Some Problems of Second-Order Rational Difference Equations with Quadratic Terms
|
|
|
- Elvin Newman
- 9 years ago
- Views:
Transcription
1 International Journal of Difference Equations ISSN , Volume 9, Number 1, pp (2014) Some Problems of Second-Order Rational Difference Equations with Quadratic Terms Aija Anisimova University of Latvia Department of Mathematics Riga, LV-1002, Latvia Inese Bula University of Latvia Department of Mathematics Riga, LV-1002, Latvia University of Latvia Institute of Mathematics and Computer Science Riga, LV-1048, Latvia Abstract We consider some special cases of second-order quadratic rational difference equations with nonnegative parameters and with arbitrary nonnegative initial conditions such that the denominator is always positive. The main goal is to confirm some conjectures and solve some open problems stated by A. M. Amleh, E. Camouzis and G. Ladas in the papers On the Dynamics of a Rational Difference Equations, Part 1 (Int. J. Difference Equ., 3(1), pp. 1 35, 2008), and On the Dynamics of a Rational Difference Equations, Part 2 (Int. J. Difference Equ., 3(2), pp , 2008) about the global stability character, the periodic nature, and the boundedness of solutions of second-order quadratic rational difference equations. AMS Subject Classifications: 39A10, 39A20, 39A30. Keywords: Boundedness, periodicity, rational difference equations, stability. Received November 30, 2013; Accepted February 16, 2014 Communicated by Delfim F. M. Torres
2 12 Aija Anisimova and Inese Bula 1 Introduction and Preliminaries We consider some special cases of a second-order quadratic rational difference equation x n+1 = α + βx nx n 1 + γx n 1 A + Bx n x n 1 + Cx n 1, n = 0, 1, 2,... (1.1) with nonnegative parameters and with arbitrary nonnegative initial conditions such that the denominator is always positive. Equation (1.1) arises from the system of rational difference equations in the plane: x n+1 = α 1 + γ 1 y n, y n y n+1 = α 2 + β 2 x n + γ 2 y n = 0, 1,... (1.2) n, A 2 + B 2 x n + C 2 y n Results have been obtained about 30 special cases of (1.1). Open problems and conjectures about this class of difference equations can be found in papers [1, 2]. In this paper the authors consider two equations which are denoted in the paper [2] as #24 and #25, pose ideas how to confirm some conjectures and solve given open problems about the local and global stability character, the periodic nature, and the boundedness of difference equation (1.1). Behavior of different types of rational difference equations with quadratic terms were discussed in [1 3, 6, 7, 15 17, 19]. For related work on other nonlinear difference equations, see [4, 5, 8, 9, 11 13, 18]. Now we recall some well-known results, which will be useful in the investigation of (1.1) and which are given in [1, 2, 5, 12, 14]. We consider a difference equation defined by the formula x n+1 = f(x n, x n 1 ), n = 0, 1,.... (1.3) Let I be some interval of real numbers and let f : I I I be a continuously differentiable function. Then, for every set of initial conditions x 1, x 0 I, the difference equation (1.3) has a unique solution {x n } n= 1. A point x I is called an equilibrium point of (1.3) if that is, x = f(x, x), x n = x, n 0 is a solution of (1.3) or, equivalently, x is a fixed point of f. Let p = f f (x, x) and q = (x, x) denote the partial derivatives of f(u, v) evaluated at the equilibrium x of (1.3). Then the u v equation y n+1 = py n + qy n 1, n = 0, 1,... (1.4)
3 Some Problems of Rational Difference Equations with Quadratic Terms 13 is called the linearized equation associated with (1.3) about the equilibrium point x and the equation λ 2 pλ q = 0 (1.5) is called a characteristic equation of (1.4) about x. The following two theorems provide criteria for stability/unstability of second-order difference equations. Theorem 1.1 (See [12]). 1. If both roots of quadratic equation (1.5) lie in the open unit disk λ < 1, then the equilibrium x of (1.3) is locally asymptotically stable. 2. If at least one of the roots of (1.5) has absolute value greater than one, then the equilibrium x of (1.3) is unstable. 3. A necessary and sufficient condition for both roots of (1.5) to lie in the open unit disk λ < 1, is p < 1 q < 2. (1.6) In the next theorem we use the following notation associated with a function f(z 1, z 2 ), which is monotonic in both arguments. For each pair of numbers (m, M) and for each i {1, 2}, we define { M, if f is increasing in zi M i (m, M) = m, if f is decreasing in z i and m i (m, M) = M i (M, m). Theorem 1.2 ( M & m Theorem [5, 12]). Let [a, b] be a closed and bounded interval of real numbers and let f C([a, b] 2, [a, b]) satisfy the following conditions: 1. f(z 1, z 2 ) is monotonic in each of its arguments. 2. If (m,m) is a solution of the system { M = f(m1 (m, M), M 2 (m, M)) m = f(m 1 (m, M), m 2 (m, M)), then M = m. Then the difference equation (1.3) has a unique equilibrium point x [a, b] and every solution of (1.3), with initial conditions in [a, b], converges to x. A solution {x n } n= 1 of (1.3) is said to be periodic with period p if x n+p = x n for all n 1. (1.7) A solution {x n } n= 1 of (1.3) is said to be periodic with prime period p, or a p-cycle, if it is periodic with period p and p is the least positive integer for which (1.7) holds. In reference [14] the following result is proved.
