Exampro GCSE Physics. P3 - Medical Applications of Physics Self Study Questions - Higher tier. Name: Class: Author: Date: Time: 90.

Size: px
Start display at page:

Download "Exampro GCSE Physics. P3 - Medical Applications of Physics Self Study Questions - Higher tier. Name: Class: Author: Date: Time: 90."

Transcription

1 Exampro GCSE Physics P3 - Medical Applications of Physics Self Study Questions - Higher tier Name: Class: Author: Date: Time: 90 Marks: 90 Comments: Page of 32

2 Q. The diagram shows a glass prism. (i) Explain why refraction has not occurred at point X () (A) Give the full name for the process which has occurred at point Y.... () (B) Explain why this process has occurred (2) (Total 4 marks) Page 2 of 32

3 Q2. Pigs have a layer of fat in their skin. Underneath the fat is a layer of muscle. Ultrasonic waves are used to measure the thickness of the layer of fat. An ultrasound transmitter and detector are attached to the skin of the pig. (a) Explain why ultrasound can be used to measure the thickness of the layer of fat (2) (b) The oscilloscope does not measure distance directly. (i) What does the oscilloscope measure in this case? () What other information is needed to calculate the thickness of the layer of fat in a pig? () (Total 4 marks) Page 3 of 32

4 Q3. The diagram shows the image IC formed by a lens, of an object OB a long way from it. The points F mark the focal points of the lens. (a) Describe, either by writing below or drawing on the diagram, how the size and position of the image changes: (i) when the object OB is moved towards the focal point F... when the object OB is moved past F to a point nearer the lens than the focal point... (4) (b) Explain how a converging lens in a camera is used to produce sharp images on the film when the object is a long distance away from the camera, and when it is close to the camera (3) (Total 7 marks) Q4. (a) The diagram shows a lens used as a magnifying glass. The position of the eye is shown and the size and position of an object standing at point O. (i) What type of lens is shown in the diagram?... () Page 4 of 32

5 Two points are marked as F. What are these points?... () (iii) What is the name of the straight line which goes through the point F, through the point L at the centre of the lens, and through the point F on the other side?... () (iv) On the diagram, use a ruler to construct accurately the position of the image. You should show how you construct your ray diagram and how light appears to come from this image to enter the eye. (5) (v) The image is virtual. What is a virtual image? () Page 5 of 32

6 (b) The lens shown in the diagram in part (a)(iv) can be used in a camera to produce a real image. Explain why a real image must be produced in a camera and how the object and the lens are positioned to produce a real image which is smaller than the object. Do not draw a ray diagram as part of your answer (3) (Total 2 marks) Q5. The picture shows a pre-natal scan obtained using ultrasonic waves. (i) Explain how ultrasonic waves are used to produce the image of an unborn baby (2) Give another use for ultrasonic waves.... () (Total 3 marks) Page 6 of 32

7 Q6. Ultrasound can be used in industry for detecting internal cracks in metals. (a) State two features of ultrasound (2) (b) The diagram shows an ultrasound transmitter and detector fixed to the front of a metal block. The block has an internal crack. The diagram below shows the screen of the oscilloscope connected to the detector. (i) Explain why pulse A and pulse B occur (2) The metal block is 20 mm from front to back. What is the distance, in mm, from the front of the block to the internal crack? Distance =... mm () (Total 5 marks) Page 7 of 32

8 Q7. (a) The diagrams show oscilloscope traces for the same musical note played on two different instruments. The oscilloscope settings are not changed. (i) How can you tell, from the diagrams, that it is the same musical note? () How can you tell, from the diagrams, that the musical note has been played on different instruments? () (b) This passage is from an electronics magazine. Electronic systems can be used to produce ultrasound waves. These waves have a higher frequency than the upper limit for hearing in humans. Ultrasound waves are partially reflected when they meet a boundary between two different media. (i) Approximately what is the highest frequency that humans can hear? State the number and the unit.... () What does the word media mean when it is used in this passage? () Page 8 of 32

9 (iii) What happens to the ultrasound which reaches the boundary between two different media and is not reflected? (2) (Total 6 marks) Q8. The diagram shows a ray of light passing through a diverging lens. Page 9 of 32

