A New Method To Simulate Bipolar Transistors Combining Analytical Solution And Currend-Based MC Method
|
|
|
- Maximilian Evans
- 10 years ago
- Views:
Transcription
1 A New Method To Simulate Bipolar Trasistors Combiig Aalytical Solutio Ad Curred-Based MC Method Semesterwor Vicet Peiert ETH Zurich, Switzerlad performed at ITET uder supervisio of Dr. Simo Christia Brugger, ETHZ Prof. Adreas Sche, ETHZ
2 Cotets 1 Tass 3 2 Itroductio Curret-based MC method Valid regios of the semi-aalytical solutio Momets Of The Iverse Scatterig Operator MISOs) Geeralizatio from space homogeeuos to ihomogeeuos case 8 4 Derivatio of f for the space ihomogeeous Boltzma equatio i secod order 10 5 Derivatio of secod order mobility ad diffusio tesors 15 6 Implemetatio to C Code validatio Eistei s relatio Symmetries Compariso with Mote Carlo simulatios Coclusio 37 Refereces 37 2
3 1 Tass S. C. Brugger ETH Zurich) developed a ew Mote Carlo method to solve the Boltzma equatio withi semicoductors [1], [2]. This method uses the trasportcoefficiets mobility µ ad diffusio D. But whe the semicoductor device becomes to big ad the dopigs become to high these Mote Carlo Method as well as ay other Mote Carlo Method) gets to time cosumig for applicatio. I particular bipolar trasistors ca ot be simulated till today. Additioally S. C. Brugger developed a very detailed wor about Momets of the Iverse Scatterig Operator of the Boltzma equatio MISOs). His ew iterative method to derive ay momet of a ISO Iverse Scatterig Operator) opes the possibility to solve the Boltzma equatio without the ivertatio of huge matrices. To specify, the solutio ca be developed ito a Taylor series i electric field E ad i gradiet of quasi Fermi potetial ψ. Because the mobility ad the diffusio ca be writte as momets of the ISO themselves a ew method to dervive µ ad D ca be extracted. But whe a exteral field is applied, the resultig Taylor series for µ ad D i E ad ψ does ot coverge at ay positio i the semicodictor but just i those regios where the system is still ear the equilibrium. These regios are those where dopigs of the semicoductor are very high so that the electros ad holes iteract frequetly withi the system. However these are exact the same regios, where Mote Carlo simulatios are computatioal expesive. At the locatios where dopigs are low so the scatterig rate is low) the Taylor series does ot coverge but the Mote Carlo simulatios are fast eought for applicatio. Mai idea is to use the aalytical solutio where the series coverges ad to use the Mote Carlo method otherwise. Thus this could be the first method to simulate bipolar trasistors. My tas was to deduct the aalytical expressios for µ ad D for the space ihomogeeous case up to the secod order ad to implemet them to C++. Therefor I first had to geeralize the aalytical method from the space homogeeous case to the space ihomogeeous case. At the ed a compariso with pure Mote Carlo simulatios i bul silico should varify the implemetatio ad visualize the covergece domai. 3
