Metals, Semiconductors, and Insulators

Size: px
Start display at page:

Download "Metals, Semiconductors, and Insulators"

Transcription

1 Metals, Semiconductors, and Insulators Every solid has its own characteristic energy band structure. In order for a material to be conductive, both free electrons and empty states must be available. Metals have free electrons and partially filled valence bands, therefore they are highly conductive (a). Semimetals have their highest band filled. This filled band, however, overlaps with the next higher band, therefore they are conductive but with slightly higher resistivity than normal metals (b). Examples: arsenic, bismuth, and antimony. Insulators have filled valence bands and empty conduction bands, separated by a large band gap E g (typically >4eV), they have high resistivity (c ). Semiconductors have similar band structure as insulators but with a much smaller band gap. Some electrons can jump to the empty conduction band by thermal or optical excitation (d). E g 1.1 ev for Si, 0.67 ev for Ge and 1.43 ev for GaAs

2

3 Conduction in Terms of Band Metals An energy band is a range of allowed electron energies. The energy band in a metal is only partially filled with electrons. Metals have overlapping valence and conduction bands

4 Drude Model of Electrical Conduction in Metals Conduction of electrons in metals A Classical Approach: In the absence of an applied electric field (ξ) the electrons move in random directions colliding with random impurities and/or lattice imperfections in the crystal arising from thermal motion of ions about their equilibrium positions. The frequency of electron-lattice imperfection collisions can be described by a mean free path λ -- the average distance an electron travels between collisions. When an electric field is applied the electron drift (on average) in the direction opposite to that of the field with drift velocity v The drift velocity is much less than the effective instantaneous speed (v) of the random motion

5 v cm. 1 In copper while where The drift speed can be calculated in terms of the applied electric field ξ and of v and λ When an electric field is applied to an electron in the metal it experiences a force qξ resulting in acceleration (a) qξ Then the electron collides with a lattice imperfection and changes its direction randomly. The mean time between collisions is q ξ τ q ξ λ v a τ The drift velocity is m m v If n is the number of conduction electrons per unit volume and J is the current density Combining with the definition of resistivity gives q1.6x -19 C σ s n q m e a λ v m e e v cm. s mev kbt e μ J nqν q m λ v q e m e σξ τ 3 τ λ v

6 For an electron to become free to conduct, it must be promoted into an empty available energy state For metals, these empty states are adjacent to the filled states Generally, energy supplied by an electric field is enough to stimulate electrons into an empty state Electron Energy Freedom Empty States States Filled with Electrons Distance Energy Band

7 Band Diagram: Metal T > 0 Fermi filling function Conduction band (Partially Filled) E C E F E 0 Energy band to be filled At T 0, all levels in conduction band below the Fermi energy E F are filled with electrons, while all levels above E F are empty. Electrons are free to move into empty states of conduction band with only a small electric field E, leading to high electrical conductivity! At T > 0, electrons have a probability to be thermally excited from below the Fermi energy to above it.

8 Resistivity (ρ) in Metals Resistivity typically increases linearly with temperature: ρ t ρ o + αt Phonons scatter electrons. Where ρ o and α are constants for an specific material Impurities tend to increase resistivity: Impurities scatter electrons in metals Plastic Deformation tends to raise resistivity dislocations scatter electrons σ 1 ρ nq The electrical conductivity is controlled by controlling the number of charge carriers in the material (n) and the mobility or ease of movement of the charge carriers (μ) μ

9 Temperature Dependence, Metals There are three contributions to ρ: ρ t due to phonons (thermal) ρ i due to impurities ρ d due to deformation ρ ρ t + ρ i + ρ d The number of electrons in the conduction band does not vary with temperature. All the observed temperature dependence of σ in metals arise from changes in μ

10 Scattering by Impurities and Phonons Thermal: Phonon scattering Proportional to temperature ρ Impurity or Composition scattering Independent of temperature Proportional to impurity concentration Solid Solution Two Phase t ρo + ρi ρ at Aci ( 1 ci ) ρ α V ρ V t α + Deformation must be experimentally determined ρ d β β

11 Insulator The valence band and conduction band are separated by a large (> 4eV) energy gap, which is a forbidden range of energies. Electrons must be promoted across the energy gap to conduct, but the energy gap is large. Energy gap º E g Conduction Band Empty Electron Energy Forbidden Valence Band Filled with Electrons Energy Gap Distance

12 Band Diagram: Insulator T > 0 Conduction band (Empty) E gap E C E F Valence band (Filled) E V At T 0, lower valence band is filled with electrons and upper conduction band is empty, leading to zero conductivity. Fermi energy E F is at midpoint of large energy gap (- ev) between conduction and valence bands. At T > 0, electrons are usually NOT thermally excited from valence to conduction band, leading to zero conductivity.