10 (a) Use the information in the diagram to calculate the refractive index of the plastic used to make the lens. Write down the equation you use, and then show clearly how you work out your answer. Refractive index =... (2) (b) The focal length of the lens is 5 cm. A student looking through the lens sees the image of a pin. Complete the ray diagram below to show how the image of the pin is formed. (3) (Total 5 marks) Page 0 of 32

11 Q9. A student investigated how the nature of the image depends on the position of the object in front of a large converging lens. The diagram shows one position for the object. (a) Use a ruler to complete a ray diagram to show how the image of the object is formed. (4) (b) Describe the nature of this image relative to the object. (2) (Total 6 marks) Page of 32

12 Q0. (a) The diagram shows the inside of the eye of a person with perfect vision. Complete the sentence. The process by which the cornea and lens change the direction of the light is called.... () Page 2 of 32

13 (b) (i) Not everyone has perfect vision. A short-sighted person can only clearly see objects which are close. Light from distant objects meets in front of the retina. The diagrams show how an additional lens will correct short-sightedness. Uncorrected vision Vision corrected with a diverging lens The following diagram shows what happens when light from a close object enters the eye of a long-sighted person. Light fails to come to focus on the retina What type of additional lens will correct the vision of a long-sighted person?... () The additional lens changes the direction of the light before it enters the eye. Why does this correct the person s vision? () Page 3 of 32

14 (c) Read this passage from a magazine. Explain how these glasses are adjusted for a short-sighted person and how this adjustment allows the person to see distant objects clearly. (3) (Total 6 marks) Page 4 of 32

15 Q. (a) The diagram shows a microphone being used to detect the output from a loudspeaker. The oscilloscope trace shows the wave pattern produced by the loudspeaker. (i) How many waves are produced by the loudspeaker in seconds?... () How many waves are produced by the loudspeaker every second? Assume the input to the loudspeaker does not change. () (iii) A person with normal hearing cannot hear the sound produced by the loudspeaker. Explain why. (2) Page 5 of 32

16 (b) The diagram shows how a very high frequency sound wave can be used to check for internal cracks in a large steel bolt. The oscilloscope trace shows that the bolt does have an internal crack. (i) Explain what happens to produce pulse A and pulse B. (2) Use the information in the diagram and the equation in the box to calculate the distance from the head of the bolt to the internal crack. distance = speed time Speed of sound through steel = 6000 m/s Show clearly how you work out your answer. (3) (Total 9 marks) Page 6 of 32

17 Q2. (a) The diagram shows a converging lens being used as a magnifying glass. (i) On the diagram, use a ruler to draw two rays from the top of the object which show how and where the image is formed. Represent the image by an arrow drawn at the correct position. (3) Use the equation in the box to calculate the magnification produced by the lens. Show clearly how you work out your answer. Magnification =... (2) Page 7 of 32

18 (b) A camera also uses a converging lens to form an image. Describe how the image formed by the lens in a camera is different from the image formed by a lens used as a magnifying glass. (2) (Total 7 marks) Q3. Figure shows how a ray of light from a laser travels along an optical fibre. Figure (a) Why does the ray of light stay within the optical fibre? () (b) The material used to make the optical fibre has a refractive index of.50. Calculate the critical angle of this material. Use the correct equation from the Physics Equations Sheet. Critical angle =... degrees (2) Page 8 of 32

19 (c) Different wavelengths of light can be used to transmit information along optical fibres. Figure 2 shows how the percentage of incident light transmitted through a fibre varies with the wavelength of light and the length of the fibre. Figure 2 Wavelength 0 7 metres Compare the percentages of incident light transmitted through the two different fibres over the range of wavelengths shown. (3) (Total 6 marks) Q4. (a) Human eyes and digital cameras both have parts with the same function. Complete the missing parts in the table below. Details of part Part of eye Part of digital camera Refracts light to produce an image Cornea and lens Lens Images are focused here Retina... Variable opening where light enters... Aperture (2) Page 9 of 32

20 (b) Long sight is a defect of the human eye. State two causes of long sight (2) (c) Long sight can be corrected by wearing spectacles with converging (convex) lenses. A lens in these spectacles has a power of +3.2 dioptres. Calculate the focal length of this lens. Use the correct equation from the Physics Equations Sheet. Focal length =... metres (2) (d) The figure below shows a ray of light passing through a converging (convex) lens. (i) Use the information in the figure above to calculate the refractive index of the glass used to make the lens. Use the correct equation from the Physics Equations Sheet. Refractive index =... (3) Page 20 of 32

