4 2 (1) y x L E, I, ρ, A are respectively the Young Modulus, second moment of
SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE
SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,
Final Review Geometry A Fall Semester
Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over
