Dynamic Power Variations in Data Centers and Network Rooms
|
|
|
- Annis Garrett
- 10 years ago
- Views:
Transcription
1 Dynamic Power Variations in Data Centers and Network Rooms By Jim Spitaels White Paper #43 Revision 2
2 Executive Summary The power requirement required by data centers and network rooms varies on a minute by minute basis depending on the computational load. This magnitude of this variation has grown and continues to grow dramatically with the deployment of power management technologies in servers and communication equipment. This variation gives rise to new problems relating to availability and management. 2
3 Introduction Data centers and network rooms draw a total electrical power, which is the sum of the power consumed by the installed Information Technology equipment. Historically, this equipment consumed power at a value that varied only slightly depending on the computational load or the mode of operation. The notebook computer created the requirement that processor power be managed to lengthen battery run time. Power Management technology enabled the power consumption of laptop computer processors to be reduced by up to 90% when lightly loaded. As this technology has matured it has begun to migrate into server design. The result is that newly developed servers can have a power consumption that varies dramatically with workload over time. When power varies with time, a variety of new problems occur for the design and management of data centers and network rooms. A few years ago, this problem was negligible. The problem has now reached a point where it is significant and the magnitude of the problem is growing. Fluctuations in power consumption can lead to unplanned and undesirable consequences in the data center and network room environment; including tripped circuit breakers, overheating, and loss of redundancy in redundant power systems. This situation creates new challenges for people designing or operating data centers and network rooms. Magnitude of Dynamic Power Variation Through the 1990 s, almost all servers drew a nearly consistent amount of power. The primary drivers of power variation in servers were related to disk drives spin-up and speed changes in temperature controlled fans. The computational load placed on processors and memory subsystems caused a negligible variation in overall power consumption. On a typical small business or enterprise servers, the total power variation was on the order of 5% and was almost independent of the computational load. Significant reductions in power consumption require cooperation between the BIOS, chipset, processor, and the operating system. In such a power managed system, whenever the processors are at less than 100% utilization, the operating system will execute an idle thread which will cause the processors to enter a low power state. The amount of time spent in the low power state is inversely proportional to the computational load on the system (e.g. a processor that is operating at 20% CPU utilization will spend 80% of it s time in a low power state). The techniques used to achieve low power states vary among vendors and processor families but the most common techniques involve reducing or stopping clocks and removing or reducing voltages applied to various parts of the processor, chipset and memory. 3
4 Recently, processor vendors have introduced techniques to conserve power while the CPU is actively performing work. These methods involve changing the frequency of the clocks and the magnitude of the voltages applied to the processors to better match the workload applied to the processor in the non-idle state. It is important to note that any technique which conditionally reduces processor power only reduces the average power consumed by the system; the maximum power remains unchanged and is trending higher with each new generation of CPUs. It is also important to recognize that when the processor power becomes a larger fraction of the total power consumption of the server, the variations in total server power consumption due to computational loading become correspondingly larger on a percentage basis. Multiprocessor servers and those with very few disk drives (e.g. blade servers), will therefore have the highest percentage dynamic power variation. The actual measurements of some servers are shown in Table 1. This shows the variation in AC power measured when different computational loads were placed on the computer. Platform Table 1 Dynamic power variation of actual servers Processor Light load power draw Heavy load power draw Percentage variation Dell PowerEdge 1150 Dual Pentium III W 160 W 45% Intel Whitebox Pentium W 142 W 106% IBM BladeCenter HS20 Full chassis 14 blades Dual Xeon 3.4 GHz 2.16 kw 4.05 kw 88% HP BladeSystem BL20pG2 Full chassis 8 blades Dual Xeon 3.06 GHz 1.55 kw 2.77 kw 79% Problems Associated with Dynamic Power Variation Dynamic power variation gives rise to the following new types of problems: Branch circuit overload Most servers spend much of their time operating at light computational loads. For servers with power management, this means that the server will be drawing less than its potential power draw. Most people installing or maintaining data centers and network rooms, however, are unaware that the typical observed server power consumption may be much lower than the potential power consumption when under a high computational load. This situation can lead a data center or network room operator or IT staff to accidentally put too many servers onto a branch circuit. When the sum of the maximum power consumptions of the servers on a branch circuit exceeds the branch circuit rating, the potential for overload is present. Under this condition, a group of servers will operate successfully until the condition occurs where enough of the servers are simultaneously subject to heavy 4