13 Conduction in Ionic Materials (Insulators) Conduction by electrons (Electronic Conduction): In a ceramic, all the outer (valence) electrons are involved in ionic or covalent bonds and thus they are restricted to an ambit of one or two atoms. Eg k T If E g is the energy gap, the fraction of electrons in the conduction band is: B e A good insulator will have a band gap >>5eV and k B T~0.05eV at room temperature As a result of thermal excitation, the fraction of electrons in the conduction band is ~e -00 or -80. There are other ways of changing the electrical conductivity in the ceramic which have a far greater effect than temperature. Doping with an element whose valence is different from the atom it replaces. The doping levels in an insulator are generally greater than the ones used in semiconductors. Turning it around, material purity is important in making a good insulator. If the valence of an ion can be variable (like iron), hoping of conduction can occur, also known as polaron conduction. Transition elements. Transition elements: Empty or partially filled d or f orbitals can overlap providing a conduction network throughout the solid.

14

15 Conduction by Ions: ionic conduction It often occurs by movement of entire ions, since the energy gap is too large for electrons to enter the conduction band. The mobility of the ions (charge carriers) is given by: μ Z q. D k.b. T Where q is the electronic charge ; D is the diffusion coefficient ; k B is Boltzmann s constant, T is the absolute temperature and Z is the valence of the ion. The mobility of the ions is many orders of magnitude lower than the mobility of the electrons, hence the conductivity is very small: Example: σ n. Z. q.μ Suppose that the electrical conductivity of MgO is determined primarily by the diffusion of Mg + ions. Estimate the mobility of Mg + ions and calculate the electrical conductivity of MgO at 1800 o C. Data: Diffusion Constant of Mg in MgO 0.049cm /s ; lattice parameter of MgO a0.396x -7 cm ; Activation Energy for the Diffusion of Mg + in MgO 79,000cal/mol ; k B 1.987cal/Kk-mol; For MgO Z/ion; q1.6x -19 C; k B 1.38x -3 J/K-mol

16 First, we need to calculate the diffusion coefficient D D D o Q exp kt D cm s 79000cal / mol exp cal / mol Kx( ) K D1.119x - cm /s Next, we need to find the mobility μ Z. q. D k. T B ( 19 carriers / ion)( 1. 6 C)( ( )( ) 9 ) 1. 1 C. cm J. s C ~ Amp. sec ; J ~ Amp. sec.volt μ1.1x -9 cm /V.s

17 MgO has the NaCl structure (with 4 Mg + and 4O - per cell) Thus, the Mg + ions per cubic cm is: 4Mg ions / cell ( cm) + n 6. 4 ions / 7 3 cm 3 σ σ nzqμ. 94 ( C. cm 3 cm. V. s )( )( )( ) C ~ Amp.sec ; V ~ Amp.Ω σ.94 x -5 (Ω.cm) -1

18 Example: The soda silicate glass of composition 0%Na O-80%SiO and a density of approximately.4g.cm -3 has a conductivity of 8.5x -6 (Ω-m) -1 at 150 o C. If the conduction occurs by the diffusion of Na + ions, what is their drift mobility? Data: Atomic masses of Na, O and Si are 3, 16 and 8.1 respectively Solution: We can calculate the drift mobility (μ) of the Na + ions from the conductivity expression σ n q μ Where n i is the concentration of Na + ions in the structure. 0%Na O-80%SiO can be written as (Na O) 0. -(SiO ) 0.8. Its mass can be calculated as: i M M At At i 0. ( ( 3) ( )) ( 1( 81. 1) + ( 16)) g. mol 1 The number of (Na O) 0. -(SiO ) 0.8 units per unit volume can be found from the density

19 n n ρ N M At A. 39 (. 4g. cm ( Na O) ) ( 6. 03x g. mol 3 0. ( SiO) mol units cm 1 3 ) The concentration of Na + ions (n i ) can be obtained from the concentration of (Na O) 0. -(SiO ) 0.8 units n i cm. ( + ) +. ( + ) And μ i μ i σ q n μ 1. 6 i i 6 1 ( 8. 5 Ω m 19 ( C) ( m V 1 s ) 6 m 3 ) This is a very small mobility compared to semiconductors and metals

20

21 Electrical Breakdown At a certain voltage gradient (field) an insulator will break down. There is a catastrophic flow of electrons and the insulator is fragmented. Breakdown is microstructure controlled rather than bonding controlled. The presence of heterogeneities in an insulator reduces its breakdown field strength from its theoretical maximum of ~ 9 Vm -1 to practical values of 7 V.m -1

22 Energy Bands in Semiconductors Energy Levels and Energy Gap in a Pure Semiconductor. The energy gap is < ev. Energy gap º E g Electron Energy Conduction Band (Nearly) Empty Free electrons Forbidden Valence Band (Nearly) Filled with Electrons Bonding electrons Energy Gap Semiconductors have resistivities in between those of metals and insulators. Elemental semiconductors (Si, Ge) are perfectly covalent; by symmetry electrons shared between two atoms are to be found with equal probability in each atom. Compound semiconductors (GaAs, CdSe) always have some degree of ionicity. In III-V compounds, eg. Ga +3 As +5, the five-valent As atoms retains slightly more charge than is necessary to compensate for the positive As +5 charge of the ion core, while the charge of Ga +3 is not entirely compensated. Sharing of electrons occurs still less fairly between the ions Cd + and Se +6 in the II-VI compund CdSe.

23 Semiconductor Materials Semiconductor Bandgap Energy E G (ev) Carbon (Diamond) 5.47 Silicon 1.1 Germanium 0.66 Tin 0.08 Gallium Arsenide 1.4 Indium Phosphide 1.35 Silicon Carbide 3.00 Cadmium Selenide 1.70 Boron Nitride 7.50 Aluminum Nitride 6.0 Gallium Nitride 3.40 IIB Indium Nitride 1.90 Portion of the Periodic Table Including the Most Important Semiconductor Elements 30 Zn Zin c Cd Cadmium Hg Mercury 5 IIIA IVA VA VIA.811 B Bo ro n Al A luminum Ga G a llium In Ind ium Ti Tha llium C Carbon Si Silic o n Ge Germanium 50 Sn Tin Pb Le a d N Nitrogen P Phosphorus As Arsenic Sb Antimony Bi Bism uth O Oxygen S Su lf u r Se Selenium Te Te llurium () 84 Po Polonium

24 Band Diagram: Semiconductor with No Doping T > 0 Conduction band (Partially Filled) E C Valence band (Partially Empty) E F E V At T 0, lower valence band is filled with electrons and upper conduction band is empty, leading to zero conductivity. Fermi energy E F is at midpoint of small energy gap (<1 ev) between conduction and valence bands. At T > 0, electrons thermally excited from valence to conduction band, leading to measurable conductivity.

25 Semi-conductors (intrinsic - ideal) Perfectly crystalline (no perturbations in the periodic lattice). Perfectly pure no foreign atoms and no surface effects At higher temperatures, e.g., room temperature 300 K), some electrons are thermally excited from the valence band into the conduction band where they are free to move. Holes are left behind in the valence band. These holes behave like mobile positive charges. CB electrons and VB holes can move around (carriers). At edges of band the kinetic energy of the carriers is nearly zero. The electron energy increases upwards. The hole energy increases downwards.

26 Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si positive ion core valence electron Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si free electron free hole

27 Semiconductors in Group IV Carbon Silicon Germanium Tin Each has 4 valence Electrons. Covalent bond

28 Generation of Free Electrons and Holes In an intrinsic semiconductor, the number of free electrons equals the number of holes. Thermal : The concentration of free electrons and holes increases with increasing temperature. Thermal : At a fixed temperature, an intrinsic semiconductor with a large energy gap has smaller free electron and hole concentrations than a semiconductor with a small energy gap. Optical: Light can also generate free electrons and holes in a semiconductor. Optical: The energy of the photons (hν) must equal or exceed the energy gap of the semiconductor (E g ). If hν > E g, a photon can be absorbed, creating a free electron and a free hole. This absorption process underlies the operation of photoconductive light detectors, photodiodes, photovoltaic (solar) cells, and solid state camera chips.