4 2 Itroductio 2.1 Curret-based MC method I [2] a ew oe-particle Mote Carlo method is proposed which taes i to accout geeratio-recombiatio processes ad quatum correctios. The basic idea is to couple the Boltzma trasport equatio ot oly with the Poisso equatio as proposed i [4]) but also with the cotiuity equatio. Drift diffusio equatio: Cotiuity equatio: Liear Poisso equatio: qµ E + q T r D ) = J 2.1) qpµ p E + q T r pd p ) = J p 2.2) r J + J p ) = qg R) 2.3) ǫ φ) = qp + N D N A ) 2.4) Figure 1: This figure shows the ew Curret based Mote Carlo Method. I regios where the system is ear the equilibrium, trasportparameters ca be calculated semi-aalytically. That is mai topic of this semesterwor 4
5 This set of equatios is self-cosistet because of the additioal Drift diffusio equatios. Mobility tesor µ, µ p ad the diffusio tesor D, D p : electros, p: holes) are usually extracted from Mote Carlo simulatio. But istead of Mote Carlo simulatio the goal is to apply a semi-aalytical solutio derived i sectio 5 for regios of low electric field ad high dopigs. 2.2 Valid regios of the semi-aalytical solutio The error of a Taylor expasio ca be derived by R = x x 0 +1)! f+1) x). e ca i geeral compare the first order with the secod order ad defie a criterio, where the semi-aalytical solutio is valid. The explicit forms of D ad µ up to secod order read: D = D eq + EM D 1 F + FM D 2 F 2.5) µ = µ eq + EM µ 1 F + FM µ 2 F 2.6) where D ad µ are 3 3 tesors ad M µ,d i are 3 3 matrixes of 3 3 tesors. It is worth to poit out that i commo simulators, the M1 X matrixes are assumed to be zero i every compoet which is disproved i this semesterwor). Additioally prior affords were made to calculate or estimate these matrixes but it could ot be doe [4]). e expect the coefficiets of pure gradiet quasi Fermi potetial F M2 X) to be 10 2 times smaller the those of the mixed terms M1 X ). I high doped regios F icreases ad E decreases, so that the validatio criterio will be fulfilled. A secod poit is, that the coefficiets strogly deped o the total scatterig rate which itself depeds o the dopig. If the dopig icreases, the coefficiets decrease. The latter behaviour is visualized i subsectio 7.3. Collectively we ote, that the approximatio must be valid i high doped regios. This is e.g. give i a bipolar trasitor: 5
6 Figure 2: The figure shows the dopig cocetratio withi a moder bipolar trasistor. The aalytical solutio should be valid from the order of