5 loading. The computing conditions that result in such an overload may occur very infrequently, so the system may operate successfully without failure for weeks or even months. During an overload condition caused by the situation described above, the branch circuit will operate at a higher current than the circuit rating. In the data center or network room environment, the most significant consequence of this situation is the branch circuit breaker may trip and terminate the power fed to the computing equipment. This is obviously an extremely undesirable event. Furthermore, since it is happening at a time of high computational load, it is likely that the computing equipment is handling a large number of transactions so the failure is very likely to be occurring at a particularly undesirable time. Overheating In the data center and network room, all of the electrical power consumed by computing equipment is dissipated as heat (one exception to this PoE switches that send a significant fraction of their power down the Ethernet cables VOIP telephones, Wi-Fi access points and other powered devices). When the power consumption of computing equipment varies due to computational load, the heat output also varies. If equipment in one part of the data center suddenly increases its power consumption, this can create a local hot-spot condition in the data center. The data center cooling system may have been balanced using typical power dissipation and a doubling of power in a local area may result in an undesirable temperature rise that the cooling system is not designed for. This may cause equipment to shut down on over temperature, cause the equipment to act abnormally, or it may void equipment warrantees. Loss of redundancy Many servers have dual redundant power inputs, and most high availability data centers and network rooms take advantage of this feature to provide dual power path feeds to the server. These systems can survive a complete failure of any point in either power path and continue operation. During normal operation, the computers are designed so that both power paths equally share the load. When there is a failure in one power path, the full load of the server is transferred to the remaining power feed. This causes the load on that power feed to double. For this reason, the AC mains branch circuits feeding the equipment in a dual path system must always be loaded to less than 50% of rated ampacity, so they have sufficient remaining capacity to take over the complete load if necessary. Ensuring that a branch circuit is loaded to less than 50% of its rating is a task made more difficult when the loads exhibit dynamic power consumption. A system may be tested upon installation and be found to have branch circuits operating safely below 50% of its rating, and then at some future time of high computational load the system may begin operating at greater than 50% of its rating. If a branch circuit in a dual path system enters the condition where the load is over 50% of its capacity, then the redundancy of the system is lost. If one feed were to fail, the second feed would then be immediately overloaded and its breaker would be likely to trip as described in the previous section. Again, since this is happening at a time of high computational load, it is likely that the computing equipment is handling a large number of transactions so the loss of redundancy is very likely to be occurring at a particularly undesirable time. 5
6 Masking of the problem The equipment that exhibits dynamic power consumption may represent only a small fraction of the total power consumption of a data center or network room. If 5% of the equipment in a data center has a dynamic power variation of 2-to-1 and the rest of the equipment draws constant power, then bulk power measurements of the data center at the main power feed or at a Power Distribution Unit might only vary 2.5%. This might cause an operator to believe that no significant dynamic power variation problem is occurring when in reality a significant risk of breaker tripping, overheating, or loss of redundancy may be occurring. Therefore, there is a very real possibility that the problem may exist yet be unrecognized by experienced operators. Managing dynamic power variation To mitigate against the problems described in the previous sections, designers and managers of data centers and network rooms must adapt to the new realities of dynamic power consumption. There are a number of means that can be used to accomplish this, and some are reviewed as follows: Separate branch circuit for each server If a separate branch circuit is provided to each server, then branch circuit overload cannot occur. This is true because every server is assured to operate from a dedicated branch circuit by design. This solves the issue of branch circuit overload and solves the problem of loss of redundancy. It does not solve the thermal problems, but these are typically not the largest risk. However, this is a very complex and expensive solution where small servers are deployed such as 1U or 2U servers since this could require an extremely high number of branch circuits per rack. In the extreme case, a rack filled with dual corded 1U servers could require 84 branch circuits, which corresponds to two large circuit breaker panel boards. This solution is more practical when larger servers or blade servers are used. Establish safety margin standards for worst case and measure compliance at install Most data center and network room operators have standards for loading margins, which are typically expressed as a fraction of the full load branch circuit rating. Typical values chosen are between 60% and 80% of the branch rating, with values of 75% being considered a reasonable tradeoff between power capacity, cost, and availability. To verify compliance with the standard actual branch circuit loads are measured to ensure compliance with the standard. Note that there is a serious problem with this approach when the systems exhibit dynamically varying power consumption because it may be difficult to know the computational load at the time of measurement. Ideally, a heavy computational load would be placed on the protected equipment during the measurement to ensure compliance at worst case. Establish safety margin standards for worst case and calculate compliance In another case, detailed inventories of exactly what equipment is connected to each branch circuit are kept, and the maximum published or measured load drawn by the equipment is kept and summed to ensure that a particular branch circuit is not overloaded. Information regarding maximum load for various equipment is 6
7 available from the individual equipment manufacturer (where the load is often considerably overstated) or from UPS selector applications such as those found on Keeping detailed branch circuit inventories is a common practice in large high availability data centers. However, this requires that the operator know exactly what is plugged into every branch circuit at all times. For most network rooms and smaller data centers there is insufficient control of users to ensure that equipment is not moved, or exchanged, or simply plugged into a different outlet. Therefore this approach is not practical in many installations. These margins can be further reduced to provide for dynamic power increases. For example, the safety margin specification can be that the measured branch load cannot be beyond 35% of branch circuit rating when the equipment is operating in an idle condition. Establish safety margin standards for worst case and monitor compliance ongoing In this case safety margins are established and all branch circuits are continuously monitored on an ongoing basis by an automatic monitoring system. Warnings are sent out when branch loading begins to enter the safety margin area. For example, when using a 60% branch-loading standard, send alerts when the loading passes 60%. The safety margin is established such that the operators would have significant advance warning of a problem area and could take corrective action before an over current condition occurs. This method can be used in conjunction with the other methods described previously. The great advantage of this method is that it works in situations where users are likely to install or move equipment or plug it into a different outlet without the knowledge of the data center manager; a situation is very common in network rooms, collocation facilities, and medium security data centers. This approach can also warn on impending loss of redundancy. This is the most powerful tool that the data center manager can use to manage dynamic power variations in an ever-changing environment. Conclusion The percentage of Information Technology loads in the network room or data center, which exhibit a power consumption that varies significantly with load, is increasing over time. This situation gives rise to a number of unanticipated problems for operators of data center infrastructure. The procedures historically used to minimize the risk of overload must adapt to this new reality. Proper planning and branch circuit power monitoring are critical for ensuring availability in both new and existing facilities where large numbers of servers will be installed. About the Author: Jim Spitaels is a Consulting Engineer for APC. He has Bachelors and Masters Degrees in Electrical Engineering from Worcester Polytechnic Institute. During his 14 years with APC he has developed UPSs, communications products, architectures and protocols, equipment enclosures, power distribution products and he has managed multiple product development teams. Jim also holds 3 US Patents related to UPSs and power systems. 7
Dynamic Power Variations in Data Centers and Network Rooms
Dynamic Power Variations in Data Centers and Network Rooms White Paper 43 Revision 3 by James Spitaels > Executive summary The power requirement required by data centers and network rooms varies on a minute
Overload Protection in a Dual-Corded Data Center Environment
Overload Protection in a Dual-Corded Data Center Environment White Paper 206 Revision 0 by Neil Rasmussen Executive summary In a dual-corded environment, the loss of power on one path will cause the load
Power efficiency and power management in HP ProLiant servers
Power efficiency and power management in HP ProLiant servers Technology brief Introduction... 2 Built-in power efficiencies in ProLiant servers... 2 Optimizing internal cooling and fan power with Sea of
Out-of-box comparison between Dell, HP, and IBM blade servers
Out-of-box comparison between Dell, HP, and IBM blade servers TEST REPORT DECEMBER 2007 Executive summary Dell Inc. (Dell) commissioned Principled Technologies (PT) to compare the out-of-box experience
Strategies for Deploying Blade Servers in Existing Data Centers
Strategies for Deploying Blade Servers in Existing Data Centers By Neil Rasmussen White Paper #125 Revision 1 Executive Summary When blade servers are densely packed, they can exceed the power and cooling
Power Distribution Considerations for Data Center Racks
Power Distribution Considerations for Data Center Racks Power Distribution Considerations for Data Center Racks Table of Contents 3 Overview 4 At what voltage do you run all the IT equipment? 4 What electrical
Out-of-box comparison between Dell and HP blade servers
Out-of-box comparison between and blade servers TEST REPORT JUNE 2007 Executive summary Inc. () commissioned Principled Technologies (PT) to compare the out-of-box experience of a PowerEdge 1955 Blade
Calculating power requirements for HP ProLiant rack-mounted systems
Calculating power requirements for HP ProLiant rack-mounted systems technology brief Abstract... 2 Introduction... 2 Key parameters... 2 Input line voltage... 2 Device VA rating... 3 Device input power...
Summary. Key results at a glance:
An evaluation of blade server power efficiency for the, Dell PowerEdge M600, and IBM BladeCenter HS21 using the SPECjbb2005 Benchmark The HP Difference The ProLiant BL260c G5 is a new class of server blade
Power Efficiency Comparison: Cisco UCS 5108 Blade Server Chassis and Dell PowerEdge M1000e Blade Enclosure
White Paper Power Efficiency Comparison: Cisco UCS 5108 Blade Server Chassis and Dell PowerEdge M1000e Blade Enclosure White Paper March 2014 2014 Cisco and/or its affiliates. All rights reserved. This
Increasing Data Center Efficiency by Using Improved High Density Power Distribution
Increasing Data Center Efficiency by Using Improved High Density Power Distribution By Neil Rasmussen White Paper #128 Executive Summary A new approach to power distribution for high density server installations
Power and Cooling Capacity Management for Data Centers
Power and Cooling Capacity for Data Centers By Neil Rasmussen White Paper #150 Executive Summary High density IT equipment stresses the power density capability of modern data centers. Installation and
Essential NCPI Management Requirements for Next Generation Data Centers
Essential NCPI Requirements for Next Generation Data Centers By Ted Ives White Paper #14 1 Executive Summary The management of physical infrastructure in data centers can no longer be considered independently
Calculating Total Power Requirements for Data Centers
Calculating Total Power Requirements for Data Centers By Richard Sawyer White Paper #3 Executive Summary Part of data center planning and design is to align the power and cooling requirements of the IT
Implementing Energy Efficient Data Centers
Implementing Energy Efficient Data Centers By Neil Rasmussen White Paper #114 Executive Summary Electricity usage costs have become an increasing fraction of the total cost of ownership (TCO) for data
Power to the adaptable data center
Business Unit Manager, Data Center Solutions, Eaton s electrical group IT managers have more options than ever to tailor the power infrastructure to their unique data center and business requirements.
Essential Power System Requirements for Next Generation Data Centers
Essential Power System Requirements for Next Generation Data Centers White Paper #4 Revision 4 Executive Summary Effective mission critical installations must address the known problems and challenges
Motherboard- based Servers versus ATCA- based Servers
Motherboard- based Servers versus ATCA- based Servers Summary: A comparison of costs, features and applicability for telecom application hosting After many years of struggling for market acceptance, it
Three-Phase Electric Power Distribution for Computer Data Centers
Three-hase Electric ower Distribution for Computer Data Centers WHITE AER E901 Geist January 008 Summary This paper will describe the characteristics of three-phase power and outline the advantages of
The Different Types of AC Power Connectors in North America
The Different Types of AC Power Connectors in North America White Paper 20 Revision 1 by James Spitaels > Executive summary A confusing array of AC power plugs and receptacles exist to deliver power to
Improving Economics of Blades with VMware
Improving Economics of Blades with VMware Executive Summary Today IT efficiency is critical for competitive viability. However, IT organizations face many challenges, including, growing capacity while
Reducing Data Center Energy Consumption
Reducing Data Center Energy Consumption By John Judge, Member ASHRAE; Jack Pouchet, Anand Ekbote, and Sachin Dixit Rising data center energy consumption and increasing energy costs have combined to elevate
HP Power Advisor utility: a tool for estimating power requirements for HP ProLiant server systems
HP Power Advisor utility: a tool for estimating power requirements for HP ProLiant server systems technology brief Abstract... 2 Introduction... 2 Key power parameters... 2 Input line voltage... 2 Device
Increase the efficiency of power distribution in your high-density data center
Increase the efficiency of power distribution in your high-density data center Abstract As power density in modern data centers increases, more focus has been placed on improving efficiency in the power
CUTTING-EDGE SOLUTIONS FOR TODAY AND TOMORROW. Dell PowerEdge M-Series Blade Servers
CUTTING-EDGE SOLUTIONS FOR TODAY AND TOMORROW Dell PowerEdge M-Series Blade Servers Simplifying IT The Dell PowerEdge M-Series blade servers address the challenges of an evolving IT environment by delivering
Power and Cooling Innovations in Dell PowerEdge Servers
Power and Cooling Innovations in Dell PowerEdge Servers This technical white paper describes the Dell Energy Smart Architecture and the new and enhanced features designed into Dell PowerEdge 12 th generation
Green Data Center and Virtualization Reducing Power by Up to 50% Pages 10
Green Data Center and Virtualization Reducing Power by Up to 50% Pages 10 Issue August 2007 Contents Executive Summary 2 Blade for Blade, Power is the Same 3 PAN Lowers Power by Reducing Server/CPU Count
Optimizing Power Distribution for High-Density Computing
Optimizing Power Distribution for High-Density Computing Choosing the right power distribution units for today and preparing for the future By Michael Camesano Product Manager Eaton Corporation Executive
Power Efficiency Comparison: Cisco UCS 5108 Blade Server Chassis and IBM FlexSystem Enterprise Chassis
White Paper Power Efficiency Comparison: Cisco UCS 5108 Blade Server Chassis and IBM FlexSystem Enterprise Chassis White Paper March 2014 2014 Cisco and/or its affiliates. All rights reserved. This document
Power Efficiency Comparison of Enterprise-Class Blade Servers and Enclosures
Power Efficiency Comparison of Enterprise-Class Blade Servers and Enclosures A Dell Technical White Paper John Beckett, Robert Bradfield, and the Dell Server Performance Analysis Team THIS WHITE PAPER
Efficiency and Other Benefits of 208 Volt Over 120 Volt Input for IT Equipment
Efficiency and Other Benefits of 208 Volt Over 120 Volt Input for IT Equipment By Neil Rasmussen White Paper #27 Revision 2 Executive Summary Decisions made regarding the distribution of 208V or 120V power
Oracle Database Scalability in VMware ESX VMware ESX 3.5
Performance Study Oracle Database Scalability in VMware ESX VMware ESX 3.5 Database applications running on individual physical servers represent a large consolidation opportunity. However enterprises
Cheat Sheets to Data Center Infrastructure Management
^ Business-wise, Future-drivenTM Cheat Sheets to Data Center Infrastructure Management The Brands You Trust. Table of Contents Introduction...3 How DCIM helps operations...4 How DCIM helps planning...5
High-Efficiency AC Power Distribution for Data Centers
High-Efficiency AC Power Distribution for Data Centers White Paper 128 Revision 2 by Neil Rasmussen > Executive summary The use of 240 volt power distribution for data centers saves floor space, simplifies
Solve your IT energy crisis WITH An energy SMArT SoluTIon FroM Dell
Solve your IT energy crisis WITH AN ENERGY SMART SOLUTION FROM DELL overcome DATA center energy challenges IT managers share a common and pressing problem: how to reduce energy consumption and cost without
A Smart Investment for Flexible, Modular and Scalable Blade Architecture Designed for High-Performance Computing.
Appro HyperBlade A Smart Investment for Flexible, Modular and Scalable Blade Architecture Designed for High-Performance Computing. Appro HyperBlade clusters are flexible, modular scalable offering a high-density
McAfee Data Loss Prevention
Hardware Guide Revision B McAfee Data Loss Prevention 1650, 3650, 4400, 5500 This guide describes the features and capabilities of McAfee Data Loss Prevention (McAfee DLP) appliances to help you to manage
Power Management Strategies for High-Density IT Facilities and Systems. A White Paper from the Experts in Business-Critical Continuity TM
Power Management Strategies for High-Density IT Facilities and Systems A White Paper from the Experts in Business-Critical Continuity TM Executive Summary Increases in data center density and diversity
Inverter / Charger Installation General Operations and AC and DC Connections
Inverter / Charger Installation General Operations and AC and DC Connections The Inverter is just one piece. Sometimes, a tendency is to mount the inverter and batteries, and make it work It is better
The New Data Center Cooling Paradigm The Tiered Approach
Product Footprint - Heat Density Trends The New Data Center Cooling Paradigm The Tiered Approach Lennart Ståhl Amdahl, Cisco, Compaq, Cray, Dell, EMC, HP, IBM, Intel, Lucent, Motorola, Nokia, Nortel, Sun,
An Oracle White Paper November 2010. Oracle Real Application Clusters One Node: The Always On Single-Instance Database
An Oracle White Paper November 2010 Oracle Real Application Clusters One Node: The Always On Single-Instance Database Executive Summary... 1 Oracle Real Application Clusters One Node Overview... 1 Always
APC APPLICATION NOTE #112
#112 Best Practices for Deploying the InfraStruXure InRow SC By David Roden Abstract The InfraStruXure InRow SC (ACSC100 and ACSC101) is a self-contained air conditioner for server rooms and wiring closets.
Electrical Efficiency Modeling for Data Centers
Electrical Efficiency Modeling for Data Centers By Neil Rasmussen White Paper #113 Revision 1 Executive Summary Conventional models for estimating electrical efficiency of data centers are grossly inaccurate
Data Sheet FUJITSU Server PRIMERGY CX400 M1 Multi-Node Server Enclosure
Data Sheet FUJITSU Server PRIMERGY CX400 M1 Multi-Node Server Enclosure Data Sheet FUJITSU Server PRIMERGY CX400 M1 Multi-Node Server Enclosure Scale-Out Smart for HPC, Cloud and Hyper-Converged Computing
Datacenter Power Delivery Architectures : Efficiency and Annual Operating Costs
Datacenter Power Delivery Architectures : Efficiency and Annual Operating Costs Paul Yeaman, V I Chip Inc. Presented at the Darnell Digital Power Forum September 2007 Abstract An increasing focus on datacenter
Green HPC - Dynamic Power Management in HPC
Gr eenhpc Dynami cpower Management i nhpc AT ECHNOL OGYWHI T EP APER Green HPC Dynamic Power Management in HPC 2 Green HPC - Dynamic Power Management in HPC Introduction... 3 Green Strategies... 4 Implementation...
Managing Data Center Power and Cooling
White PAPER Managing Data Center Power and Cooling Introduction: Crisis in Power and Cooling As server microprocessors become more powerful in accordance with Moore s Law, they also consume more power
PROPER SIZING OF IT POWER AND COOLING LOADS WHITE PAPER
WHITE PAPER #23 PROPER SIZING OF IT POWER AND COOLING LOADS WHITE PAPER CONTRIBUTORS: JOHN BEAN, APC RON BEDNAR, EMERSON NETWORK POWER RICHARD JONES, CHATSWORTH PRODUCTS ROBB JONES, CHATSWORTH PRODUCTS
The Motherboard Chapter #5
The Motherboard Chapter #5 Amy Hissom Key Terms Advanced Transfer Cache (ATC) A type of L2 cache contained within the Pentium processor housing that is embedded on the same core processor die as the CPU
Power Management in the Cisco Unified Computing System: An Integrated Approach
Power Management in the Cisco Unified Computing System: An Integrated Approach What You Will Learn During the past decade, power and cooling have gone from being afterthoughts to core concerns in data
IT@Intel. Comparing Multi-Core Processors for Server Virtualization
White Paper Intel Information Technology Computer Manufacturing Server Virtualization Comparing Multi-Core Processors for Server Virtualization Intel IT tested servers based on select Intel multi-core
A Scalable, Reconfigurable, and Efficient Data Center Power Distribution Architecture
A Scalable, Reconfigurable, and Efficient Data Center Power Distribution Architecture By Neil Rasmussen White Paper #129 Executive Summary Significant improvements in efficiency, power density, power monitoring,
Impact of Leading Power Factor on Data Center Generator Systems
Impact of Leading Power Factor on Data Center Generator Systems White Paper 200 Revision 0 by Neil Rasmussen Executive summary IT devices may exhibit electrical input current with a characteristic called
Cisco Nexus 7000 Series Power Supply Modules
Cisco Nexus 7000 Series Power Supply Modules Product Overview The Cisco Nexus 7000 Series Power Supply Modules (Figures 1 and 2) deliver fault tolerance, high efficiency, load sharing, and hot-swappable
How to Maximize Data Center Efficiencies with Rack Level Power Distribution and Monitoring
How to Maximize Data Center Efficiencies with Rack Level Power Distribution and Monitoring Brian Rehnke e-pdu Business Development Manager November, 2011 The Problems Energy Usage in most data centers
White Paper. Recording Server Virtualization
White Paper Recording Server Virtualization Prepared by: Mike Sherwood, Senior Solutions Engineer Milestone Systems 23 March 2011 Table of Contents Introduction... 3 Target audience and white paper purpose...