21 Different lenses of the same power can be made using glass of a different refractive index. State one advantage of making spectacles using lenses made from glass of a higher refractive index. () (Total 0 marks) Page 2 of 32

22 M. (i) (incident) ray along the normal or (incident) ray at 90 (to the surface) (A) total internal reflection all three words required do not credit total internal refraction (B) EITHER angle of incidence is greater than the critical angle or angle of incidence is greater than 42 2 OR angle of incidence is 45 [4] M2. (a) (ultrasound) waves reflected accept bounce off at boundary / from muscle (b) (i) time speed of (ultrasound) waves [4] M3. (a) (i) Image distance increases Image size increases Remains inverted Remains real for mark each 2 Image distance decreases Image size decreases Becomes upright Becomes virtual for mark each 2 Page 22 of 32

23 (b) Move lens with respect to film Closer for distant objects Further for near objects for mark each 3 [7] M4. (a) (i) converging / convex / biconvex (iii) focal (points) or foci accept focuses or focus (point) (principal) axis (iv) all lines drawn with a ruler for full marks no ruler, penalise mark from first four last mark can still be awarded double refraction drawn could get 4 out of 5 marks ray that continues from the top of the object through L to the eye horizontal ray from the top of the object, refracted by the lens and continued through F on the r.h.s. to the eye back projections of these rays (shown as dotted lines) image 25 mm high at 6 mm left of L (tolerance mm ± vertically, 2 mm ± horizontally) at least one arrow shown on real ray and towards the eye but do not credit if contradicted by other arrow(s) Page 23 of 32

24 (v) formed where imaginary rays intersect / cross or not formed by real rays accept (virtual image) is imaginary accept cannot be put on screen do not credit just is not real (b) (the image) needs to fall on film / sensors / LDRs / CCDs accept just charged couples do not credit solar cells do not accept virtual image cannot be stored either to cause a (chemical) reaction or to be digitalised for credit response must be appropriate to camera type object (should be) on the far side of F / the focus (from the lens) or more than the focal length (away from the lens) allow beyond the focus or object should be more than twice the distance / 2F (from the lens) (2 marks) or more than twice the focal length (away from the lens) (2 marks) [2] M5. (i) (partly) reflected when they hit a (boundary between two) different media or substance or tissue accept named substances do not accept bounce back time taken for reflected wave (to return) is used to produce the image any one from: cleaning a delicate mechanism / jewellery do not accept cleaning welding plastics cutting textiles mixing emulsion paints sonar motion sensors (in burglar alarms) do not accept burglar alarms Page 24 of 32

25 removing dental plaque industrial quality control breaking up kidney stones treating injuries [3] M6. (a) any two points: do not credit features which are true of sound in general eg longitudinal waves humans cannot hear ultrasound it has a very high frequency / pitch do not credit just has a high frequency / pitch above the (upper) limit for humans / above Hz 2 (b) (i) ultrasound / waves are reflected...are bounced is insufficient, but...echo is acceptable Pulse A indicates / is the crack Pulse B indicates / is the back (of the block or crack) need to mention both A and B to get this mark 90 (mm) accept any answer in the range (mm) [5] M7. (a) (i) same frequency / period / pitch / wavelength ignore references to amplitude differences in waveform / shape / quality accept the diagrams are not identical Page 25 of 32

26 (b) (i) Hz / hertz or 20 khz / kilohertz in both cases, if the symbol rather than the name is used, it must be correct in every detail material(s) / substance(s) (through which sound travels) (iii) is absorbed accept (some) sound (energy) is transformed / transferred as heat / thermal energy is transmitted accept is refracted accept changes speed accept changes velocity do not accept is diffracted do not accept is diffused do not accept is dissipated [6] M8. (a).59 accept an answer that rounds to this allow mark for correct substitution into correct equation ie refractive index = 2 (b) 2 lines correctly drawn from the top of the pin through the lens allow mark for each 2 position of image correct image must be upright [5] Page 26 of 32

27 M9. (a) any two for mark each deduct () from the first two marks if a ruler has not been used but the intention is clear ray from the object's arrowhead through centre of lens parallel to the axis then, when it reaches the lens, through F on the right through F on the left then, when it reaches the lens parallel to the axis example of a 4 mark response if more than two construction lines have been drawn all must be correct to gain 2 marks construction lines drawn as dashed lines do not score credit 2 image shown as vertical line from axis to where their rays intersect image need not be marked with an arrowhead but, if it is, it must be correct ray direction shown only one correct direction arrow needed but there must not be any contradiction (b) any two from: inverted accept upside down magnified accept bigger real accept not virtual / not imaginary one correct feature gains mark ignore any reference to position an incorrect feature negates a correct response 2 [6] Page 27 of 32

28 M0. (a) refraction (b) (i) converging accept convex cause the light (rays) to meet on / focus at retina / back of eye do not accept hit the retina only (c) silicone is removed from the lens(es) lens(es) thinner in / at the middle (than at the edge) or lens(es) became concave / diverging diverges(s) the light which (now) meets / focuses at the retina / back of the eye [6] M. (a) (i) or their (a)(i) correctly calculated (iii) any two from: frequency is above (Hz) accept the frequency is frequency is above the upper limit of audible range upper limit of audible range equals (Hz) ignore reference to lower limit it is ultrasound/ultrasonic 2 (b) (i) wave (partially) reflected at crack to produce A and end of bolt to produce B accept at both ends of the crack Page 28 of 32

29 0.075 (m) allow 2 marks for time = allow mark for time = answers 0.5 or 0.05 or 0.09 gain 2 marks answers 0.8 or 0.03 gain mark the unit is not required but if given must be consistent with numerical answer for the available marks 3 [9] M2. (a) (i) two correct rays drawn mark for each correct ray ray parallel to axis from top of object and refracted through focus and traced back beyond object ray through centre of lens and traced back beyond object ray joining top of object to focus on left of lens taken to the lens refracted parallel to axis and traced back parallel to axis beyond object 2 an arrow showing the position and correct orientation of the image for their rays to gain this mark, the arrow must go from the intersection of the traced-back rays to the axis and the image must be on the same side of the lens as the object and above the axis (x) 3.0 accept 3.0 to 3.5 inclusive or correctly calculated allow mark for correct substitution into equation using their figures ignore any units 2 Page 29 of 32

30 (b) any two from: in a camera the image is: real not virtual inverted and not upright accept upside down for inverted diminished and not magnified accept smaller and bigger accept converse answers but it must be clear the direction of the comparison both parts of each marking point are required 2 [7] M3. (a) because the angle of incidence is greater than critical angle accept the light is totally internally reflected (b) 4.8 allow mark for correct substitution, eg.5 = or sin c = or c = sin - 2 (c) (for both fibres) increasing the wavelength of light decreases and then increases the percentage / amount of light transmitted accept for mark: (for both fibres) increasing the wavelength (of light) to 5 (x 0-7 metres), decreases the (percentage) transmission (for both fibres) the minimum transmission happens at 5 (x 0-7 metres) or maximum transmission occurs at 6.5 (x 0-7 metres) accept for a further mark: (for both fibres) increasing the wavelength of the light from 5 (x 0-7 metres) increases the amount of light transmitted increasing wavelength (of light), decreases the percentage transmitted is insufficient on its own Page 30 of 32

31 the shorter fibre transmits a greater percentage of light (at the same wavelength) accept for mark: Any statement that correctly processes data to compare the fibres [6] M4. (a) CCD / charged coupled device ignore sensor do not allow film pupil do not allow iris (b) the eye(ball) being too short the (eye) lens being unable to focus (an image at the retina) or the (ciliary) muscles being unable to change the shape of the lens sufficiently accept cornea / lens is not curved enough accept lens is not powerful enough or too weak accept lens being unable to accommodate (c) 0.3(25) allow mark for correct substitution, ie 2 (d) (i).4 allow 2 marks for allow 2 marks for.39 an answer of 0.72 gains 2 marks allow mark for correct substitution, ie allow mark for both sine values correctly calculated ie 0.5 and ignore any units 3 the lenses can be made thinner allow the lenses / spectacles / glasses are lighter allow uses less glass [0] Page 3 of 32

32 Page 32 of 32

Light and Sound. Pupil Booklet

Light and Sound. Pupil Booklet Duncanrig Secondary School East Kilbride S2 Physics Elective Light and Sound Name: Pupil Booklet Class: SCN 3-11a - By exploring the refraction of light when passed through different materials, lenses

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

Thin Lenses Drawing Ray Diagrams

Thin Lenses Drawing Ray Diagrams Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses

More information

2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.