7 2.3 Momets Of The Iverse Scatterig Operator MISOs) The basic idea behid all affords of the semesterwor is the possibility to ivert the scatterig operator of the Boltzma equatio S: where f is the electro/hole desity ad Sf is defied as t f + v r f q E f = Sf 2.7) Sf := b 0 V b0 f 0,b 0 )w 0,b 0,b) f,b)w,b 0,b 0 ))d ) ith the ivertatio asatz we yield: S 1 t f + S 1 v r f S 1 q E f = f eq f eq 2.9) ad as we ca see, this is a equatio i f. Usually a relaxatio time asatz is made to free f from the scatterig operator. But the relaxatio asatz is just heuristic ad ot exact as the iversio asatz 2.9. This asatz was first published by S. C. Brugger i 2006 [3]) e ote that apparetly S 1 S 1 because we see a additioal term eq f eq i equatio 2.9. This reflects the fact, that S has a eigevector with eigevalue 0: The equilibrium distributio f eq. Oe ca extract the property of the ISO: < S 1 g S f >=< g f > < g f eq > 2.10) S. C. Brugger developed a geeral method to iteratively derive ay momet of the ISO [1] chapter 2.3). The momet of a fuctio g is defied as: Sg r, 1 ) := g r, ) S 1 r,, ) d ) Bz If the scatterig operator is oly bad-valley- ad eergy-depedet as i most Mote Carlo simulators) the g momet of the ISO ca be expressed as [1] chapter 2.4): Sg 1 0,b 0 ) = g 0,b 0 ) + ǧǫ 0,b 0 ) + Š 1 g ǫ 0,b 0 ) 2.12) ǧǫ 0,b 0 ) := V b0 g 0,b 0 )δǫ 0,b 0 ) ǫ 0 )d 3 0 Zǫ 0,b 0 ) 2.13) The implemetatio of the umerical method to derive ay MISO is fully doe by S. C. Brugger. That maes it possible to solve the Boltzma equatio semi-aalytically respectively to develope the solutio i a Taylor series as we will see i chapter 5. 7
8 3 Geeralizatio from space homogeeuos to ihomogeeuos case The static ihomogeous Boltzma equatio reads t f + v }{{} r f q E f = Sf 3.1) =0 Our goal is to develop f r, ) i a potetial series of r φ r) ad r ψ r) such that the ihomogeeous, static Boltzma equatio is fulfilled. I [1] Appedix B a method is described to develop f r, ) iteratively for the homogeeous case. I the space ihomogeeuos case the strategy stays the same. First we seperate f r, ) ito two fuctio r) ad h r, ) where r) is the desity of electos ad h r, ) i,j is a term i the order of O r φ) i, r ψ) j) : f r, ) = r) h r, ) = r) i,j=0 h r, ) i,j 3.2) e express the desity of electros by r) = e βqφ r) ψ r)), β = 1 B T 3.3) where φ r) is the electric potetial, ψ r) is the quasi-fermi potetial ad q is the electro charge. Now isertig 3.2 ito 3.1 gives: v r r) i,j=0 h r, ) i,j q E r) i,j=0 h r, ) i,j = S Now we apply the product rule for r ad divide by r) o both sides. v r r) r) = r log r)) i,j=0 h r, ) + r i,j i,j=0 h r, ) i,j 0 q E I the followig we eglect the term r i,j=0 r, h ) operator s depedece o f to express it as a series: i,j i,j=0 r, ) r) i,j=0 h r, ) i,j h r, )i,j = S r, ) i,j=0 3.4) h r, ) i,j 3.5). e isert 3.3 ad exploit the scatterig 8