Intel RAID Controllers
Intel RAID Controllers Best Practices White Paper April, 2008 Enterprise Platforms and Services Division - Marketing Revision History Date Revision Number April, 2008 1.0 Initial release. Modifications
How To Power A Bladecenter H Servers
Solutions Guide for IBM Data Center Architecture: IBM BladeCenter H Servers In today s high-demand enterprise environment, organizations need a reliable infrastructure to run compute-intensive applications
Distributing Power to Blade Servers
Distributing Power to Blade Servers Ten steps to selecting the optimal power distribution design With the growth in blade servers with dual or triple power supplies, a single rack of equipment can easily
Virtualization strategy for mid-sized businesses. IBM and VMware virtualization benefits for mid-sized businesses
IBM and VMware virtualization benefits for mid-sized businesses April 2009 April 2009 Virtualization strategy for mid-sized businesses Reduce cost, improve service and manage risk with virtualization Virtualization
Considerations for a Highly Available Intelligent Rack Power Distribution Unit. A White Paper on Availability
Considerations for a Highly Available Intelligent Rack Power Distribution Unit A White Paper on Availability Introduction Data centers are currently undergoing a period of great change. Data center managers
AC vs DC Power Distribution for Data Centers
AC vs DC Power Distribution for Data Centers By Neil Rasmussen White Paper #63 Revision 4 Executive Summary Various types of DC power distribution are examined as alternatives to AC distribution for data
Intel architecture. Platform Basics. White Paper Todd Langley Systems Engineer/ Architect Intel Corporation. September 2010
White Paper Todd Langley Systems Engineer/ Architect Intel Corporation Intel architecture Platform Basics September 2010 324377 Executive Summary Creating an Intel architecture design encompasses some
Data Center Power Distribution and Capacity Planning:
Data Center Power Distribution and Capacity Planning: Understanding what you know and don t know about power usage in your data center 2009, Raritan Inc. About This Series Raritan, a leading provider of
AC vs. DC Power Distribution for Data Centers
AC vs. DC Power Distribution for Data Centers White Paper 63 Revision 6 by Neil Rasmussen > Executive summary DC power distribution has been proposed as an alternative to AC power distribution in data
Server Technology, Inc.
Server Technology, Inc. Power Efficiency Gains by Deploying 415 VAC Power Distribution in North American Data Centers White Paper STI-100-008 2009-April-07 Headquarters Server Technology, Inc. 1040 Sandhill
Circuit Breakers in Data Centers: The Hidden Danger
Circuit Breakers in Data Centers: The Hidden Danger How to efficiently protect critical IT equipment by choosing the most reliable overcurrent protection device for your Rack Power Distribution Unit. By
Measuring Processor Power
White Paper Intel Xeon Processor Processor Architecture Analysis Measuring Processor Power TDP vs. ACP Specifications for the power a microprocessor can consume and dissipate can be complicated and may
A Scalable, Reconfigurable, and Efficient Data Center Power Distribution Architecture
A Scalable, Reconfigurable, and Efficient Data Center Power Distribution Architecture White Paper 129 Revision 1 by Neil Rasmussen > Executive summary Significant improvements in efficiency, power density,
Back-UPS 650 VA 120 V with AVR (BX650CI-LM)
Back-UPS 650 VA 120 V with AVR (BX650CI-LM) Overview Do not install the unit in direct sunlight, in areas of excessive heat or humidity, or in contact with fluids ON/OFF button Battery connector Circuit
Data Center Power Overload Protection: Circuit breakers and branch circuit protection for data centers
Data Center Power Overload Protection: Circuit breakers and branch circuit protection for data centers 2009, Raritan Inc. Introduction Over the past few years, average power consumption per server has
Introduction 1 Performance on Hosted Server 1. Benchmarks 2. System Requirements 7 Load Balancing 7
Introduction 1 Performance on Hosted Server 1 Figure 1: Real World Performance 1 Benchmarks 2 System configuration used for benchmarks 2 Figure 2a: New tickets per minute on E5440 processors 3 Figure 2b:
415V DISTRIBUTION FOR GREEN DATA CENTERS
White Paper: HMRP-WP001-A5 June 5, 2012 415V DISTRIBUTION FOR GREEN DATA CENTERS Prepared by: Anthony (Tony) Hoevenaars, P. Eng President and CEO Mirus International Inc. Copyright 2012 Mirus International
Wireless Networks and Power Quality
Will installing wireless networking change my back-up power requirements? What data do I need to know in order to determine my wireless network back-up power requirements? What other issues should I consider
System-Level Display Power Reduction Technologies for Portable Computing and Communications Devices
System-Level Display Power Reduction Technologies for Portable Computing and Communications Devices Achintya K. Bhowmik and Robert J. Brennan Intel Corporation 2200 Mission College Blvd. Santa Clara, CA
Comparing the Carbon Footprints of 11G and 12G Rack Servers from Dell
Comparing the Carbon Footprints of 11G and 12G Rack Servers from Dell Markus Stutz, Regulatory Principal Engineer, Environmental Affairs August 2013. Contents Comparing two rack server generations... 4
Management Strategy for Network Critical Physical Infrastructure
Management Strategy for Network Critical Physical Infrastructure White Paper #100 Executive Summary When choosing a management solution for the physical infrastructure of IT networks, management of individual
Top 12 Questions to Consider When Choosing UPS Systems for Network/Server Applications
W H I T E P A P E R Top 12 Questions to Consider When Choosing UPS Systems for Network/Server Applications Executive Summary One of the fundamental decisions in the design of data centers, server rooms
415V DISTRIBUTION FOR GREEN DATA CENTERS
White Paper: HMRP-WP001-A1 October 1, 2010 415V DISTRIBUTION FOR GREEN DATA CENTERS Prepared by: Anthony (Tony) Hoevenaars, P. Eng President and CEO Mirus International Inc. Copyright 2005 Mirus International
SERVER POWER CALCULATOR ANALYSIS: CISCO UCS POWER CALCULATOR AND HP POWER ADVISOR
SERVER POWER CALCULATOR ANALYSIS: CISCO UCS POWER CALCULATOR AND HP POWER ADVISOR OVERVIEW 20% 15% 10% Power estimation is an important part of data center planning. Historically, data center power circuits
Daker DK 1, 2, 3 kva. Manuel d installation Installation manual. Part. LE05334AC-07/13-01 GF
Daker DK 1, 2, 3 kva Manuel d installation Installation manual Part. LE05334AC-07/13-01 GF Daker DK 1, 2, 3 kva Index 1 Introduction 24 2 Conditions of use 24 3 LCD Panel 25 4 Installation 28 5 UPS communicator
Figure 1A: Dell server and accessories Figure 1B: HP server and accessories Figure 1C: IBM server and accessories
TEST REPORT SEPTEMBER 2007 Out-of-box comparison between Dell, HP, and IBM servers Executive summary Dell Inc. (Dell) commissioned Principled Technologies (PT) to compare the out-of-box experience of a
Data Center 2020: Delivering high density in the Data Center; efficiently and reliably
Data Center 2020: Delivering high density in the Data Center; efficiently and reliably March 2011 Powered by Data Center 2020: Delivering high density in the Data Center; efficiently and reliably Review:
Power and Cooling Guidelines for Deploying IT in Colocation Data Centers
Power and Cooling Guidelines for Deploying IT in Colocation Data Centers White Paper 173 Revision 0 by Paul Lin and Victor Avelar Executive summary Some prospective colocation data center tenants view
Data center power dynamics within the settings of regional power grid
Data center power dynamics within the settings of regional power grid Gulnara Zhabelova 1, Alireza Yavarian 1, Valeriy Vyatkin 1,2 1 Department of Computer Science, Electrical and Space Engineering Lulea
LEVEL 3 DATA CENTER ASSESSMENT
Nationwide Services Corporate Headquarters 410 Forest Street Marlborough, MA 01752 USA Tel: 800-342-5332 Fax: 508-303-0579 www.eecnet.com LEVEL 3 DATA CENTER ASSESSMENT Submitted by: Electronic Environments
CHAPTER 1 INTRODUCTION
CHAPTER 1 INTRODUCTION 1.1 Background The command over cloud computing infrastructure is increasing with the growing demands of IT infrastructure during the changed business scenario of the 21 st Century.
Installation and Operation Manual Back-UPS BX800CI-AS/BX1100CI-AS
+ Installation and Operation Manual Back-UPS BX800CI-AS/BX1100CI-AS Inventory Safety and General Information bu001c This unit is intended for indoor use only. Do not operate this unit in direct sunlight,
High Density Data Centers Fraught with Peril. Richard A. Greco, Principal EYP Mission Critical Facilities, Inc.
High Density Data Centers Fraught with Peril Richard A. Greco, Principal EYP Mission Critical Facilities, Inc. Microprocessors Trends Reprinted with the permission of The Uptime Institute from a white
REGULINE 600VA / 1000VA REGULATOR USER MANUAL
REGULINE 600VA / 1000VA REGULATOR USER MANUAL TUNÇMATİK REGULINE SERIES AUTOMATIC VOLTAGE REGULATOR Models: REGULINE 600VA / REGULINE 1000VA Principle of Operation Automatic Voltage Regulators regulate
RaMP Data Center Manager. Data Center Infrastructure Management (DCIM) software
RaMP Data Center Manager Data Center Infrastructure Management (DCIM) software One solution for both IT and facilities managers As data centers become more complex, it becomes increasingly important to