2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec. Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin

More information

Geometrical Optics - Grade 11

Geometrical Optics - Grade 11 OpenStax-CNX module: m32832 1 Geometrical Optics - Grade 11 Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative

More information

Light and its effects

Light and its effects Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size

More information

Convex Mirrors. Ray Diagram for Convex Mirror

Convex Mirrors. Ray Diagram for Convex Mirror Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel

More information

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light 1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton

More information

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.

More information

7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics

7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics context 7.2 Unit 7.2 ocusing devices: Lenses and curved mirrors Light rays often need to be controlled and ed to produce s in optical instruments such as microscopes, cameras and binoculars, and to change

More information

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light

More information

Physics Unit 3 Revision (Higher tier)

Physics Unit 3 Revision (Higher tier) Physics Unit 3 Revision (Higher tier) X-rays X-rays are part of the electromagnetic spectrum, between gamma rays and UV X-rays have a short wavelength (about the diameter of an atom) and can cause ionisation.

More information

Chapter 27 Optical Instruments. 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass

Chapter 27 Optical Instruments. 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass Chapter 27 Optical Instruments 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass Figure 27 1 Basic elements of the human eye! Light enters the

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

PH3FP. (Jun14PH3FP01) General Certificate of Secondary Education Foundation Tier June 2014. Unit Physics P3. Time allowed 1 hour TOTAL

PH3FP. (Jun14PH3FP01) General Certificate of Secondary Education Foundation Tier June 2014. Unit Physics P3. Time allowed 1 hour TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Physics Unit Physics P3 Monday 19 May 2014 General Certificate of Secondary Education

More information

Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

More information

PH3FP. (JUn13PH3Fp01) General Certificate of Secondary Education Foundation Tier June 2013. Unit Physics P3 TOTAL. Time allowed 1 hour

PH3FP. (JUn13PH3Fp01) General Certificate of Secondary Education Foundation Tier June 2013. Unit Physics P3 TOTAL. Time allowed 1 hour Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics Unit Physics P3 Thursday 23 May 2013 For this paper you must have: a ruler a calculator

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

More information

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.

Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away. Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining

More information

1 of 9 2/9/2010 3:38 PM

1 of 9 2/9/2010 3:38 PM 1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft

1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from

More information

Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 36 - Lenses A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Determine

More information

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an

More information

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate

More information

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

More information

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus

More information

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) 1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION QUESTION BANK IN SCIENCE CLASS-X (TERM-II) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection

More information

The light. Light (normally spreads out straight... ... and into all directions. Refraction of light

The light. Light (normally spreads out straight... ... and into all directions. Refraction of light The light Light (normally spreads out straight...... and into all directions. Refraction of light But when a light ray passes from air into glas or water (or another transparent medium), it gets refracted

More information

Experiment 3 Lenses and Images

Experiment 3 Lenses and Images Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently

More information

GCSE Further Additional Science. Higher Tier. Unit 3 Physics 3H SPECIMEN MARK SCHEME V1

GCSE Further Additional Science. Higher Tier. Unit 3 Physics 3H SPECIMEN MARK SCHEME V1 GCSE Further Additional Science Higher Tier Unit 3 Physics 3H SPECIMEN MARK SCHEME V Copyright 0 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA) is a company

More information

FXA 2008. UNIT G485 Module 4 5.4.3 Ultrasound. Candidates should be able to :

FXA 2008. UNIT G485 Module 4 5.4.3 Ultrasound. Candidates should be able to : 1 Candidates should be able to : ULTRASOUND Describe the properties of ultrasound. ULTRASOUND is any sound wave having a frequency greater than the upper frequency limit of human hearing (20 khz). Describe

More information

Solution Derivations for Capa #14

Solution Derivations for Capa #14 Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Physics 25 Exam 3 November 3, 2009

Physics 25 Exam 3 November 3, 2009 1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

More information

Version 1.0. General Certificate of Secondary Education June 2013. Physics PH3FP. (Specification 4403) Unit: Physics 3. Final.

Version 1.0. General Certificate of Secondary Education June 2013. Physics PH3FP. (Specification 4403) Unit: Physics 3. Final. Version.0 General Certificate of Secondary Education June 03 Physics (Specification 4403) Unit: Physics 3 Final Mark Scheme Mark schemes are prepared by the Principal Examiner and considered, together

More information

P1 4. Waves and their uses

P1 4. Waves and their uses P 4. Waves and their uses P 8 minutes 8 marks Answer all questions using any and all resources. Page of 38 Q. Diagram shows four of the seven types of wave in the electromagnetic spectrum. Diagram J K

More information

RAY OPTICS II 7.1 INTRODUCTION

RAY OPTICS II 7.1 INTRODUCTION 7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)

More information

9/16 Optics 1 /11 GEOMETRIC OPTICS

9/16 Optics 1 /11 GEOMETRIC OPTICS 9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target

More information

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all

More information

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset. Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?

More information

Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72

Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Problem 25.7) A light beam traveling in the negative z direction has a magnetic field B = (2.32 10 9 T )ˆx + ( 4.02 10 9 T )ŷ

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

OPTICAL IMAGES DUE TO LENSES AND MIRRORS *

OPTICAL IMAGES DUE TO LENSES AND MIRRORS * 1 OPTICAL IMAGES DUE TO LENSES AND MIRRORS * Carl E. Mungan U.S. Naval Academy, Annapolis, MD ABSTRACT The properties of real and virtual images formed by lenses and mirrors are reviewed. Key ideas are

More information

Understanding astigmatism Spring 2003

Understanding astigmatism Spring 2003 MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest

More information

Physics 1230: Light and Color

Physics 1230: Light and Color Physics 1230: Light and Color The Eye: Vision variants and Correction http://www.colorado.edu/physics/phys1230 What does 20/20 vision mean? Visual acuity is usually measured with a Snellen chart Snellen

More information

Tuesday 20 May 2014 Morning

Tuesday 20 May 2014 Morning Tuesday 20 May 2014 Morning AS GCE PHYSICS B (ADVANCING PHYSICS) G491/01 Physics in Action *1203458796* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships

More information

Scanning Acoustic Microscopy Training

Scanning Acoustic Microscopy Training Scanning Acoustic Microscopy Training This presentation and images are copyrighted by Sonix, Inc. They may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed

More information

Chapter 22: Mirrors and Lenses

Chapter 22: Mirrors and Lenses Chapter 22: Mirrors and Lenses How do you see sunspots? When you look in a mirror, where is the face you see? What is a burning glass? Make sure you know how to:. Apply the properties of similar triangles;

More information

FIFTH GRADE TECHNOLOGY

FIFTH GRADE TECHNOLOGY FIFTH GRADE TECHNOLOGY 3 WEEKS LESSON PLANS AND ACTIVITIES SCIENCE AND MATH OVERVIEW OF FIFTH GRADE SCIENCE AND MATH WEEK 1. PRE: Interpreting data from a graph. LAB: Estimating data and comparing results

More information

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude. practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

More information

Lenses and Telescopes

Lenses and Telescopes A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the

More information

C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same

C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same 1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object

More information

Chapter 23. The Reflection of Light: Mirrors

Chapter 23. The Reflection of Light: Mirrors Chapter 23 The Reflection of Light: Mirrors Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted

More information

Size Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted

Size Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted CHAPTER-10 LIGHT REFLECTION AND REFRACTION Light rays; are; electromagnetic in nature, and do not need material medium for Propagation Speed of light in vacuum in 3*10 8 m/s When a light ray falls on a

More information

Question based on Refraction and Refractive index. Glass Slab, Lateral Shift.

Question based on Refraction and Refractive index. Glass Slab, Lateral Shift. Question based on Refraction and Refractive index. Glass Slab, Lateral Shift. Q.What is refraction of light? What are the laws of refraction? Ans: Deviation of ray of light from its original path when

More information

Review Vocabulary spectrum: a range of values or properties

Review Vocabulary spectrum: a range of values or properties Standards 7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. 7.3.20: Describe that something can be seen when light waves emitted or reflected by

More information

AQA Level 1/2 Certificate in Physics PAPER 1 SPECIMEN MARK SCHEME. AQA Level 1/2 Certificate in Physics Paper 1 MS

AQA Level 1/2 Certificate in Physics PAPER 1 SPECIMEN MARK SCHEME. AQA Level 1/2 Certificate in Physics Paper 1 MS AQA Level /2 Certificate in Physics PAPER SPECIMEN MARK SCHEME AQA Level /2 Certificate in Physics Paper MS MARK SCHEME Information to Examiners. General The mark scheme for each question shows: the marks

More information

After a wave passes through a medium, how does the position of that medium compare to its original position?

After a wave passes through a medium, how does the position of that medium compare to its original position? Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

More information

Polarization of Light

Polarization of Light Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights

More information

Circuit symbol. Each of the cells has a potential difference of 1.5 volts. Figure 1. Use the correct answer from the box to complete the sentence.

Circuit symbol. Each of the cells has a potential difference of 1.5 volts. Figure 1. Use the correct answer from the box to complete the sentence. Q.(a) Draw one line from each circuit symbol to its correct name. Circuit symbol Name Diode Light-dependent resistor (LDR) Lamp Light-emitting diode (LED) (3) Figure shows three circuits. The resistors

More information

Lesson. Objectives. Compare how plane, convex, and concave. State the law of reflection.

Lesson. Objectives. Compare how plane, convex, and concave. State the law of reflection. KH_BD1_SEG5_U4C12L3_407-415.indd 407 Essential Question How Do Lenses and Mirrors Affect Light? What reflective surfaces do you see in your classroom? What are the different properties of these surfaces

More information

Mirror, mirror - Teacher Guide

Mirror, mirror - Teacher Guide Introduction Mirror, mirror - Teacher Guide In this activity, test the Law of Reflection based on experimental evidence. However, the back-silvered glass mirrors present a twist. As light travels from

More information

Endoscope Optics. Chapter 8. 8.1 Introduction

Endoscope Optics. Chapter 8. 8.1 Introduction Chapter 8 Endoscope Optics Endoscopes are used to observe otherwise inaccessible areas within the human body either noninvasively or minimally invasively. Endoscopes have unparalleled ability to visualize

More information

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Laws; of Refraction. bends away from the normal. more dense medium bends towards the normal. to another does not bend. It is not

Laws; of Refraction. bends away from the normal. more dense medium bends towards the normal. to another does not bend. It is not Science 8 Laws; of Refraction 1. tight that moyes at an angle from a less dense medium to a more dense medium bends towards the normal. (The second medium slows the light down) Note: The angle of refraction,

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: ph116@u.washington.edu

Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: ph116@u.washington.edu Physics 116 Session 22 Review: ray optics Nov 4, 2011 R. J. Wilkes Email: ph116@u.washington.edu ! Exam 2 is Monday!! All multiple choice, similar to HW problems, same format as Exam 1!!! Announcements

More information

Ultrasonic Wave Propagation Review

Ultrasonic Wave Propagation Review Ultrasonic Wave Propagation Review Presented by: Sami El-Ali 1 1. Introduction Ultrasonic refers to any study or application of sound waves that are higher frequency than the human audible range. Ultrasonic

More information

HOMEWORK 4 with Solutions

HOMEWORK 4 with Solutions Winter 996 HOMEWORK 4 with Solutions. ind the image of the object for the single concave mirror system shown in ig. (see next pages for worksheets) by: (a) measuring the radius R and calculating the focal

More information

FIFTH GRADE WORKBOOK

FIFTH GRADE WORKBOOK FIFTH GRADE WORKBOOK students Math/Science Nucleus 1990,2001 APPLIED SCIENCE - SCIENCE AND MATH (5A) PROBLEM: Can you learn how to estimate? PREDICTION: MATERIALS: 3 containers filled with items given

More information

Lecture 12: Cameras and Geometry. CAP 5415 Fall 2010

Lecture 12: Cameras and Geometry. CAP 5415 Fall 2010 Lecture 12: Cameras and Geometry CAP 5415 Fall 2010 The midterm What does the response of a derivative filter tell me about whether there is an edge or not? Things aren't working Did you look at the filters?

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity. 1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

More information

Lab Exercise 1: Acoustic Waves

Lab Exercise 1: Acoustic Waves Lab Exercise 1: Acoustic Waves Contents 1-1 PRE-LAB ASSIGNMENT................. 2 1-3.1 Spreading Factor: Spherical Waves........ 2 1-3.2 Interference In 3-D................. 3 1-4 EQUIPMENT........................

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

More information

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours) INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

More information

3D Printing LESSON PLAN PHYSICS 8,11: OPTICS

3D Printing LESSON PLAN PHYSICS 8,11: OPTICS INVESTIGATE RATIONALE Optics is commonly taught through the use of commercial optics kits that usually include a basic set of 2-4 geometric lenses (such as double convex or double concave). These lenses

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

More information

Physical Science 20 - Final Exam Practice

Physical Science 20 - Final Exam Practice Physical Science 20 - Final Exam Practice SHORT ANSWER IS ALL CURVED MIRRORS AND LENSES Mirrors and Lenses 1. Complete the following ray diagrams for curved mirrors. Write the 4 characteristics of each

More information

OPTICAL FIBERS INTRODUCTION

OPTICAL FIBERS INTRODUCTION OPTICAL FIBERS References: J. Hecht: Understanding Fiber Optics, Ch. 1-3, Prentice Hall N.J. 1999 D. R. Goff: Fiber Optic Reference Guide (2 nd ed.) Focal Press 1999 Projects in Fiber Optics (Applications

More information

Information. From the LowVision Specialists. Guidelines for the fitting of telescopic systems

Information. From the LowVision Specialists. Guidelines for the fitting of telescopic systems Information From the LowVision Specialists Guidelines for the fitting of telescopic systems About a successful fitting Eye care professionals dispensing telescopic spectacles must ensure they have successfully

More information

THE COMPOUND MICROSCOPE

THE COMPOUND MICROSCOPE THE COMPOUND MICROSCOPE In microbiology, the microscope plays an important role in allowing us to see tiny objects that are normally invisible to the naked eye. It is essential for students to learn how

More information

PHYS 39a Lab 3: Microscope Optics

PHYS 39a Lab 3: Microscope Optics PHYS 39a Lab 3: Microscope Optics Trevor Kafka December 15, 2014 Abstract In this lab task, we sought to use critical illumination and Köhler illumination techniques to view the image of a 1000 lines-per-inch

More information

Eye Injuries. The Eyes The eyes are sophisticated organs. They collect light and focus it on the back of the eye, allowing us to see.

Eye Injuries. The Eyes The eyes are sophisticated organs. They collect light and focus it on the back of the eye, allowing us to see. Eye Injuries Introduction The design of your face helps protect your eyes from injury. But injuries can still damage your eyes. Sometimes injuries are severe enough that you could lose your vision. Most

More information

A concise guide to Safety Glasses, the different standards and the effects of light on the eye. Contents. Links. Year of publication: 2010

A concise guide to Safety Glasses, the different standards and the effects of light on the eye. Contents. Links. Year of publication: 2010 A concise guide to Safety Glasses, the different standards and the effects of light on the eye Year of publication: 2010 Produced by the leading supplier of Safety Glasses in the UK. All Rights Reserved.

More information

How to make a Galileian Telescope

How to make a Galileian Telescope How to make a Galileian Telescope I. THE BASICS THE PRINCIPLES OF OPTICS A Galileian telescope uses just two lenses. The objective lens is convergent (plano-convex), the ocular lens is divergent (plano-concave).

More information

Optics and Geometry. with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004

Optics and Geometry. with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004 Optics and Geometry with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004 1 Useful approximations This paper can be classified as applied

More information

Senses 3. The optics of the eye Accommodation of the eye Ammetropias The eyeground Visual field

Senses 3. The optics of the eye Accommodation of the eye Ammetropias The eyeground Visual field Senses 3 The optics of the eye Accommodation of the eye Ammetropias The eyeground Visual field Practical tasks Purkinje s images Keratoscopy Ophthalmoscopy Purkinje s flash figure Determination of the

More information

Reflection Lesson Plan

Reflection Lesson Plan Lauren Beal Seventh Grade Science AMY-Northwest Middle School Three Days May 2006 (45 minute lessons) 1. GUIDING INFORMATION: Reflection Lesson Plan a. Student and Classroom Characteristics These lessons

More information

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

More information

Study Guide for Exam on Light

Study Guide for Exam on Light Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

More information

Basics to Using the View Camera

Basics to Using the View Camera Walker Evans at work Using the View Camera Basics to Using the View Camera Because of the large-scale nature of the view camera, it is necessary to follow basic steps in setting-up the camera in order

More information

GCE. Physics B (Advancing Physics) Mark Scheme for January 2013. Advanced Subsidiary GCE Unit G491: Physics in Action

GCE. Physics B (Advancing Physics) Mark Scheme for January 2013. Advanced Subsidiary GCE Unit G491: Physics in Action GCE Physics B (Advancing Physics) Advanced Subsidiary GCE Unit G49: Physics in Action Mark Scheme for January 203 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding

More information