9 vqβ r φ r) ψ r)) i,j=0 h r, ) q E i,j i,j=0 h r, )i,j = i,j=0 S r, )i,j i,j=0 h r, ) i,j The goal is to obtai a iterative method to derive h i,j by writig dow equatio 3.6 for the order O r φ) i, r ψ) j) ad write all terms i h i,j o the lefthad side ad the terms i h i 1,j or h i,j 1 o the righthad side: S r, )eq h r, )i,j + S r, )i,j h r, ) = vqβ rφh r, ) + q eq i 1,j rφ h r, ) vqβ rψh r, ) i 1,j i, 3.7) e used r φ = E, h r, ) r, ) ad S r, )eq = S r, ) 3.6). Applyig the geeral = h 0,0 eq 0,0 method show i [1] Appedix B to ivert the scatterig operator ad covertig Eq. 3.7, results i a recursive expressio for i,j > 0: h r, ) = h eq r,ǫ) Sg 1 i,j i,j r, ) ) + α i,j 3.8) with g i,j r, ) = 1 [ r φ vqβh i 1,j r, h ) + q eq h i 1,j r, )) vqβ r ψh i,j 1 r, )], 3.9) S 1 g i,j is the g i,j MISO: ad Sg 1 i,j r, ) := g i,j r, )S 1 r,, ) d ) Bz α i,j := Bz h eq r, ) Sg 1 i,j r, ) d 3 r, ). 3.11) d 3 Bz h eq 9
10 4 Derivatio of f for the space ihomogeeous Boltzma equatio i secod order e wat to calculate h up to the secod order, which meas: h r, ) = h eq r,ǫ) + h 0,1 r, ) + h 1,1 r, ) + h 0,2 r, ) I our case we oly eed to calculate h 0,1, h 1,1 ad h 0,2 because h 1,0 r, ) = 0, h 2,0 r, ) = 0. h 1,2 ad h 2,1 have odd parity i ad therefore vaish, whe we derive the momets of the mobility µ i,j or of the diffusio costat D i,j. The reaso is, that µ i,j ad D i,j have odd parity too ad the product of two odd fuctios gives a fuctio with eve parity. The term h 2,2 is the first to be eglegted. By iductio we see, that all terms h,0 = 0: ) ǫ is the eergy of a electro at the mometum. g 1,0 r, ) = 1 h eq rφ vqβh 4.1) h eq r, ) = cost e βǫ ) 4.2) r, ) + q eq h r, ) eq vqβ rψ h 1, 1 r, ) = 0 = vqβh r, ) eq g,0 r, ) = 1 r φ vqβh r, h ) + q eq 1,0 h r, ) ) vqβ r ψ h, 1 1,0 =0 h 1,0 = 0 r, ) = 0 =0 h,0 = 0 4.3) Our goal is, to express h 0,1, h 1,1 ad h 0,2 i terms of parameters, which we be calculated with a computer. Therefore the coversio 2.12 is applied: Sg 1 0,b 0 ) = g 0,b 0 ) + ǧǫ 0,b 0 ) + Š 1 g ǫ 0,b 0 ) ǧǫ 0,b 0 ) := V b0 g 0,b 0 )δǫ 0,b 0 ) ǫ 0 )d 3 0 Zǫ 0,b 0 ) Zǫ 0,b 0 ) is the desity of states, b 0 is the bad-idex. 10
11 h 0,1 : g 0,1 r, ) = 1 h eq r φ vqβ h 1,1 =0 r, ) Sg 1 0,1 r, ) = g 0,1 r, )S 1 r,, ) Bz + q h 1,1 =0 r, ) ) vqβ r ψh eq r, d 3 = qβ r ψ Sg 1 0,1 r, ) = qβ r ψs 1 v = qβ r ψ [ h r, ) = h eq r,ǫ) qβ r ψ 0,1 g 0,1 r, ) = vqβ r ψ vs 1 r,, ) d 3 Bz [ v,b) ˇ vǫ,b) Š 1 v,b) ˇ vǫ,b) Š 1 v ǫ,b) ] v ǫ,b) ) ] + 4.4) h 1,1 : g 1,1 r, ) = rφ vqβh 0,1 r, h ) + rφ q eq h eq h 0,1 r, ) rφ vqβ r ψ h 1,0 h eq a b [ a = 1 v r φ vqβh eq r,ǫ) qβ r ψ,b) ˇ vǫ,b) h eq = r φ vq 2 β 2 [ r ψ Š 1 v ǫ,b) v,b) ˇ vǫ,b) Š 1 v ǫ,b) r, ) =0 ) + ] ) + qβ = ] 4.5) 4.6) +β q2 [ b = 1 r φβ q2 h eq v h eq r,ǫ) r ψ,b) ˇ vǫ,b) = 1 r φβ q2 h eq h eq = β vh eq Š 1 v ǫ,b) r, ) v r ψ,b) ˇ vǫ,b) Š 1 v ǫ,b) ) + qβ ) + qβ = a r φ) j r ψ) i [ j,i=0 m 1 { }} { ) j v i,b) ǫ ˇv i ǫ,b) v j,b) 11 )] ) v i,b) ˇv i ǫ,b) tot 2 ǫ,b) ǫ v j,b) = + ǫ v i ǫ,b) v j,b) ] 4.7)
12 = βq 2 r φ) j r ψ) i [ j,i=0 m 1 c ǫ ˇv i ǫ,b)v j,b) d g 1,1 = a + b = v i,b) ˇv i ǫ,b) tot 2 ǫ,b) ǫ v j,b) e ǫ Šv 1 i ǫ,b) v j,b) ] f 4.8) = βq 2 j,i=0 r φ) j r ψ) i [ c 0,b 0 ) + cˇ ǫ 0,b 0 ) + Š 1 c ǫ 0,b 0 ) Sc 1 Sg 1 1,1 0,b 0 ) = g 1,1 0,b 0 ) + ǧ 1,1 ǫ 0,b 0 ) + Š 1 g 1,1 ǫ 0,b 0 ) = + d 0,b 0 ) d ˇ ǫ 0,b 0 ) Š 1 d ǫ 0,b 0 ) + S 1 d + e 0,b 0 ) eˇ ǫ 0,b 0 ) Š 1 e ǫ 0,b 0 ) + f 0,b 0 ) ˇf ǫ 0,b 0 ) tot ǫ 0,b 0 ) Š 1 f ǫ 0,b 0 ) ] Se 1 S 1 f 4.9) c = c 0,b 0 ) + cˇ ǫ 0,b 0 ) S 1 + Š 1 c ǫ 0,b 0 ) = m 1 + ˇm 1 tot 2 ǫ,b) + Š 1 ˇm 1 ǫ 0,b 0 ) 4.10) d = d 0,b 0 ) d ˇ ǫ 0,b 0 ) S 1 ǫ ˇv i ǫ,b) v j ),b) ˇv j ǫ,b) Š 1 d ǫ 0,b 0 ) = tot 2 ǫ 0,b 0 ) Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) 4.11) = v i,b)v j,b) ˇv i ǫ,b)v j,b) ǫ ˇ e = e 0,b 0 ) eˇ ǫ 0,b 0 ) S 1 v i v j )ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ,b) ǫ Š 1 e ǫ 0,b 0 ) = Š ˇ v i v j)ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) ǫ ǫ 0,b 0 ) 4.12) 12
13 S 1 f = f 0,b 0 ) ˇf ǫ 0,b 0 ) ǫ Šv 1 i ǫ,b) v j ),b) ˇv j ǫ,b) Š 1 f ǫ 0,b 0 ) = Š 1 ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) 4.13) h r, ) = h eq r,ǫ) Sg 1 1,1 1,1 r, ) ) + α 1,1 = = h eq r,ǫ) βq 2 r φ) j r ψ) i [ m 1 + ˇm 1 j,i=0 + Š 1 ǫ ˇm 1 0,b 0 ) + } {{ tot } + ǫ ˇv i ǫ,b) v j,b) ˇv j ǫ,b) ) S 1 c tot 2 ǫ 0,b 0 ) Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) + } {{ tot } S 1 d v i,b)v j,b) ˇv i ǫ,b)v j,b) v tot + 2 ǫ,b) ǫ ˇ i v j )ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ,b) ǫ Š v ˇ ǫ i v j)ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) 0,b 0 ) + tot 2 ǫ } {{ ǫ,b) } S 1 e ǫ Šv 1 i ǫ,b) v j,b) ˇv j ǫ,b) ) + Š 1 ǫ ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] + α 1,1 ) S 1 f 4.14) 13
14 h 0,2 : g 0,2 r, ) = 1 r φ vqβ h 1,2 r, h ) + q eq h 1,2 r, ) vqβ r ψh 0,1 r, =0 =0 = q 2 β 2 r ψ) i r ψ) j i,j=1 g 0,2 r, ) = r ψ vq 2 β [ 2 r ψ [ = q 2 β 2 r ψ) i v i r ψ) j i,j=1 v i,b)v j,b) + v i,b) ˇv j ǫ,b) x v,b) ˇ vǫ,b) Š 1 v ǫ,b) v j,b) ˇv j ǫ,b) Š 1 v j ǫ,b) + v i,b)š 1 v j ǫ,b) y Sg 1 0,2 0,b 0 ) = g 0,2 0,b 0 ) + ǧ 1,1 ǫ 0,b 0 ) + Š 1 g 0,2 ǫ 0,b 0 ) = = q 2 β 2 r ψ) i r ψ) j [ x 0,b 0 ) + ˇx ǫ 0,b 0 ) + i,j=1 tot ǫ 0,b 0 ) Š 1 x ǫ 0,b 0 ) + Sx 1 + y 0,b 0 ) + ˇy ǫ 0,b 0 ) + Š 1 y ǫ 0,b 0 ) + z 0,b 0 ) ž ǫ 0,b 0 ) tot ǫ 0,b 0 ) Sy 1 ) ) Š 1 z ǫ 0,b 0 ) Sz 1 + βq + βq ) ] ] v i,b) βq r ψ) j = = z 4.15) ] 4.16) = v i,b)v j,b) v i,b) ˇv j ǫ,b) v ǫ,b) ˇ i v j )ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) ǫ,b) Sx 1 = x 0,b 0 ) + ˇx ǫ 0,b 0 ) + Š 1 x ǫ 0,b 0 ) = Š 1ˇ v i v j)ǫ,b) ˇv i ǫ,b) vˇ j ǫ,b) ǫ 0,b 0 ) 4.17) Sy 1 = y 0,b 0 ) + ˇy ǫ 0,b 0 ) + Š 1 y ǫ 0,b 0 ) = Š 1 v j ǫ,b) v i,b) + ˇv i,b) + Š 1 v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) 4.18) Sz 1 = z 0,b 0 ) ž ǫ 0,b 0 ) = βq r ψ) j Š 1 z ǫ 0,b 0 ) = βq r ψ) j S 1 v i = +v i,b) ˇv i ǫ 0,b 0 ) Š 1 ˇv i ǫ 0,b 0 ) tot ) 4.19) 14
15 + Š 1 + v i,b)v j,b) v i,b) ˇv j ǫ,b) v ǫ,b) ˇ i v j )ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) ǫ,b) h 0,2 = h eq r,ǫ) Sg 1 0,2 r, ) ) + α 0,2 = = h eq r,ǫ) q 2 β 2 r ψ) i r ψ) j [ i,j=1 Š 1ˇ v i v j)ǫ,b) ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) + } {{ } Sx 1 v j ǫ,b) v i,b) + ˇv i,b) + Š 1 v i ǫ 0,b 0 ) +,b)š 1 v j ǫ,b) βq r ψ) j Sy 1 5 Derivatio of secod order mobility ad diffusio tesors v i,b) ˇv i ǫ 0,b 0 ) Š 1 ˇv i ǫ 0,b 0 ) Sz ) Our goal is to derive the mobility tesor µ m ad the diffusio tesor D m. By defiitio of [1] chapter 3.3 these trasport parameters read: µ m = q ) m Sv 1 r),b)f,b)d 3 = q ) m Sv 1,b)h,b)d 3 5.1) Bz D m = 1 Sv 1 r),b)v m,b)f,b)d 3 = Sv 1,b)v m,b)h,b)d 3 5.2) Bz Bz e first rewrite the term for µ by combiig 4.2, 4.4, 4.14 ad 4.16: Bz ) ]+ +α 0,2 ) 15
16 + Š 1 µ m = q = q Bz Bz m 1 m ) m Sv 1,b) [h eq r,ǫ) + h 1,1 r, ) + h 0,2 r, )] d 3 = ǫvˇ ǫ,b)v m,b) v,b) vˇ ǫ,b) tot 2 ǫ,b) ǫ v m,b) ǫ v ǫ,b) v m,b) ) h eq r,ǫ) [ 1 + βq 2 r φ) j r ψ) i [ m 1 + ˇm 1 j,i=0 + Š 1 ǫ ˇm 1 0,b 0 ) + } {{ tot } + ǫ ˇv i ǫ,b) v j,b) ˇv j ǫ,b) ) S 1 c tot 2 ǫ 0,b 0 ) Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) + } {{ tot } S 1 d v i,b)v j,b) ˇv i ǫ,b)v j,b) v tot + 2 ǫ,b) ǫ ˇ i v j )ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ,b) ǫ Š v ˇ ǫ i v j)ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) 0,b 0 ) + tot 2 ǫ } {{ ǫ,b) } ǫ Šv 1 i ǫ,b) v j ),b) ˇv j ǫ,b) S 1 e + Š 1 ǫ ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] + α 1,1 ) + q 2 β 2 r ψ) i r ψ) j [ i,j=1 S 1 f v i,b)v j,b) v i,b) ˇv j ǫ,b) v ǫ,b) ˇ i v j )ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) ǫ,b) Š 1ˇ v i v j)ǫ,b) ˇv i ǫ,b) ˇ ǫ 0,b 0 ) + v j ǫ,b) v j ǫ,b) v i,b) + ˇv i,b) + Š 1 v i ǫ 0,b 0 ) +,b)š 1 v j ǫ,b) βq r ψ) j Sy 1 S 1 x +v i,b) ˇv i ǫ 0,b 0 ) Š 1 ˇv i ǫ 0,b 0 ) Sz 1 Now we assort the terms which deped explicitly o. The resultig terms are to itegrate over iso eergy surfaces see sectio 6). ) ]+ +α 0,2 ) ]d 3 5.3) 16
17 µ m = q m 1 m,b) h eq r,ǫ) Bz v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) + ǫš 1 v i ǫ,b)v j,b) v i,b)v j,b) + v i,b)v j,b) 3 +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ 1 + βq 2 r φ) j r ψ) i [ j,i=0 + ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) ǫ ˇv iǫ,b)v j,b) tot 3 ǫ,b) ǫ ǫš 1 v i ǫ,b)ˇv j ǫ,b) v i,b) ˇv j ǫ,b) +βq 2 v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) + m 1 + ˇ v i v j )ǫ,b) 3 v m,b) ǫ v ǫ,b)h eq r,ǫ)[ tot ˇm 1 ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot ǫ 0,b 0 ) + Š 1 ǫ ˇm ǫ,b) 1 0,b 0 )+ Š 1 ǫ ˇv iˇv j ǫ 0,b 0 )+ ǫ + ˇv iǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ Š v ˇ ǫ i v 0,b 0 ) + Š ˇviǫ,b)ˇvjǫ,b) ǫ 0,b 0 )+ j)ǫ,b) tot 2 ǫ,b) ǫtot tot 2 ǫ Š 1 ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) ] + α 1,1 ) + q 2 β 2 v i ˇv j )ǫ,b) tot 2 ǫ,b) + ˇv iǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) Š 1 Š 1ˇ v i v j)ǫ,b) r ψ) i r ψ) j [ i,j=1 ǫ 0,b 0 ) + Š 1 ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) v i v j ǫ,b),b) + ˇv i Š 1 v j ǫ,b),b) + Š 1 v i ǫ 0,b 0 )+,b)š 1 v j ǫ,b) βq rψ) + j v i,b) j,i=0 βq rψ) j ˇv i ