CLIC accelerator and detector
|
|
|
- Reginald Dickerson
- 10 years ago
- Views:
Transcription
1 CLIC accelerator and detector CLIC/CTF3 accelerator R&D CLIC detector study Many thanks to Anne Dabrowski, Jean-Pierre Delahaye, Frank Tecker and others
2 Higher energy, protons electrons Collider History: Energy constantly increasing with time Hadron Collider at the energy frontier Lepton Collider for precision physics LHC online now e-/e+ storage ring excluded by synchrotron radiation Consensus to build Lin. Collider with E cm > 500 GeV to complement LHC physics
3 CLIC and ILC in a few words linear collider, producing e + e - collisions CLIC ILC Based on 2-beam acceleration scheme Gradient 100 MV/m Energy: 3 TeV, though will probably start at lower energy (~0.5 TeV) Detector study focuses on 3 TeV Based on superconducting RF cavities Gradient 32 MV/m Energy: 500 GeV, upgradeable to 1 TeV (lower energies also considered) Detector studies focus mostly on 500 GeV Luminosities: few cm -2 s -1
4 The CLIC Two Beam Scheme Two Beam Scheme: Drive Beam supplies RF power 12 GHz bunch structure low energy (2.4 GeV MeV) high current (100A) Main beam for physics high energy (9 GeV 1.5 TeV) current 1.2 A No individual RF power sources
5 World-wide CLIC&CTF3 Collaboration ACAS (Australia) Aarhus University (Denmark) Ankara University (Turkey) Argonne National Laboratory (USA) Athens University (Greece) BINP (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) ETHZurich (Switzerland) FNAL (USA) Gazi Universities (Turkey) CLIC multi-lateral collaboration 41 Institutes from 21 countries Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) IHEP (China) INFN / LNF (Italy) Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France) Jefferson Lab (USA) John Adams Institute/Oxford (UK) John Adams Institute/RHUL (UK) JINR (Russia) Karlsruhe University (Germany) KEK (Japan) LAL / Orsay (France) LAPP / ESIA (France) NIKHEF/Amsterdam (Netherland) NCP (Pakistan) North-West. Univ. Illinois (USA) Patras University (Greece) Polytech. University of Catalonia (Spain) PSI (Switzerland) RAL (UK) RRCAT / Indore (India) SLAC (USA) Thrace University (Greece) Tsinghua University (China) University of Oslo (Norway) Uppsala University (Sweden) UCSC SCIPP (USA)
6 CLIC schedule
7 CLIC overall layout 3 TeV Drive Beam Generation Complex Drive beam Main beam Main Beam Generation Complex
8 CLIC schematic 3 TeV CLIC RF power source
9 CLIC RF power source Drive Beam Accelerator efficient acceleration in fully loaded linac Delay loop 2 gap creation, pulse compression & frequency multiplication Transverse RF Deflectors Combiner ring 3 Combiner ring 4 pulse compression & frequency multiplication pulse compression & frequency multiplication Drive Beam Decelerator Sector (24 in total) Power Extraction Drive beam time structure - initial Drive beam time structure - final 240 ns 240 ns 5.8 s 140 s total length sub-pulses A 2.4 GeV - 60 cm between bunches 24 pulses 100 A 2.5 cm between bunches
10 The CLIC Test Facility (CTF3) Small scale version of the CLIC drive beam complex 10 m 4 A 1.2 s 150 Mev 1.5 GHz bunch spacing DRIVE BEAM LINAC DELAY LOOP CLEX CLIC Experimental Area COMBINER RING 32 A 140 ns 150 Mev 12 GHz bunch spacing
11 Comparison CLIC - CTF3 CTF3 CLIC Energy GeV 2.4 GeV Pulse length 1.2 µs 140 µs Multiplication factor 2 x 4 = 8 (DL + 1 CR) 2 x 3 x 4 = 24 (DL + 2 CR) Linac current 3.5 A 4.2 A Final current 28 A 100 A RF frequency 3 GHz 1 GHz Deceleration to ~60% energy to 10% energy Repetition rate up to 5 Hz 50 Hz Energy per beam pulse 0.7 kj 1400 kj Average beam power 3.4 kw 70 MW CTF3 covers well the CLIC drive beam generation scheme Still considerable extrapolation to CLIC parameters F. Tecker CLIC 09 Workshop
12 Factor 8 combination achieved ~ 27 A combined beam current reached, nominal 140 ns pulse length Full drive beam generation, main goal of CTF3, achieved 2 #1 CTF3 1 3 CTF2 DBA CLEX DL TBTS <30A CR 1 - current from linac 2- current after delay loop RF deflector used for injection and recombination 3 - current in the ring