29 UV Violet Blue Green Yellow Orange Red Near IR nm ev nm ev nm.9-.5 ev nm ev nm ev nm ev nm ev, nm ev Red Violet Orange Blue Yellow Green

30 E g hν E ω E gg Photoconductivity Conductivity is dependent on the intensity of the incident electromagnetic radiation E hν hc/λ, c λ(m)ν(sec -1 ) Band Gaps: Si ev (Infra red) Ge 0.66 ev (Infra red) GaAs 1.4 ev (Visible red) ZnSe.70 ev (Visible yellow) SiC.86 ev (Visible blue) GaN 3.40eV (Blue) AlN 6.0eV (Blue-UV) BN 7.50eV (UV) Total conductivity σ σ e + σ h nqμ e + pqμ h For intrinsic semiconductors: n p & σ nq(μ e + μ h )

31 Question: How many electrons and holes are there in an intrinsic semiconductor in thermal equilibrium? Define: n o equilibrium (free) electron concentration in conduction band [cm -3 ] p o equilibrium hole concentration in valence band [cm -3 ] Certainly in intrinsic semiconductor: n o p o n i n i intrinsic carrier concentration [cm -3 ] As T then n i As E g then n i n p What is the detailed form of these dependencies? We will use analogies to chemical reactions. The electron-hole formation can be + though of as a chemical reaction.. bond e + h Similar to the chemical reaction The Law-of-Mass-Action relates concentration of reactants and reaction products. For water Where E is the energy released or consumed during the reaction. K O H O [ H ][ OH [ H O] + O n + H + (OH) ] exp i E kt This is a thermally activated process, where the rate of the reaction is limited by the need to overcome an energy barrier (activation energy).

32 By analogy, for electron-hole formation: Where [bonds] is the concentration of unbroken bonds and E g is the activation energy In general, relative few bonds are broken to form an electron-hole and therefore the number of bonds are approximately constant. Two important results: 1).. E g exp kt )... n i n p O O K [ n E o ][ po ] g exp [ bonds] kt n i n [bonds] [bonds] o p o >> n o,p o cons tant E g exp kt The equilibrium np product in a semiconductor at a certain temperature is a constant specific to the semiconductor.

33 Effect of Temperature on Intrinsic Semiconductivity The concentration of electrons with sufficient thermal energy to enter the conduction band (and thus creating the same concentration of holes in the valence band) n i is given by Δ T k E n B i exp For intrinsic semiconductor, the energy is half way across the gap, so that T k E n B g i exp Since the electrical conductivity σ is proportional to the concentration of electrical charge carriers, then T k E B g O exp σ σ

34 Example Calculate the number of Si atoms per cubic meter. The density of silicon is.33g.cm -3 and its atomic mass is 8.03g.mol -1. Then, calculate the electrical resistivity of intrinsic silicon at 300K. For Si at 300K n i 1.5x 16 carriers.m -3, q1.60x -19 C, μ e 0.135m (V.s) -1 and μ h 0.048m.(V.s) -1 Solution n N ρ A Si 8 Si Si atoms. m ASi 3 σ ρ n i q resistivity ( μ + μ ) e h Ω m 3 ( Ω m) 1

35 Example The electrical resistivity of pure silicon is.3x 3 Ω-m at room temperature (7 o C ~ 300K). Calculate its electrical conductivity at 00 o C (473K). Assume that the E g of Si is 1.1eV ; k B 8.6x -5 ev/k T k E C B g.exp σ ) (.exp B g k E C σ ) (.exp B g k E C σ Ω + ). (. ) (. ) (. ln ). (. ) ( ) ( ln ) ( ) ( exp m ev k E k E k E k E k E B g B g B g B g B g σ σ σ σ σ σ σ σ

36 Example: For germanium at 5 o C estimate (a) the number of charge carriers, (b) the fraction of total electrons in the valence band that are excited into the conduction band and E g (c) the constant A in the expression when EE g / Data: Ge has a diamond cubic structure with 8 atoms per cell and valence of 4 ; a nm ; E g for Ge 0.67eV ; μ e 3900cm /V.s ; μ h 1900cm /V.s ; ρ 43Ω-cm ; k B 8.63x -5 ev/k (a) Number of carriers T k B T 5 o C 5 ( )( ev / K)( ) eV 0 03 n σ. q( μ + μ ) 1. 6 ( ). e h n A exp electrons 3 cm There are.5x 13 electrons/cm 3 and.5x 13 holes/cm 3 helping to conduct a charge in germanium at room temperature. k B T

