Project 2B Building a Solar Cell (2): Solar Cell Performance
|
|
|
- Blake Day
- 10 years ago
- Views:
Transcription
1 April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion efficiency under simulated solar illumination, responsivity and external quantum efficiency (EQE) spectrum of silicon solar cells. We will also correlate the responsivity spectrum and the solar spectrum to the short circuit current (I sc ). Samples: We will measure two samples in this experiment. The first sample is a p-type silicon chip with heavy n-type doping on the surface. The cross-section of the devices is shown in Fig. 1a. This is the simplest version of a p-n junction. There is no antireflection coating on the surface and no metal wire contacts to minimize the resistance, so the performance is certainly not optimized. Despite its simplicity, it does show rectifying I-V characteristics and photoresponse under room light illumination. The second one is a piece of fully processed silicon solar cell from Evergreen Solar, Inc. that you are going to visit in the field trip in May. This one has antireflection coating and fully implemented metal contacts to minimize the resistance of the device. A schematic cross-section is shown in Fig. 1b. This design also involve heavily doped n and p type regions to enhance the electric field in the device and increase carrier collection efficiency. We will measure its energy conversion efficiency with the solar simulator light source, and EQE spectrum with a monochromator. Metal Contact grid Antireflection coating on textured surface N + + P (a) P + (b) Image by Cyferz at Wikipedia. Fig. 1 Schematic cross-section of (a) sample 1: a simple silicon p-n junction device, and (2) a fully processed silicon solar cell produced by Evergreen Solar. 1
2 1. Measure I-V characteristics with and without illumination We will measure the I-V characteristics with an HP 4145A Semiconductor Parameter Analyzer. 1. Put sample 1 (simple silicon p-n junction) on the metal stage. Move probe #1 on top of it and press it hard on the surface of the sample. 2. Connect two cables of HP 4145A to probe #1 and the metal stage, respectively. 3. Put the lid on the chamber and use aluminum foil to cover the hole on the side. This step is to minimize the light illumination on the sample so that we can measure the I-V characteristics without illumination. 4. Turn on HP 4145A. Open 4145A-diode program on the computer and set the scan range from -1 to 1 V with a step of 20 mv. Start the scan. After the scan, rename the file IV on the desk top. 5. Now take off the lid and let room light illuminate on the sample surface. Measure I-V characteristics again. Do you see some changes? Is there any optical power converted to electrical power? Remember to rename the file after the scan is finished. 6. Measure the active area of sample 2 and record it. You can exclude the wide solder strip from the active device area. 7. Repeat the steps 1-5 for sample 2. Do you see a better diode behavior? 8. Put on your sunglasses. Move the solar simulator right on top of the sample. Turn on the fan for the Xeon light bulb, and then plug in and turn on the solar simulator. Gradually increase the current to 31 A. 9. Measure the I-V curve for sample 2 under solar simulator illumination. Can you estimate its energy conversion efficiency considering that the incident optical power is about 100 mw/cm 2? 2: Measure the responsivity and external quantum efficiency spectrum of the Evergreen solar cell Now let s check out the responsivity and EQE spectra of sample 2. You have simulated the EQE spectra in Lab 4, and now we are going to measure it experimentally 1. Turn on the light source (a halogen lamp) by gradually increasing its current until it reaches the set limit. Turn on the monochromator and set the displayed wavelength on the controller to 2 times the reading on the dial of the monochromator. Remove any filter in the optical path length of the monochromator. 2. Input wavelength 470 nm, 532 nm and 625 nm, respectively and observe the color of the output light. 3. Put the optical box on top of the probe stage so that the light spot is incident on the solar cell. 4. Open the program I-wavelength. Set the voltage to 0 since we want to measure photocurrent vs. wavelength at short circuit condition. Set the wavelength range from 400 to 690 nm and perform the scan. Remember to rename the file I-wavelength on the desktop to save this data. 5. Now input the wavelength 1000 nm and check out if you see any visible light coming out of the monochromator. The wavelength of 1000 nm is in the near infrared regime and 2
3 human eyes cannot see it. The bluish-green light you see is the second order diffraction of at 500 nm, since when the optical path difference is 1x1000 nm for the first order diffraction at 1000 nm, it also matches the diffraction condition at 500 nm (2x500 nm, second order). It is a common issue when using monochromator. To filter out this blue-green light, we will put on a red filter into the optical path for the scan between 700 and 1000 nm. Of course, it will also filter out the 3 rd and 4 th order diffraction at even shorter wavelengths. 6. Now scan the wavelength range of nm with the red filter on and save the data. 7. Turn off the light and do a background scan to find the zero line. 8. Now you have the photocurrent spectrum of the solar cell. Using the file mono.xls you will be able to derive the responsivity spectrum and the EQE spectrum (see the Question session below) Questions: 1. Plot the I-V curves of both samples without illumination on the same figure. Which one seems to show a better rectifying behavior? Do you see any linear part at the forward bias region of sample 1? What is the possible reason, and how would you improve it? 2. Plot the I-V curves of both samples under room light illumination on the same figure. Do you see an increase in photocurrent with reverse bias for sample 1? How about sample 2? Can you think about the reason? Hint: (electric field inside the active photon absorption region increases with reverse bias, and carrier drift under an electric field is faster than diffusion ) 3. Plot the I-V curve of sample 2 under solar simulator illumination. Find out the maximum power output and calculate the power conversion efficiency. Record the voltage V m, current I m and corresponding load R m at the maximum power output. Find the fill factor (FF) of the solar cell using the following formula: FF = I m V m /( I sc V oc ), Where I sc and V oc are short circuit current and open circuit voltage, respectively. 4. Use the measured photocurrent spectrum and the given optical input spectrum of the monochromator in mono.xls to derive and plot the responsivity spectrum. Responsivity at a wavelength is defined as photocurrent( ) Responsivity( ) =, Input optical power( ) so the unit is (A/W). Also derive and plot the EQE spectrum spectrum: EQE( ) = Number of carrier pairs generated( ) 100% Number of incident photos(( ) 5. Examine the EQE spectrum. What is the reason for the sharp roll-off at ~1050 nm (hint: think about the band gap of Si)? How about the roll off at ~400 nm? (hint: the absorption 3
4 coefficient of Si is ~30000/cm, and most of the light is absorbed within a distance of 1/ beneath the surface if it is too shallow, then surface defects will play a significant role Also check if the reflectance at 400 nm increases significantly from your simulation results in Lab. 4 ) 6. Using the responsivity spectrum and AM1.5 solar spectrum in am1.5_solar.xls to derive the short circuit current Isc (hint: calculate the photocurrent at each wavelength and integrate it over the whole spectrum). Is the result consistent with the I sc you directly measured? What could be the reasons for the small difference? 4
5 MIT OpenCourseWare Principles of Engineering Practice Spring 2010 For information about citing these materials or our Terms of Use, visit:
Solar Cell Parameters and Equivalent Circuit
9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit
FUNDAMENTAL PROPERTIES OF SOLAR CELLS
FUNDAMENTAL PROPERTIES OF SOLAR CELLS January 31, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of
Solar Energy Discovery Lab
Solar Energy Discovery Lab Objective Set up circuits with solar cells in series and parallel and analyze the resulting characteristics. Introduction A photovoltaic solar cell converts radiant (solar) energy
Characteristic curves of a solar cell
Related Topics Semi-conductor, p-n junction, energy-band diagram, Fermi characteristic energy level, diffusion potential, internal resistance, efficiency, photo-conductive effect, acceptors, donors, valence
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control
2 Absorbing Solar Energy
2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could
Spectral Characterisation of Photovoltaic Devices Technical Note
Spectral Characterisation of Photovoltaic Devices Technical Note Introduction to PV This technical note provides an overview of the photovoltaic (PV) devices of today, and the spectral characterisation
University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory
University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based
Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution
Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized
High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures
High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures ARGYRIOS C. VARONIDES Physics and EE Department University of Scranton 800 Linden Street, Scranton PA, 18510 United States Abstract:
SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS
SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS The United States generates over 4,110 TWh of electricity each year, costing $400 billion and emitting 2.5 billion metric tons of carbon dioxide (Yildiz,
High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules
High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules Abstract J.L. Crozier, E.E. van Dyk, F.J. Vorster Nelson Mandela Metropolitan University Electroluminescence (EL) is a useful
Photovoltaic and Photoelectrochemical Solar Cells
Photovoltaic and Photoelectrochemical Solar Cells EDDIE FOROUZAN, PH.D. ARTIN ENGINEERING AND CONSULTING GROUP, INC. 7933 SILVERTON AVE. #715 SAN DIEGO, CA 92128 PSES San Diego Chapter 2012-02-10 History
Blackbody Radiation References INTRODUCTION
Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt
Lab 1 Diode Characteristics
Lab 1 Diode Characteristics Purpose The purpose of this lab is to study the characteristics of the diode. Some of the characteristics that will be investigated are the I-V curve and the rectification properties.