4 14 Aija Anisimova and Inese Bula Theorem 1.3 (See [14]). Let [a, b] be an interval of real numbers and assume that f : [a, b] [a, b] [a, b] is a continuous function satisfying the following properties: 1. f(x, y) is nonincreasing in x [a, b] for each y [a, b], f(x, y) is nondecreasing in y [a, b] for each x [a, b]. 2. The difference equation (1.3) has no solutions of prime period two in [a, b]. Then (1.3) has a unique equilibrium x [a, b] and every solution of (1.3) converges to x. 2 Equation #25 One special case of the second-order rational quadratic difference equation (1.1) is x n+1 = α + γx n Bx n x n 1 + x n 1, n = 0, 1, 2,.... (2.1) Equation (2.1) has a unique equilibrium x, where x is a positive solution of the cubic equation Bx 3 + x 2 + (1 γ)x α = 0. (2.2) It is easy to show that the following lemma holds for the difference equation (2.1). Lemma 2.1. two. 1. Difference equation (2.1) has no positive solutions of prime period 2. Every positive solution of (2.1) is bounded above and below by positive constants 3. The function α 1 + B(α + γ) 2 + (α + γ) x n+1 < α + γ, n = 3, 4,.... (2.3) f(z 1, z 2 ) = α + γz Bz 1 z 2 + z 2, (2.4) which is associated with (2.1), is decreasing in z 1 and decreasing in z 2 when γ α. (2.5) Lemma 2.1 will be useful for the investigation in this section. In paper [2], a conjecture about the global asymptotically stability is posed: Conjecture 2.2 (See [12]). Every positive solution of (2.1) has a finite limit.
5 Some Problems of Rational Difference Equations with Quadratic Terms 15 According to Lemma 2.1, Theorem 1.3 does not solve Conjecture 2.2. Some results about the stability can be obtained by using Theorem 1.2, that is, the fact that if (m, M) is a solution of system, namely, α + γm M = then m = M when m = 1 + Bm 2 + m α + γm 1 + BM 2 + M, (2.6) (αb 1 γ) 2 4B(1 + γ) < 0. (2.7) Summarizing the above mentioned conditions, we have the following result: Theorem 2.3. Assume that the inequalities γ α and (αb 1 γ) 2 4B(1 + γ) < 0 hold. Then the positive solution of (2.1) has a finite limit. Proof. This proof is based on Theorem 1.2. Every solution of (2.1) is bounded (follows from Lemma 2.1) and [ ] α [a, b] := 1 + B(α + γ) 2 + (α + γ), α + γ α + γz 2 z 1, z 2 [a, b]: the function f(z 1, z 2 ) = is monotonically decreasing 1 + Bz 1 z 2 + z 2 in z 1 and in z 2, if γ α. (m, M) is a solution of system (2.6) if (2.7) holds. Since x 1, x 0 [0, + [ inequality (2.3) holds, the solution of (2.1) has a finite limit for every pair of positive initial conditions. This concludes the proof. 3 Equation #24 Let us consider a difference equation in the form x n+1 = α + βx n x n Bx n x n 1 + x n 1, n = 0, 1, 2,.... (3.1) In the above mentioned articles, no results about equation (3.1) are given. However, the following conjecture is posed. Conjecture 3.1 (See [12]). Every positive solution of (3.1) has a finite limit. We begin by proving the following lemma. Lemma Difference equation (3.1) has a unique positive equilibrium point x. 2. If β > 1, then α < x < β 1 B or β 1 B < x < α or α = x = β 1 B.
6 16 Aija Anisimova and Inese Bula 3. If 0 < β < 1, then x < α is not an equilibrium. Proof. The equilibrium equation of (3.1), can be considered as two curves with behavior Bx 3 + (1 β)x 2 + x α = 0, (3.2) Bx 2 + (1 β)x = α } {{ } x 1. (3.3) } {{ } a parabola a hyperbola Equation (3.1) has a unique positive equilibrium point x, which can be obtained as an intersection point of these two curves (see Figures 3.1 and 3.2). From Figures 3.1 and y Β 1 0 Α B x 0 x Β 1 2 B ; Β B Figure 3.1: The equilibrium of (3.1), β > 1 y Β 1 B 0 x 0 Α x Β 1 2 B ; Β B Figure 3.2: The equilibrium of (3.1), 0 < β < 1 3.2, we obtain the required conclusion.
7 Some Problems of Rational Difference Equations with Quadratic Terms 17 Next lemma describes the behavior of the solutions of the difference equation (3.1). Lemma 3.3. two. 1. Difference equation (3.1) has no positive solutions of prime period 2. Every positive solution of (3.1) is bounded above and below by positive constants: 3. The function αb B + (αb + β) 2 + (αb + β) x n+1 αb + β, n = 3, 4, 5,.... (3.4) B f(z 1, z 2 ) = α + βz 1z Bz 1 z 2 + z 2, (3.5) which is associated with (3.1), is decreasing in z 1 when β(b + β) + αb(β B) < 0 (3.6) and decreasing in z 2 when β αb. (3.7) According to Lemma 3.3, Theorem 1.3 does not solve Conjecture 3.1. By using the M & m theorem, that is, the fact that if (m, M) is a solution of system, namely, then m = M when M = m = α + βm2 1 + Bm 2 + m α + βm BM 2 + M, (3.8) (αb 1 β) 2 4(B + β + β 2 )(1 + αβ) < 0, (3.9) we can finally state the main result of this section for the difference equation (3.1): Theorem 3.4. Assume that the following inequalities hold: β(b + β) + αb(β B) < 0, β αb, (αb 1 β) 2 4(B + β + β 2 )(1 + αβ) < 0. Then the positive solution of (3.1) is globally asymptotically stable. Conditions of Theorem 3.4 do not form an empty set of parameters. For example, β = 2, α = 2, and B = 4 satisfy Theorem 3.4 (see Figure 3.3).
8 18 Aija Anisimova and Inese Bula x n n Figure 3.3: Solution of (3.1) converges to the unique positive equilibrium x 0.77 for values β = 2, α = 2, B = 4 4 Linearization Technique In [15] Kulenović and Mehuljić proved that the unique positive equilibrium is globally asymptotically stable for five special cases of (1.1). Namely, x n+1 = α 1 + x n x n 1, x n+1 = α + x nx n 1 A + x n x n 1, x n+1 = α + x n 1 A + x n x n 1, x n+1 = α + βx nx n 1 + x n 1 x n x n 1, x n+1 = α (1 + x n )x n 1 n = 0, 1,.... Theorem 4.1 (See [10, 15]). Let I be some interval of real numbers and let f C [I I, I]. Consider the difference equation x n+1 = f(x n, x n 1,..., x n k ), n = 0, 1,..., (4.1) where f is a real function in all variables. Let j {1, 2,...}. Suppose that on some interval I R equation (4.1) has the linearization x n+j = m i=1 j where the nonnegative functions g i : I k+j R are such that Assume that there exists A > 0 such that g 1 j A, n = 0, 1,.... g i x n i, (4.2) m i=j 1 g i = 1 is satisfied. If x j 1,..., x k I, then lim x n = L I. n
9 Some Problems of Rational Difference Equations with Quadratic Terms 19 The linearization for equation (2.1) can be written in the form 1 + x n γ x n+1 x n+2 = x n+1 + x n Bx n+1 x n + x } {{ n 1 + Bx } n+1 x n + x } {{ n } g 1 g 0 + Bx n+1x n + x n+1 γ x n Bx n+1 x n + x } {{ n } g 1 (4.3) We can create a linearization such that m i=j 1 g i = g 1 +g 0 +g 1 = 1, but we cannot show that there exists A > 0 such that g 1, g 0, g 1 A. We can write a similar linearization for (3.1) in the form x n+2 = 1 + x n + βx n Bx n+1 x n + x n } {{ } g 1 x n+1 + βx n+1 x n+1 βx n Bx n+1 x n + x n } {{ } g 0 x n + + Bx n+1x n + x n+1 βx n+1 x n Bx n+1 x n + x } {{ n } g 1 (4.4) We cannot show that g 0 0. With the linearization technique, it can be obtained different expressions of g 1, g 0, g 1. We have considered several cases, but they do not give a positive result. Acknowledgements This research was partially supported by the Latvian Council for Science through the research project 345/2012. References [1] A.M. Amleh, E. Camouzis, and G. Ladas. On the dynamics of a rational difference equations, part 1. Int. J. Difference Equ., 3(1):1 35, [2] A.M. Amleh, E. Camouzis, and G. Ladas. On the dynamics of a rational difference equations, part 2. Int. J. Difference Equ., 3(2): , [3] I. Bajo and E. Liz. Global behaviour of second-order nonlinear difference equation. J. Difference Equ. Appl., 17(10): , 2011.
10 20 Aija Anisimova and Inese Bula [4] F. Balibrea and A. Cascales. Eventually positive solutions in rational difference equations. Comput. Math. Appl., 64: , [5] E. Camouzis and G. Ladas. Advances in Discrete Mathematics and Applications, Volume 5, Dynamics of Third - Order Rational Difference Equations with Open Problems and Conjectures. Chapman & Hall/CRC, [6] E. Camouzis and G. Ladas. Global results on rational systems in the plane, part 1. J. Difference Equ. Appl., 16, [7] M. Dehghan, C.M. Kent, R. Mazrooei-Sebdanti, N.L. Ortiz, and H. Sedaghat. Dynamics of rational difference equations containing quadratic terms. J. Difference Equ. Appl., 14(2): , [8] E. Drymonis, Y. Kostrov, and Z. Kudlak. On rational difference equations with nonnegative periodic coefficients. Int. J. Difference Equ., 7(1):19 34, [9] L.-X. Hu, W.-T. Li, and S. Stević. Global asymptotic stability of a second order rational difference equation. J. Difference Equ. Appl., 14(8): , [10] E.J. Janowski, M.R.S. Kulenović, and E. Silić. Periodic solutions of linearizable difference equations. Int. J. Difference Equ., 6(2): , [11] W.A. Kosmala, M.R.S. Kulenović, G. Ladas, and C.T. Teixeira. On the recursive sequence y n+1 = p + y n 1. J. Math. Anal. Appl., 251: , qy n + y n 1 [12] M.R.S Kulenović and G. Ladas. Dynamics of Second Order Rational Difference Equations: with open problems and conjectures. Chapman & Hall/CRC, [13] M.R.S. Kulenović, G. Ladas, L.F. Martins, and I.W. Rodrigues. The dynamics of α + βx n x n+1 = : facts and conjectures. Comput. Math. Appl., 45((6- A + Bx n + Cx n 1 9)): , [14] M.R.S. Kulenović, G. Ladas, and W. Sizer. On the recursive sequence y n+1 = αy n + βy n 1 γy n + cy n 1. Math. Sci. Res. Hot-Line., 2(5):1 16, [15] M.R.S. Kulenović and M. Mehuljić. Global behavior of some rational second order difference equations. Int. J. Difference Equ., 7(2): , [16] R. Mazrooei-Sebdanti. Chaos in rational systems in the plane containing quadratic terms. Commun. Nonlinear Sci. Numer. Simulat., 17: , [17] H. Sedaghat. Global behaviours of rational difference equations of orders two and three with quadratic terms. J. Difference Equ. Appl., 15(3): , 2009.
11 Some Problems of Rational Difference Equations with Quadratic Terms 21 [18] S. Stević. On the difference equation x n+1 = α + x n 1. Comput. Math. Appl., 56: , [19] L. Xianyi and Z. Deming. Global asymptotic stability in a rational equation. J. Difference Equ. Appl., 9(9): , x n
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12
CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z
FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization
A characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)
Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)
Lecture 7: Finding Lyapunov Functions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1
FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS
FINITE DIMENSIONAL ORDERED VECTOR SPACES WITH RIESZ INTERPOLATION AND EFFROS-SHEN S UNIMODULARITY CONJECTURE AARON TIKUISIS Abstract. It is shown that, for any field F R, any ordered vector space structure
The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics
The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Stochastic Inventory Control
Chapter 3 Stochastic Inventory Control 1 In this chapter, we consider in much greater details certain dynamic inventory control problems of the type already encountered in section 1.3. In addition to the
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
On continued fractions of the square root of prime numbers
On continued fractions of the square root of prime numbers Alexandra Ioana Gliga March 17, 2006 Nota Bene: Conjecture 5.2 of the numerical results at the end of this paper was not correctly derived from
SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...
6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence
Fuzzy Differential Systems and the New Concept of Stability
Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida
Properties of BMO functions whose reciprocals are also BMO
Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and
On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems
Dynamics at the Horsetooth Volume 2, 2010. On using numerical algebraic geometry to find Lyapunov functions of polynomial dynamical systems Eric Hanson Department of Mathematics Colorado State University
The Australian Journal of Mathematical Analysis and Applications
The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 1-14, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver
Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: [email protected] Narvik 6 PART I Task. Consider two-point
Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date
Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many
Integer roots of quadratic and cubic polynomials with integer coefficients
Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street
Lecture 13 Linear quadratic Lyapunov theory
EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
Section 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
Separation Properties for Locally Convex Cones
Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs
Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
SCORE SETS IN ORIENTED GRAPHS
Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in
4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
MATH 21. College Algebra 1 Lecture Notes
MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a
MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao [email protected]
Integer Polynomials June 9, 007 Yufei Zhao [email protected] We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
Absolute Value Equations and Inequalities
Key Concepts: Compound Inequalities Absolute Value Equations and Inequalities Intersections and unions Suppose that A and B are two sets of numbers. The intersection of A and B is the set of all numbers
G.A. Pavliotis. Department of Mathematics. Imperial College London
EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang
A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable
9 More on differentiation
Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......
Note on some explicit formulae for twin prime counting function
Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:
BX in ( u, v) basis in two ways. On the one hand, AN = u+
1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x
1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
MATH 381 HOMEWORK 2 SOLUTIONS
MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e
t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).
1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
Zeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
Mathematical Methods of Engineering Analysis
Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:
THE DYING FIBONACCI TREE BERNHARD GITTENBERGER 1. Introduction Consider a tree with two types of nodes, say A and B, and the following properties: 1. Let the root be of type A.. Each node of type A produces
Math 181 Handout 16. Rich Schwartz. March 9, 2010
Math 8 Handout 6 Rich Schwartz March 9, 200 The purpose of this handout is to describe continued fractions and their connection to hyperbolic geometry. The Gauss Map Given any x (0, ) we define γ(x) =
Sequences and Series
Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite
Metric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
it is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
5. Factoring by the QF method
5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
Pacific Journal of Mathematics
Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1
Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing
EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION
Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu
No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
Probability Generating Functions
page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence
a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 [email protected].
Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 [email protected] This paper contains a collection of 31 theorems, lemmas,
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
Numerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
On the representability of the bi-uniform matroid
On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large
MATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails
12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 RICHARD J. MATHAR Abstract. We count solutions to the Ramanujan-Nagell equation 2 y +n = x 2 for fixed positive n. The computational
Duality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
Stationary random graphs on Z with prescribed iid degrees and finite mean connections
Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
MATH PROBLEMS, WITH SOLUTIONS
MATH PROBLEMS, WITH SOLUTIONS OVIDIU MUNTEANU These are free online notes that I wrote to assist students that wish to test their math skills with some problems that go beyond the usual curriculum. These
4. Expanding dynamical systems
4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,
Prime numbers and prime polynomials. Paul Pollack Dartmouth College
Prime numbers and prime polynomials Paul Pollack Dartmouth College May 1, 2008 Analogies everywhere! Analogies in elementary number theory (continued fractions, quadratic reciprocity, Fermat s last theorem)
ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS
ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS I. KIGURADZE AND N. PARTSVANIA A. Razmadze Mathematical Institute
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
Week 1: Functions and Equations
Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter
ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM
ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give
LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL
Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables
VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS
VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of series-parallel labelled
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