37 b) the fraction of total electrons in the valence band that are excited into the conduction band The total number of electrons in the valence band of germanium is : Valence electrons ( 8atoms / cell )( 4valence electrons / atoms) 7 3 ( x cm) Total valence electrons electrons / cm Fraction excited number excited electrons / cm 3 Total valence electrons / cm (c) the constant A A e n Eg k T B e 19 carriers / cm 3

38 Direct and Indirect Semiconductors The real band structure in 3D is calculated with various numerical methods, plotted as E vs k. k is called wave vector p k p is momentum For electron transition, both E and p (k) must be conserved. A semiconductor is direct if the maximum of the conduction band and the minimum of the valence band has the same k value A semiconductor is indirect if the do not have the same k value Direct semiconductors are suitable for making light-emitting devices, whereas the indirect semiconductors are not.

Lecture 2 - Semiconductor Physics (I) September 13, 2005

Lecture 2 - Semiconductor Physics (I) September 13, 2005 6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 2-1 Lecture 2 - Semiconductor Physics (I) September 13, 2005 Contents: 1. Silicon bond model: electrons and holes 2. Generation and recombination

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure. Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

More information

The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy. Solar Energy The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

More information

Semiconductors, diodes, transistors

Semiconductors, diodes, transistors Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

More information

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

More information

Sample Exercise 12.1 Calculating Packing Efficiency

Sample Exercise 12.1 Calculating Packing Efficiency Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal

More information

6.772/SMA5111 - Compound Semiconductors Lecture 1 - The Compound Semiconductor Palette - Outline Announcements

6.772/SMA5111 - Compound Semiconductors Lecture 1 - The Compound Semiconductor Palette - Outline Announcements 6.772/SMA5111 - Compound Semiconductors Lecture 1 - The Compound Semiconductor Palette - Outline Announcements Handouts - General Information; Syllabus; Lecture 1 Notes Why are semiconductors useful to

More information

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Types of Epitaxy. Homoepitaxy. Heteroepitaxy Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)

More information

Energy band diagrams. Single atom. Crystal. Excited electrons cannot move. Excited electrons can move (free electrons)

Energy band diagrams. Single atom. Crystal. Excited electrons cannot move. Excited electrons can move (free electrons) Energy band diagrams In the atoms, the larger the radius, the higher the electron potential energy Hence, electron position can be described either by radius or by its potential energy In the semiconductor

More information

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel)

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) Introduction Based on known band structures of Si, Ge, and GaAs, we will begin to focus on specific properties of semiconductors,

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html

FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html FYS3410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0,

More information

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard Matter, Materials, Crystal Structure and Bonding Chris J. Pickard Why should a theorist care? Where the atoms are determines what they do Where the atoms can be determines what we can do Overview of Structure

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

Resistivity. V A = R = L ρ (1)

Resistivity. V A = R = L ρ (1) Resistivity Electric resistance R of a conductor depends on its size and shape as well as on the conducting material. The size- and shape-dependence was discovered by Georg Simon Ohm and is often treated

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based

More information

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light generation from a semiconductor material, LED chip technology,

More information

FUNDAMENTAL PROPERTIES OF SOLAR CELLS

FUNDAMENTAL PROPERTIES OF SOLAR CELLS FUNDAMENTAL PROPERTIES OF SOLAR CELLS January 31, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

More information

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review

More information

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures ARGYRIOS C. VARONIDES Physics and EE Department University of Scranton 800 Linden Street, Scranton PA, 18510 United States Abstract:

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

Unit 12 Practice Test

Unit 12 Practice Test Name: Class: Date: ID: A Unit 12 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) A solid has a very high melting point, great hardness, and

More information

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations.

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. The Periodic Table Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. Vertical Rows are called Families or Groups.