Solar Power Analysis Based On Light Intensity
The International Journal Of Engineering And Science (IJES) ISSN (e): 2319 1813 ISSN (p): 2319 1805 Pages 01-05 2014 Solar Power Analysis Based On Light Intensity 1 Dr. M.Narendra Kumar, 2 Dr. H.S. Saini,
Characteristic and use
. Basic principle A PSD basically consists of a uniform resistive layer formed on one or both surfaces of a high-resistivity semiconductor substrate, and a pair of electrodes formed on both ends of the
Solar Photovoltaic (PV) Cells
Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation
Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW
Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic
Experiment #5: Qualitative Absorption Spectroscopy
Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions
Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light
Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light generation from a semiconductor material, LED chip technology,
ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely
ELG4126: Photovoltaic Materials Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely Introduction A material or device that is capable of converting the energy contained
0.00 18 TO18 0.00 _ nothing special M 0.20 49.00 A UVA 24.00 18ISO90 TO18 6.00 Lens concentr. Lens D 0.50 49.00 B UVB 24.
Basic Information That guide assists you selecting the right ilicon Carbide (ic) based UV photodiode for your application. Basically this selection is between active area, spectral behaviour, packaging
Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.
Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van
Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)
Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE
AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the
UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE
107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals-2 Hrs./week T.W.-25 marks Examination Scheme: Paper-50 marks (2 hrs) Online -50marks Prerequisite: Basics till 12 th Standard
LAB IV. SILICON DIODE CHARACTERISTICS
LAB IV. SILICON DIODE CHARACTERISTICS 1. OBJECTIVE In this lab you are to measure I-V characteristics of rectifier and Zener diodes in both forward and reverse-bias mode, as well as learn to recognize
The Physics of Energy sources Renewable sources of energy. Solar Energy
The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei [email protected] Renewable sources 1 Solar power! There are basically two ways of using directly the radiative
Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs
Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or
Solid State Detectors = Semi-Conductor based Detectors
Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection
Welcome to this presentation on Thermal Characteristics of LEDs, part of OSRAM Opto Semiconductors LED Fundamentals series.
Welcome to this presentation on Thermal Characteristics of LEDs, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at the basics of thermal management in LED
THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259
DSH 2004 THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259 I. INTRODUCTION Max Planck (1858-1947) was an early pioneer in the field of quantum physics.
THIN-FILM SILICON SOLAR CELLS
ENGINEERING SCIENCES Micro- and Nanotechnology THIN-FILM SILICON SOLAR CELLS Arvind Shah, Editor The main authors of Thin-Film Silicon Solar Cells are Christophe Ballif, Wolfhard Beyer, Friedhelm Finger,
Avalanche Photodiodes: A User's Guide
!"#$%& Abstract Avalanche Photodiodes: A User's Guide Avalanche photodiode detectors have and will continue to be used in many diverse applications such as laser range finders and photon correlation studies.
Photovoltaics photo volt Photovoltaic Cells Crystalline Silicon Cells Photovoltaic Systems
1 Photovoltaics Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.
Using the Spectrophotometer
Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to
3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1
3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current
Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)
Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review
FORCE ON A CURRENT IN A MAGNETIC FIELD
7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v
Silicon Wafer Solar Cells
Silicon Wafer Solar Cells Armin Aberle Solar Energy Research Institute of Singapore (SERIS) National University of Singapore (NUS) April 2009 1 1. PV Some background Photovoltaics (PV): Direct conversion
III. Reaction Kinetics
III. Reaction Kinetics Lecture 13: Butler-Volmer equation Notes by ChangHoon Lim (and MZB) 1. Interfacial Equilibrium At lecture 11, the reaction rate R for the general Faradaic half-cell reaction was
High power picosecond lasers enable higher efficiency solar cells.
White Paper High power picosecond lasers enable higher efficiency solar cells. The combination of high peak power and short wavelength of the latest industrial grade Talisker laser enables higher efficiency
Wafer-based silicon PV technology Status, innovations and outlook
Wafer-based silicon PV technology Status, innovations and outlook Wim Sinke ECN Solar Energy, Utrecht University & European PV Technology Platform www.ecn.nl Contents Wafer-based silicon photovoltaics
PUMPED Nd:YAG LASER. Last Revision: August 21, 2007
PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow
David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas. The PN Junction
David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas The PN Junction Objectives: Upon the completion of this unit, the student will be able to; name the two categories of integrated
Reflectance Measurements of Materials Used in the Solar Industry. Selecting the Appropriate Accessories for UV/Vis/NIR Measurements.
T e c h n i c a l N o t e Reflectance Measurements of Materials Used in the Solar Industry UV/Vis/NIR Author: Dr. Jeffrey L. Taylor PerkinElmer, Inc. 710 Bridgeport Avenue Shelton, CT 06484 USA Selecting
Integrating the Solar Spectrum
Integrating the Solar Spectrum PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo January 24, 203 Pop Quiz Note: quiz does not count toward grade
Scientific Exchange Program
Scientific Exchange Program Electrical characterization of photon detectors based on acoustic charge transport Dr. Paulo Santos, Paul Drude Institute, Berlin,Germany Dr. Pablo Diniz Batista, Brazilian
Semiconductors, diodes, transistors
Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!
Solar Cell Bypass Diodes in Silicon Crystalline Photovoltaic Panels
VISHAY GENERAL SEMICONDUCTOR www.vishay.com Rectifiers IMPORTANT CHARACTERISTICS OF BYPASS DIODES FOR PHOTOVOLTAIC SOLAR CELLS 1. Forward Voltage Drop (V F ) at Bypass The basic function of bypass diodes
Theory of Transistors and Other Semiconductor Devices
Theory of Transistors and Other Semiconductor Devices 1. SEMICONDUCTORS 1.1. Metals and insulators 1.1.1. Conduction in metals Metals are filled with electrons. Many of these, typically one or two per
P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)
INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as
Special-Purpose Diodes
7 Special-Purpose Diodes 7.1 Zener Diode 7.2 Light-Emitting Diode (LED) 7.3 LED Voltage and Current 7.4 Advantages of LED 7.5 Multicolour LEDs 7.6 Applications of LEDs 7.7 Photo-diode 7.8 Photo-diode operation
SIMULATION OF THE MARS SURFACE SOLAR SPECTRA FOR OPTIMIZED PERFORMANCE OF TRIPLE- JUNCTION SOLAR CELLS
SIMULATION OF THE MARS SURFACE SOLAR SPECTRA FOR OPTIMIZED PERFORMANCE OF TRIPLE- JUNCTION SOLAR CELLS Kenneth M. Edmondson, David E. Joslin, Chris M. Fetzer, Richard R. King, Nasser H. Karam Spectrolab,
Diodes and Transistors
Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)
Information sheet. 1) Solar Panels - Basics. 2) Solar Panels Functionality
1) Solar Panels - Basics A solar cell, sometimes called a photovoltaic cell, is a device that converts light energy into electrical energy. A single solar cell creates a very small amount of energy so
Computer Simulations of Edge Effects in a Small-Area Mesa N-P Junction Diode
Computer Simulations of Edge Effects in a Small-Area Mesa N-P Junction Diode Preprint Conference Paper NREL/CP-520-45002 February 2009 J. Appel and B. Sopori National Renewable Energy Laboratory N.M. Ravindra
FEATURE ARTICLE. Figure 1: Current vs. Forward Voltage Curves for Silicon Schottky Diodes with High, Medium, Low and ZBD Barrier Heights
PAGE 1 FEBRUARY 2009 Schottky Diodes by Rick Cory, Skyworks Solutions, Inc. Introduction Schottky diodes have been used for several decades as the key elements in frequency mixer and RF power detector
EE 332 Photovoltaic Cell Design Iowa State University Electrical and Computer Engineering Dept
EE 332 Photovoltaic Cell Design Iowa State University Electrical and Computer Engineering Dept Authors: Bai Rui, Senior Electrical Engineering Cui Qiaoya, Senior Electrical Engineering Chris Krantz, Senior
BPW34. Silicon PIN Photodiode VISHAY. Vishay Semiconductors
Silicon PIN Photodiode Description The is a high speed and high sensitive PIN photodiode in a miniature flat plastic package. Its top view construction makes it ideal as a low cost replacement of TO-5
Experiment #3, Ohm s Law
Experiment #3, Ohm s Law 1 Purpose Physics 182 - Summer 2013 - Experiment #3 1 To investigate the -oltage, -, characteristics of a carbon resistor at room temperature and at liquid nitrogen temperature,
ASI OEM Outdoor Solar Modules
SOLAR PHOTOVOLTAICS ASI OEM OUTDOOR E ASI OEM Outdoor Solar Modules for innovative autarchic electronic devices More Energy Double-stacked cells Stable performance Reliability and Quality Made in Germany
measurements at varying irradiance spectrum, intensity and module temperature
Loughborough University Institutional Repository Performance measurements at varying irradiance spectrum, intensity and module temperature of amorphous silicon solar cells This item was submitted to Loughborough
Arizona Institute for Renewable Energy & the Solar Power Laboratories
Arizona Institute for Renewable Energy & the Solar Power Laboratories International Photovoltaic Reliability Workshop July 29-31, Tempe AZ Christiana Honsberg, Stephen Goodnick, Stuart Bowden Arizona State
Photo Modules for PCM Remote Control Systems
Photo Modules for PCM Remote Control Systems Available types for different carrier frequencies Type fo Type fo TSOP183 3 khz TSOP1833 33 khz TSOP1836 36 khz TSOP1837 36.7 khz TSOP1838 38 khz TSOP184 4
Fundamentals of modern UV-visible spectroscopy. Presentation Materials
Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms
NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION
NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION Olivier Palais, Damien Barakel, David Maestre, Fabrice Gourbilleau and Marcel Pasquinelli 1 Outline Photovoltaic today
Optical Electronics RBG LED and the colours of the rainbow
Optical Electronics RBG LED and the colours of the rainbow Introduction Aidan Cameron External Workshops Engineer, School of Microelectronic Engineering, Griffith University David V. Thiel Head, School
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
RF Energy Harvesting Circuits
RF Energy Harvesting Circuits Joseph Record University of Maine ECE 547 Fall 2011 Abstract This project presents the design and simulation of various energy harvester circuits. The overall design consists
Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law
Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine
Ultraviolet selective thin film sensor TW30SX
Features of the UV Photodiode Broad band UVA UVB spectral response (for UVC please apply SG01S) Hermetically sealed TO metal housing and UV-glass window. High photocurrent, even if illuminated with very
POLYMER BASED PHOTOVOLTAICS
PLYMER BASED PHTVLTAICS Novel concepts, materials and state-of-the-art performances Jan Kroon Semiconducting polymers Nobel Prize Chemistry 2000 (Alan J. Heeger, Alan G. MacDiarmid, Hideki Shirakawa) Conducting
The Fundamentals of Thermoelectrics
The Fundamentals of Thermoelectrics A bachelor s laboratory practical Contents 1 An introduction to thermoelectrics 1 2 The thermocouple 4 3 The Peltier device 5 3.1 n- and p-type Peltier elements..................
Measuring Silicon and Germanium Band Gaps using Diode Thermometers
Measuring Silicon and Germanium Band Gaps using Diode Thermometers Haris Amin Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated: April 11, 2007) This paper reports the band gaps of
Chem 131A: Absorbance of Riboflavin
Chem 131A: Absorbance of Riboflavin Purpose: The purpose of this experiment is to: 1) Familiarize the student with the use of the HP 8452 diode array spectrophotometer, 2) examine the limitations of the
Theremino System Theremino Spectrometer Technology
Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating
EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.
EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare
Yrd. Doç. Dr. Aytaç Gören
H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps
Prospects for Solar Pumped Semiconductor Lasers Geoffrey A. Landis
Paper SPIE 2121-09, Laser Power Beaming, SPIE Proceedings Volume 2121, pp. 58-65 (1994). Presented at SPIE Optics, Electro-optics & Laser Conference, Los Angeles CA, January 27-28 1994 Prospects for Solar
See Horenstein 4.3 and 4.4
EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated
V-I CHARACTERISTICS OF DIODE
V-I CHARACTERISTICS OF DIODE RAVITEJ UPPU 1 1. Aim We try to see the Voltage-Current realtion in Diodes and compare the difference between various types of diodes including Zener Diode. 2. Theory The diode
h e l p s y o u C O N T R O L
contamination analysis for compound semiconductors ANALYTICAL SERVICES B u r i e d d e f e c t s, E v a n s A n a l y t i c a l g r o u p h e l p s y o u C O N T R O L C O N T A M I N A T I O N Contamination
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab
SOLAR ENERGY. Solar Energy, Kit #6A: Efficiency of Solar Cells. Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP
SOLAR ENERGY Solar Energy, Kit #6A: Efficiency of Solar Cells Solar Energy, Kit #6B: Solar Extension Activities INSTITUTE FOR SCHOOL PARTNERSHIP PARC Contents: Topic Template 3 Introduction: Photovoltaic
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron
Amplified High Speed Fiber Photodetectors
Amplified High Speed Fiber Photodetectors User Guide (800)697-6782 [email protected] www.eotech.com Page 1 of 7 EOT AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified
Figure 1. Diode circuit model
Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The
Operational experienced of an 8.64 kwp grid-connected PV array
Hungarian Association of Agricultural Informatics European Federation for Information Technology in Agriculture, Food and the Environment Journal of Agricultural Informatics. 2013 Vol. 4, No. 2 Operational
6 LED colours: White Blue Green Red Yellow Amber
Illuminated contours can be found in many places on petrol stations and buildings of industrial, commercial and service companies. Such light bands visually emphasize the contours of a building during
The Status and Outlook for the Photovoltaics Industry. David E. Carlson March 14, 2006
The Status and Outlook for the Photovoltaics Industry David E. Carlson March 14, 2006 Outline of the Talk The PV Market The Major Players Different Types of Solar Cells Field Installations Performance
A Thesis Presented to the Academic Faculty. Ben M. Damiani
INVESTIGATION OF LIGHT INDUCED DEGRADATION IN PROMISING PHOTOVOLTAIC GRADE SILICON AND DEVELOPMENT OF POROUS SILICON ANTI-REFLECTION COATINGS FOR SILICON SOLAR CELLS A Thesis Presented to the Academic
Chip Diode Application Note
Chip Diode Application Note Introduction The markets of portable communications, computing and video equipment are challenging the semiconductor industry to develop increasingly smaller electronic components.
CCD and CMOS Image Sensor Technologies. Image Sensors
CCD and CMOS Image Sensor Technologies Image Sensors There are Two Main types of Image Sensors are available today: CCD and CMOS Both were originally developed in the late 1960 s and 1970 s Defining Some
Photovoltaic Cell: Converting Light to Electricity
Photovoltaic Cell: Converting Light to Electricity Outcomes: 1. Understand that a photovoltaic cell produces DC voltage when light shines on its surface. 2. Understand that the electrical voltage produced