13 Two beam Test Stand (TBTS) line CTF3 Main components TL1 DELAY LOOP DRIVE BEAM LINAC chicane TL2 COMBINER RING 30 GHz power station Injector 30 GHZ test stand TBL - decelerator probe beam linac two-beam test stand CLEX TL2 DRIVE BEAM PROBE BEAM
14 Drive Beam Deceleration and Module: CLEX CLIC Decelerator sector: ~ 1 km, 90% of energy extracted Two-beam Test Stand (TBTS): Single PETS with beam Accelerating structure with beam wake monitor kick on beam from break down Integration Test Beam Line (TBL): Drive beam transport (16 PETS) beam energy extraction and dispersion wakefield effects Califes: Probe beam photo-injector Beam energy 175 MeV
15 General Layout of Complex Drive Beam Generation Complex Drive beam Main beam Main Beam Generation Complex
16 Two Beam Module Integration aspects are important alignment vacuum transport cabling Beam tests of PETS are ongoing accelerating structure installed important goal 2010: two-beam acceleration with 100 MV/m Some tests after 2010 e.g. wake monitors, design exists G. Riddone et al. Later full modules will be tested
17 Simulation of RF Power Transfer Accelerating structure The induced fields travel along the PETS structure and build up resonantly PETS PETS structure Low group velocity requires simulations with 100k time steps T3P models realistic, complex accelerator structures with unprecedented accuracy Arno Candel, SLAC
18 PETS Results Klystron based (SLAC): achieved: 137 MW/266 ns/ BDR target: 132MW/240ns/10-7 Beam based (with recirculation): Power >130 MW peak at 150 ns Limited by attenuator and phase shifter breakdowns (cleaned for this run) Power production according to predictions Structures had damping slots but no damping material Novel design on-off mechanism will be tested this year More testing is needed
19 Breakdown probability (1/m) Accelerating Structure Results RF breakdowns can occur => no acceleration and deflection Goal: /m breakdowns at 100 MV/m loaded at 230 ns T18 and TD18 structures built and tested at SLAC and KEK T18 reached MV/m Damped TD18 reaches an extrapolated 85 MV/m Second TD18 under test at KEK Pulsed surface heating expected to be above limit CLIC prototypes with improved design (TD24) will be tested this year expect similar or slightly better performances S. Doebert et al. CLIC goal Average unloaded gradient (MV/m)
20 NIKHEF collab. on pre-alignment Objectives: provide transverse positional data on targets distributed over 100 m, with an uncertainty of measurement better than 5 μm Concept: RASCLIC is a 3 point alignment, which consists of a monochromatic light source, a diffraction plate and a pixel image sensor. The position of a diffraction pattern is monitored on the image sensor, which provides the relative position of the three components. 20 (M. Beker)
21 NIKHEF collab. on pre-alignment The concept was validated in an old tunnel named TT1 on 140 m. A precision of 20 nm was reached New agreement signed for improved and expanded system (H. van der Graaf) 21
22 Two experiments in push-pull e - e +
23 Two experiments in push-pull Top view e - e + CLIC_ILD experiment CLIC_SiD experiment
24 Function of detector elements Field return and muon particle identification 10 9 readout cells Final steering of nm-size beams B-field for momentum and charge measurement Energy measuement of charged and neutral particles 6 m Measure momentum and charge of charged particles Measure vertex and Short-lived particles
25 Elements of an experiment Yoke instrumentation (gas-based or scintillator detectors) Final Focus quadrupole of accelerator (0.3 nm stability) Solenoid coil (superconducting, 5T, 6 m diam.) Calorimetry (tungsten, steel, silicon, scintillator) 6 m Main tracker (silicon strips 50 μm or TPC gas detector) Pixel detector (silicon pixels 20 μm)
26 Hardware R&D on the experiment Power delivery, on/off at 50Hz, driven by frontend electronics Final Focus: Active and passive stabilisation, alignment Solenoid coil: Reinforced conductor tests. Materials Calorimetry: >1000 m2 cost-effective silicon sensors. Tungsten plates 3mm and 10 mm, 600 ton Main tracker (silicon strip detectors 150 m2, TPC gas detector) 6 m Pixel detector: Integrated solid state sensors, deep submicron, small-pitch interconnect, low-mass cooling, ultra-thin materials
27 Final focus stabilisation Experiment side Accelerator tunnel side Final focus stabilisation to 0.3 nm required Achieved with combination of active and passive elements
28 Thank you! CLIC_SiD detector CLIC_ILD detector
29 SPARE SLIDES
30 Linear Collider main parameters Technology ILC CLIC Centre-of-mass energy (GeV) Total (Peak 1%) luminosity (10 34) 2.0(1.5) 2.3(1.4) 5.9(2.0) Total site length (km) Loaded accel. gradient (MV/m) Main linac RF frequency (GHz) 1.3 (Super Cond.) 12 (Normal Conducting) Beam power/beam (MW) Bunch charge (10 9 e+/-) Bunch separation (ns) Beam pulse duration (ns) Repetition rate (Hz) 5 50 Hor./vert. norm. emitt (10-6 /10-9 ) 10/40 4.8/ /20 Hor./vert. IP beam size (nm) 640/ / / 1 Hadronic events/crossing at IP Coherent pairs at IP Wall plug to beam transfer eff 9.4% 7.5% 6.8% Total power consumption (MW)
& Tunnel Cross Section
CLIC workshop Working group: Two beam hardware and Integration ti CLIC Civil Engineering Layouts & Tunnel Cross Section John Osborne TS-CE Acknowledgements : C.Wyss, J-L Baldy, N.Baddams 17 October 2007
10 Project Costs and Schedule
II-367 10 Project Costs and Schedule 10.1 Overview The investment costs given in this chapter include all components necessary for the baseline design of TESLA, as described in chapters 3 to 9. Not included
source at CERN G.McMonagle AB/RF
12 GHz Stand alone power source at CERN G.McMonagle AB/RF Objectives Install a 12GHz power source at CERN as soon as possible to allow high gradient structure testing independent from the CTF3 machine
OVERVIEW OF PROTON DRIVERS FOR NEUTRINO SUPER BEAMS AND NEUTRINO FACTORIES*
FERMILAB-CONF-06-213-AD OVERVIEW OF PROTON DRIVERS FOR NEUTRINO SUPER BEAMS AND NEUTRINO FACTORIES* W. Chou #, Fermilab, Batavia, IL 60510, U.S.A. Abstract There has been a world-wide interest in Proton
AUTOMATION OF OPERATIONS ON THE VEPP-4 CONTROL SYSTEM
10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. Geneva, 10-14 Oct 2005, PO1.072-7 (2005) AUTOMATION OF OPERATIONS ON THE VEPP-4 CONTROL SYSTEM A. Bogomyagkov, S. Karnaev,
Project X: A multi-mw Proton Source at Fermilab. Steve Holmes Extreme Beam Lecture Series
Project X: A multi-mw Proton Source at Fermilab Steve Holmes Extreme Beam Lecture Series June 11, 2009 Outline Strategic Context/Evolution of the Fermilab Complex Project X Goals and Initial Configuration
Activities at the University of Frankfurt (IAP)
Activities at the University of Frankfurt (IAP) Holger Podlech Ulrich Ratzinger Oliver Kester Institut für Angewandte Physik (IAP) Goethe-Universität Frankfurt am Main H. Podlech 1 Development of 325 MHz
THE TESLA TEST FACILITY AS A PROTOTYPE FOR THE GLOBAL ACCELERATOR NETWORK
THE TESLA TEST FACILITY AS A PROTOTYPE FOR THE GLOBAL ACCELERATOR NETWORK K. Rehlich, DESY, Hamburg, Germany Abstract The next generation of large accelerators facilities will be produced and operated
Reliability and Availability Aspects of. the IPHI Project
Reliability and Availability Aspects of the IPHI Project Pierre-Yves Beauvais CEA/DSM/DAPNIA for the IPHI Team 18/02/2002 Pierre-Yves Beauvais, CEA Saclay 1 Table of contents Brief description of IPHI
Status And Future Plans. Mitsuyoshi Tanaka. AGS Department.Brookhaven National Laboratory* Upton NY 11973, USA INTRODUCTION
6th Conference on the Intersections of Particle & Nuclear Physics Big Sky, Montana May 27-June 2, 1997 / BNL-6 40 4 2 c0,lvf- 7 70 5 The BNL AGS Accelerator Complex Status And Future Plans Mitsuyoshi Tanaka
HIGH-ENERGY COLLIDER PARAMETERS: e + e Colliders (I)
28. High-energy collider parameters 1 HIGH-ENERGY COLLIDER PARAMETERS: e + e Colliders (I) Updated in early 2012 with numbers received from representatives of the colliders (contact J. Beringer, LBNL).
Results: Low current (2 10 12 ) Worst case: 800 MHz, 12 50 GeV, 4 turns Energy oscillation amplitude 154 MeV, where
Status Focus has shifted to a neutrino factory Two comprehensive designs of acceleration (liancs, arcs) Jefferson Lab, for Fermilab Study CERN (Keil et al.) Jefferson Lab study Low (2 10 12 ) charge per
Institute of Accelerator Technologies of Ankara University and TARLA Facility
Institute of Accelerator Technologies of Ankara University and TARLA Facility Avni Aksoy Ankara University [email protected] On behalf of IAT & TARLA Team Contents Brief history of TAC project Institute
Track Trigger and Modules For the HLT
CMS L1 Track Trigger for SLHC Anders Ryd for the CMS Track Trigger Task Force Vertex 2009 Sept. 13-18, 2009 L=1035 cm-2s-1 Outline: SLHC trigger challenge Tracking triggers Track trigger modules Simulation
Damping Wigglers in PETRA III
Damping Wigglers in PETRA III WIGGLE2005, Frascati 21-22.2.2005 Winni Decking, DESY-MPY Introduction Damping Wiggler Parameters Nonlinear Dynamics with DW Operational Aspects Summary DESY and its Accelerators
Large Hadron Collider am CERN
The CMS Silicon Tracker Lutz Feld 1. Physikalisches Institut, RWTH Aachen GSI Darmstadt, 18. 4. 2007 Large Hadron Collider am CERN proton proton quarks & gluons circumference 27 km 1200 superconducting
FCC 1309180800 JGU WBS_v0034.xlsm
1 Accelerators 1.1 Hadron injectors 1.1.1 Overall design parameters 1.1.1.1 Performance and gap of existing injector chain 1.1.1.2 Performance and gap of existing injector chain 1.1.1.3 Baseline parameters
Calorimetry in particle physics experiments
Calorimetry in particle physics experiments Unit n. 8 Calibration techniques Roberta Arcidiacono Lecture overview Introduction Hardware Calibration Test Beam Calibration In-situ Calibration (EM calorimeters)
K O M A C. Beam Commissioning of 100-MeV KOMAC Linac. Korea Multi-purpose Accelerator Complex 양 성 자 가 속 기 연 구 센 터
LINAC14, Geneva Beam Commissioning of 100-MeV KOMAC Linac Yong-Sub Cho for KOMAC accelerator team September 2, 2014 KOMAC, KAERI 0 Outline KOrea Multi-purpose Accelerator Complex Facility Introduction
Study of electron cloud at MI and slip stacking process simulation
Study of electron cloud at MI and slip stacking process simulation Alexandr S. Valkovich Purpose 1.Understand the slip stacking process which happens in the Main Injector. 2. Calculation of bunch distortion
LHC MACHINE PROTECTION
LHC MACHINE PROTECTION Rossano Giachino, CERN, Geneva, Switzerland Abstract The energy stored in LHC magnets presents a considerable challenge for commissioning even before any beam is injected. Furthermore,
Experimental Particle Physics PHYS6011 Southampton University Lecture 1
Experimental Particle Physics PHYS6011 Southampton University Lecture 1 Fergus Wilson, Email: Fergus.Wilson at stfc.ac.uk 1st May 2014 Fergus Wilson, RAL 1 Administrative Points 5 lectures: Tuesday 10am:
T(CR)3IC Testbed for Coherent Radio Cherenkov Radiation from Cosmic-Ray Induced Cascades
T(CR)3IC Testbed for Coherent Radio Cherenkov Radiation from Cosmic-Ray Induced Cascades R. Milinčić1, P. Gorham1, C. Hebert1, S. Matsuno1, P. Miočinović1, M. Rosen1, D. Saltzberg2, G. Varner1 1 University
Cryogenic Current Comparator Status at GSI/FAIR -
Cryogenic Current Comparator Status at GSI/FAIR - Outline Overview and timeline of the FAIR project at GSI Cryogenic Current Comparators as German In-Kind to FAIR CCCs in HEBT section of FAIR CCC inside
Cathode Ray Tube. Introduction. Functional principle
Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the
FIVE PROJECTS OF HIGH RF POWER INPUT COUPLERS & WINDOWS FOR SRF ACCELERATORS*
FIVE PROJECTS OF HIGH RF POWER INPUT COUPLERS & WINDOWS FOR SRF ACCELERATORS* Quan-Sheng Shu, Joe Susta, Guangfeng Cheng AMAC International Inc., 12050 Jefferson Ave, Newport News, VA 23606 Abstract Various
Industrial Involvement in the Construction of Synchrotron Light Sources
Industrial Involvement in the Construction of Synchrotron Light Sources M.S. de Jong, Canadian Light Source Inc. European Particle Accelerator Conference 2004-07-07 Introduction Large demand for synchrotron
MICE detectors and first results. M. Bonesini Sezione INFN Milano Bicocca
MICE detectors and first results M. Bonesini Sezione INFN Milano Bicocca I will speak of the installed beamline PID detectors (TOFes, CKOVs, KL) and only shortly of EMR (to be built)/ the trackers (tested
Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta. First accelerator: cathode ray tube
Accelerators Relativistic kinematics basic energy, mass and momentum units, Lorents force, track bending, sagitta Basic static acceleration: First accelerator: cathode ray tube Cathode C consist of a filament,
Physics and Technology of Particle Accelerators Basics, Overview and Outlook Simone Di Mitri, Elettra Sincrotrone Trieste University of Trieste, Dept. of Engineering 1 Prologue This seminar samples the
RF-thermal-structural-RF coupled analysis on the travelling wave disk-loaded accelerating structure
RF-thermal-structural-RF coupled analysis on the travelling wave disk-loaded accelerating structure PEI Shi-Lun( 裴 士 伦 ) 1) CHI Yun-Long( 池 云 龙 ) ZHANG Jing-Ru( 张 敬 如 ) HOU Mi( 侯 汨 ) LI Xiao-Ping( 李 小
11th International Computational Accelerator Physics Conference (ICAP) August 19 24, 2012, Rostock-Warnemünde (Germany)
Numerical Modeling of RF Electron Sources for FEL-Accelerators Erion Gjonaj Computational Electromagetics Laboratory (TEMF), Technische Universität Darmstadt, Germany 11th International Computational Accelerator
BEPC UPGRADES AND TAU-CHARM FACTORY DESIGN
BEPC UPGRADES AND TAU-CHARM FACTORY DESIGN Abstract BEPC Group, presented by Yingzhi Wu Institute of High Energy Physics, Beijing 100039, P.R. China The luminosity upgrades of the BEPC are briefly reviewed.
Information about the T9 beam line and experimental facilities
Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions
Operation and Performance of the CMS Silicon Tracker
Operation and Performance of the CMS Silicon Tracker Manfred Krammer 1 on behalf of the CMS Tracker Collaboration Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria Abstract.
SIMULATIONS OF ELECTRON CLOUD BUILD-UP AND SATURATION IN THE APS *
SIMULATIONS OF ELECTRON CLOUD BUILD-UP AND SATURATION IN THE APS * K. C. Harkay and R. A. Rosenberg, ANL, Argonne, IL 60439, USA M. A. Furman and M. Pivi, LBNL, Berkeley, CA 94720, USA Abstract In studies
RF SYSTEM FOR VEPP-5 DAMPING RING
Ó³ Ÿ. 2006.. 3, º 7(136).. 60Ä64 Š 621.384.634.14 RF SYSTEM FOR VEPP-5 DAMPING RING Ye. Gusev, N. Kot, S. Krutikhin, I. Kuptsov, G. Kurkin, I. Makarov, N. Matyash, L. Mironenko, S. Motygin, V. Osipov,
LHCC TOTEM STATUS REPORT
LHCC TOTEM STATUS REPORT Status of Roman Pot Consolidation & Upgrade Program Physics Analysis Highlights 4/9/2013 LHCC TOTEM 13.3.2013 CERN J. Baechler 1 TOTEM Status of Roman Pot Consolidation & Upgrade
Beam Instrumentation Group, CERN ACAS, Australian Collaboration for Accelerator Science 3. School of Physics, University of Melbourne 4
Prototype tests of a wide-band Synchrotron-Light based Beam Pattern Monitor for measuring charge-couple bunch instabilities in High-Energy Particle Accelerator Beams Sophie Dawson2,3, Mark Boland2,4, David
Precision Tracking Test Beams at the DESY-II Synchrotron. Simon Spannagel DPG 2014 T88.7 Mainz, 26.3.2014
Precision Tracking Test Beams at the DESY-II Synchrotron. Simon Spannagel DPG 2014 T88.7 Mainz, 26.3.2014 Overview > Test Beams at DESY-II > Tracking with the DATURA Telescope Telescope Hardware Software
Large Systems Commissioning
Large Systems Commissioning, DESY CAS Vacuum in Accelerators Platja D`Aro, May 21, 2006 Special thanks to O. Gröbner 1 Outline Introduction Pump Down and Leak Check Components Check Bake Out Interlocks/Safety
The LHCb Tracking System. Jeroen van Hunen
The LHCb Tracking System Jeroen van Hunen The LHCb Experiment LHCb at Point 8 : a lot of activity! LHCb : a B-physics experiment that is being constructed for : Precision measurements of the CPviolation
Testing thermo-acoustic sound generation in water with proton and laser beams
International ARENA Workshop DESY, Zeuthen 17th 19th of May 25 Testing thermo-acoustic sound generation in water with proton and laser beams Kay Graf Universität Erlangen-Nürnberg Physikalisches Institut
ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems
Page 1 of 6 ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems Free electron lasers support unique time-resolved experiments over a wide range of x-ray wavelengths,
ESS Proton Linac Accelerator Project Leader: Mats Lindroos Roland Garoby Technical Director www.europeanspallationsource.se Ankara - October 6, 2015
ESS Proton Linac Roland Garoby Technical Director Accelerator Project Leader: Mats Lindroos www.europeanspallationsource.se Ankara - October 6, 2015 Outline The Linac in the global ESS context Design and
Accelerator Physics WS 2011/12
Lecture: Accelerator Physics Heidelberg WS 2011/12 Prof. A. Schöning Physikalisches Institut der Universität Heidelberg Introduction 1 Goal of this Lecture Introduction to Accelerator Physics: experimental
Development and Experimental Performance Evaluation of a Dose-Rate meter for Pulsed Beam.
5 th International Workshop on Radiation Safety at Synchrotron Radiation Sources Development and Experimental Performance Evaluation of a Dose-Rate meter for Pulsed Beam. A. Vascotto 1, K. Casarin 1, S.
BEAM OPERATION OF THE PAL-XFEL INJECTOR TEST FACILITY
Proceedings of FEL2014, Basel, Switzerland WEB02 BEAM OPERATION OF THE PAL-XFEL INJECTOR TEST FACILITY J.-H. Han, J. Hong, J. H. Lee, M. S. Chae, S. Y. Baek, H. J. Choi, T. Ha, J. Hu, W. H. Hwang, S. H.
Les Accélérateurs Laser Plasma
Les Accélérateurs Laser Plasma Victor Malka Laboratoire d Optique Appliquée ENSTA ParisTech Ecole Polytechnique CNRS PALAISEAU, France [email protected] Accelerators : One century of exploration of
PHYSICS WITH LHC EARLY DATA
PHYSICS WITH LHC EARLY DATA ONE OF THE LAST PROPHETIC TALKS ON THIS SUBJECT HOPEFULLY We may have some two month of the Machine operation in 2008 LONG HISTORY... I will extensively use: Fabiola GIANOTTI
Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection -
[email protected] Finnish Society for Natural Philosophy, Helsinki, 17 February 2015 Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection - Timo Peltola
The CMS All Silicon Tracker
The CMS All Silicon Tracker A Detector for the Exploration of the Terascale Lutz Feld 1. Physikalisches Institut, RWTH Aachen Göttingen, 25. 1. 2008 Large Hadron Collider at CERN proton proton quarks &
DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I
DEMONSTRATION ACCELERATOR DRIVEN COMPLEX FOR EFFECTIVE INCINERATION OF 99 Tc AND 129 I A.S. Gerasimov, G.V. Kiselev, L.A. Myrtsymova State Scientific Centre of the Russian Federation Institute of Theoretical
Launching DORIS II and ARGUS. Herwig Schopper University Hamburg and CERN
Launching DORIS II and ARGUS Herwig Schopper University Hamburg and CERN ARGUS 20 Years, DESY symposium 9 November 2007 Early days of DORIS The DESY laboratory was founded in 1959 synchrotron DESY began
Projects and R&D activities
Projects and R&D activities J.M. Jimenez On behalf of the Vacuum, Surface and Coatings Group (VSC) Vacuum, Surface and Coatings group* Mandate Design, construction, operation, maintenance and upgrade of
Final Report to IOC. 26 th Linear Accelerator Conference Sep 9-14, 2012, Tel Aviv, Israel
Final Report to IOC 26 th Linear Accelerator Conference Sep 9-14, 2012, Tel Aviv, Israel Israel Mardor, LINAC12 Chair IOC Meeting, IPAC13, Shanghai, 15 May 2013 1 Local Organization 26 th Linear Accelerator
The accurate calibration of all detectors is crucial for the subsequent data
Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved
DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (INP Toulouse) Discipline ou spécialité : Conception des Circuits Microélectroniques
The commissioning of the LHC: first the technical systems, then the commissioning with beam
The commissioning of the LHC: first the technical systems, then the commissioning with beam Roberto Saban 4. Ulusal Parçacık Hızlandırıcıları ve Uygulamaları Kongresi 30 Ağustos 1 Eylül 2010, Bodrum -
Zero Degree Extraction using an Electrostatic Separator
Zero Degree Extraction using an Electrostatic Separator L. Keller Aug. 2005 Take another look at using an electrostatic separator and a weak dipole to allow a zero degree crossing angle a la the TESLA
Introduction to Superconducting RF (srf)
Introduction to Superconducting RF (srf) Training Course on Particle Accelerator Technology May 10.-11. 2007 Mol, Belgium Holger J. Podlech Institut für Angewandte Physik J.W.-Goethe-Universität, Frankfurt
Running in 2011 - Luminosity. Mike Lamont Verena Kain
Running in 2011 - Luminosity Mike Lamont Verena Kain Presentations Many thanks to all the speakers! Experiments expectations Massi Ferro-Luzzi Pushing the limits: beam Elias Métral Pushing the limits:
Jet Reconstruction in CMS using Charged Tracks only
Jet Reconstruction in CMS using Charged Tracks only Andreas Hinzmann for the CMS Collaboration JET2010 12 Aug 2010 Jet Reconstruction in CMS Calorimeter Jets clustered from calorimeter towers independent
Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko
Towards large dynamic range beam diagnostics and beam dynamics studies Pavel Evtushenko Motivation Linacs with average current 1-2 ma and energy 1-2.5 GeV are envisioned as drivers for next generation
Which calorimeter for FCC detector
Which calorimeter for FCC detector Jean-Claude Brient* Laboratoire Leprince-Ringuet Ecole Polytechnique CNRS Palaiseau J. C. Brient ( LLR) 1 * ECAL contact for ILD and former spokesperson of CALICE FCC
Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics
Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics Carlo Schiavi Dottorato in Fisica - XVII Ciclo Outline The ATLAS Experiment The SiTrack Algorithm Application
Monitoring and Controlling Particle Beams in Real Time
Monitoring and Controlling Particle Beams in Real Time Application Note High-performance digitizers enhance beam quality in advanced applications High-energy particle accelerators are helping researchers
3 Main Linac. 3.1 Introduction. 3.2 Beam Dynamics II-63
II-63 3 Main Linac 3.1 Introduction In this chapter, we describe the layout and the properties of the main linacs, in which the electron and positron beams are accelerated from 5 to 250 GeV at a gradient
FACET First Beam Commissioning. Jerry Yocky For the FACET commissioning team 21-May-2012 IPAC 2012, New Orleans, LA
FACET First Beam Commissioning Jerry Yocky For the FACET commissioning team 21-May-2012 IPAC 2012, New Orleans, LA Facility for Advanced accelerator Experimental Tests WHAT IS FACET? The FACET Facility
Status of the FERMI@Elettra Free Electron Laser
Status of the FERMI@Elettra Free Electron Laser E. Allaria on behalf of the FERMI team Work partially supported by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3
The TOTEM experiment at the LHC: results and perspective
The TOTEM experiment at the LHC: results and perspective Edoardo Bossini Università degli studi di Siena and INFN-Pisa (on behalf of the TOTEM collaboration) Trieste, 24 Settembre 2013 OUTLINE: Detector
NATIONAL CENTRE FOR PARTICLE, ASTROPARTICLE AND NUCLEAR PHYSICS
March 30th, 2010 PERSONNEL CONTRACTS WITH PARTIAL FINANCIAL SUPPORT The project of the CONSOLIDER INGENIO 2010 program announces 4 contracts of personnel with partial financial support from. The proposed
Slice Emittance Measurements at the SLAC Gun Test Facility*
SLAC-PUB-954 September Slice Emittance Measurements at the SLAC Gun Test Facility* D. H. Dowell, P. R. Bolton, J.E. Clendenin, P. Emma, S.M. Gierman, C.G. Limborg, B.F. Murphy, J.F. Schmerge Stanford Linear
Tune and Chromaticity Tracking in the Tevatron. C.Y. Tan 09 May 2006
Tune and Chromaticity Tracking in the Tevatron C.Y. Tan 09 May 2006 Overview What is the Tevatron tune tracker? Selected results from some stores. (There are many stores with TT running). Planned chromaticity
THE ALIGNMENT STRATEGY FOR THE SPIRAL2 SUPERCONDUCTING LINAC CRYOMODULES
THE ALIGNMENT STRATEGY FOR THE SPIRAL2 SUPERCONDUCTING LINAC CRYOMODULES R. Beunard, GANIL, BP 55027, 14076 CAEN, CEDEX 5, France Abstract The SPIRAL2* project, located at the GANIL** facility in Caen,
MYRRHA Injector Design
MYRRHA Injector Design Horst Klein Dominik Mäder, Holger Podlech, Ulrich Ratzinger, Alwin Schempp, Rudolf Tiede, Markus Vossberg, Chuan Zhang Institute for Applied Physics, Goethe-University Frankfurt
Linac RF Commissioning with the SNS HPRF Systems
Linac RF Commissioning with the SNS HPRF Systems 4 th CWHAP Workshop May 3, 2006 M. McCarthy, R. Fuja, P. Gurd, T. Hardek, Y. Kang SNS RF Group The SNS RF Group The mission of the RF Group is to ensure
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratory for Particle Physics SUPERCONDUCTIVITY AND CRYOGENICS FOR FUTURE HIGH-ENERGY ACCELERATORS
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratory for Particle Physics Departmental Report CERN/AT 2007-4 SUPERCONDUCTIVITY AND CRYOGENICS FOR FUTURE HIGH-ENERGY ACCELERATORS Ph. Lebrun High-energy
Spin Tracking with COSY INFINITY and its Benchmarking
Spin Tracking with COSY INFINITY and its Benchmarking 2015-05-05 Marcel Rosenthal for the JEDI collaboration Outline Methods Simulation toolbox New extension: Transfer maps for time-varying fields Application
Investigations on Critical Higher Order Modes in CEBAF Upgrade Cavities
Investigations on Critical Higher Order Modes in CEBAF Upgrade Cavities F. Marhauser Thanks also to H. Wang and K. Tian 27. August 2009 How HOMs are excited and why they are important - Wakefields- some
Status of High Current Ion Sources. Daniela Leitner Lawrence Berkeley National Laboratory
http://ecrgroup.lbl.gov Status of High Current Ion Sources Daniela Leitner Lawrence Berkeley National Laboratory October, 27th, 2003 1 Content Overview of available high current sources Requirements for
Development of on line monitor detectors used for clinical routine in proton and ion therapy
Development of on line monitor detectors used for clinical routine in proton and ion therapy A. Ansarinejad Torino, february 8 th, 2010 Overview Hadrontherapy CNAO Project Monitor system: Part1:preliminary