More information

Characteristic curves of a solar cell

Characteristic curves of a solar cell Related Topics Semi-conductor, p-n junction, energy-band diagram, Fermi characteristic energy level, diffusion potential, internal resistance, efficiency, photo-conductive effect, acceptors, donors, valence

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

UV LED based on AlGaN

UV LED based on AlGaN UV LED based on AlGaN by Johannes Neyer IncoherentLightsources 2013 Content History of Light Emitting Diodes (LEDs) Working principle Types of LEDs UV LEDs AlGaN LED Comparison to Hg low vapour pressure

More information

APPENDIX B: EXERCISES

APPENDIX B: EXERCISES BUILDING CHEMISTRY LABORATORY SESSIONS APPENDIX B: EXERCISES Molecular mass, the mole, and mass percent Relative atomic and molecular mass Relative atomic mass (A r ) is a constant that expresses the ratio

More information

EXAMPLE EXERCISE 4.1 Change of Physical State

EXAMPLE EXERCISE 4.1 Change of Physical State EXAMPLE EXERCISE 4.1 Change of Physical State State the term that applies to each of the following changes of physical state: (a) Snow changes from a solid to a liquid. (b) Gasoline changes from a liquid

More information

Objectives 200 CHAPTER 4 RESISTANCE

Objectives 200 CHAPTER 4 RESISTANCE Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

From Nano-Electronics and Photonics to Renewable Energy

From Nano-Electronics and Photonics to Renewable Energy From Nano-Electronics and Photonics to Renewable Energy Tom Smy Department of Electronics, Carleton University Questions are welcome! OUTLINE Introduction: to EE and Engineering Physics Renewable Energy

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

ELECTRICAL CONDUCTION

ELECTRICAL CONDUCTION Chapter 12: Electrical Properties Learning Objectives... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish conductors, semiconductors, and insulators?

More information

Fall 2004 Ali Shakouri

Fall 2004 Ali Shakouri University of California at Santa Cruz Jack Baskin School of Engineering Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 5b: Temperature Dependence of Semiconductor Conductivity

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic

More information

Unit 3.2: The Periodic Table and Periodic Trends Notes

Unit 3.2: The Periodic Table and Periodic Trends Notes Unit 3.2: The Periodic Table and Periodic Trends Notes The Organization of the Periodic Table Dmitri Mendeleev was the first to organize the elements by their periodic properties. In 1871 he arranged the

More information

KEY for Unit 1 Your Chemical Toolbox: Scientific Concepts, Fundamentals of Typical Calculations, the Atom and Much More

KEY for Unit 1 Your Chemical Toolbox: Scientific Concepts, Fundamentals of Typical Calculations, the Atom and Much More KEY for Unit 1 Your Chemical Toolbox: Scientific Concepts, Fundamentals of Typical Calculations, the Atom and Much More The Modern Periodic Table The Periodic Law - when elements are arranged according

More information

Solar Photovoltaic (PV) Cells

Solar Photovoltaic (PV) Cells Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

How MOCVD. Works Deposition Technology for Beginners

How MOCVD. Works Deposition Technology for Beginners How MOCVD Works Deposition Technology for Beginners Contents MOCVD for Beginners...3 MOCVD A Definition...4 Planetary Reactor Technology...5 Close Coupled Showerhead Technology...6 AIXTRON MOCVD Production

More information

6.772/SMA5111 - Compound Semiconductors Lecture 18 - Light Emitting Diodes - Outline

6.772/SMA5111 - Compound Semiconductors Lecture 18 - Light Emitting Diodes - Outline 6.772/SMA5111 - Compound Semiconductors Lecture 18 - Light Emitting Diodes - Outline Recombination Processes (continued from Lecture 17) Radiative vs. non-radiative Relative carrier lifetimes Light emitting

More information

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008 Felix Buth Joint Advanced Student School 2008 Outline 1 Introduction Difference organic/inorganic semiconductors From molecular orbitals to the molecular crystal 2 Organic Light Emitting Diodes Basic Principals

More information

Chapter 2. Atomic Structure and Interatomic Bonding

Chapter 2. Atomic Structure and Interatomic Bonding Chapter 2. Atomic Structure and Interatomic Bonding Interatomic Bonding Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Bonding Forces and Energies Considering the interaction

More information

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4 Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium

More information

Diodes and Transistors

Diodes and Transistors Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

More information

The Periodic Table: Periodic trends

The Periodic Table: Periodic trends Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5 Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

More information

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. 1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left

More information

An organic semiconductor is an organic compound that possesses similar

An organic semiconductor is an organic compound that possesses similar MSE 542 Final Term Paper Title: Organic Semiconductor for Flexible Electronics Name: Chunhung Huang Introduction: An organic semiconductor is an organic compound that possesses similar properties to inorganic

More information

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1 SUPERCONDUCTIVITY property of complete disappearance of electrical resistance in solids when they are cooled below a characteristic temperature. This temperature is called transition temperature or critical

More information

Photovoltaics photo volt Photovoltaic Cells Crystalline Silicon Cells Photovoltaic Systems

Photovoltaics photo volt Photovoltaic Cells Crystalline Silicon Cells Photovoltaic Systems 1 Photovoltaics Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.

More information

Graphene a material for the future

Graphene a material for the future Graphene a material for the future by Olav Thorsen What is graphene? What is graphene? Simply put, it is a thin layer of pure carbon What is graphene? Simply put, it is a thin layer of pure carbon It has

More information

Conduction in Semiconductors

Conduction in Semiconductors Chapter 1 Conduction in Semiconductors 1.1 Introduction All solid-state devices, e.g. diodes and transistors, are fabricated from materials known as semiconductors. In order to understand the operation

More information

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html Pensum: Solid State Physics by Philip Hofmann (Chapters 1-7 and 11) Andrej Kuznetsov delivery

More information

5.4 Trends in the Periodic Table

5.4 Trends in the Periodic Table 5.4 Trends in the Periodic Table Think about all the things that change over time or in a predictable way. For example, the size of the computer has continually decreased over time. You may become more

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements 47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

Searching New Materials for Energy Conversion and Energy Storage

Searching New Materials for Energy Conversion and Energy Storage Searching New Materials for Energy Conversion and Energy Storage ZÜRICH & COLLEGIU UM HELVE ETICUM R. NES SPER ETH 1. Renewable Energy 2. Solar Cells 3. Thermoelectricity 4. Fast High Energy Li-Ion Batteries

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Formation of solids from solutions and melts

Formation of solids from solutions and melts Formation of solids from solutions and melts Solids from a liquid phase. 1. The liquid has the same composition as the solid. Formed from the melt without any chemical transformation. Crystallization and

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

Chapter 1 The Atomic Nature of Matter

Chapter 1 The Atomic Nature of Matter Chapter 1 The Atomic Nature of Matter 6. Substances that cannot be decomposed into two or more simpler substances by chemical means are called a. pure substances. b. compounds. c. molecules. d. elements.

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

Project 2B Building a Solar Cell (2): Solar Cell Performance

Project 2B Building a Solar Cell (2): Solar Cell Performance April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion

More information

SMA5111 - Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction

SMA5111 - Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction SMA5111 - Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction Structure - What are we talking about? Behaviors: Ohmic, rectifying, neither Band picture in thermal equilibrium

More information

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

Electron Configuration Worksheet (and Lots More!!)

Electron Configuration Worksheet (and Lots More!!) Electron Configuration Worksheet (and Lots More!!) Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration

More information

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law. Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged

More information

STUDY MATERIAL FOR CLASS 10+2 - Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current.

STUDY MATERIAL FOR CLASS 10+2 - Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current. Chapter : 3 Current Electricity Current Electricity The branch of Physics which deals with the study of electric charges in motion is called current electricity. Electric current The flow of electric charges

More information

Chapter Test B. Chapter: Measurements and Calculations

Chapter Test B. Chapter: Measurements and Calculations Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

More information

Models of the Atom and periodic Trends Exam Study Guide

Models of the Atom and periodic Trends Exam Study Guide Name 1. What is the term for the weighted average mass of all the naturally occurring isotopes of an element? ans: atomic mass 2. Which is exactly equal to 1/12 the mass of a carbon -12 atom? ans: atomic

More information

a) The volume of the copper cylinder is given by: 3.14 x (0.5 x 10-6 ) 2 x 1 x 10-6 m 3 = 0.78 x 10-18 m 3 ;

a) The volume of the copper cylinder is given by: 3.14 x (0.5 x 10-6 ) 2 x 1 x 10-6 m 3 = 0.78 x 10-18 m 3 ; Example 1.1: Calculate the number of copper atoms present in a cylinder that has a diameter and a height both equal to 1 µm. The mass density of copper is 8.93 x 10 3 kg/m 3 and its atomic mass is 63.55

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num . ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

More information

Semiconductor I. Semiconductors. germanium. silicon

Semiconductor I. Semiconductors. germanium. silicon Basic Electronics Semiconductor I Materials that permit flow of electrons are called conductors (e.g., gold, silver, copper, etc.). Materials that block flow of electrons are called insulators (e.g., rubber,

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

More information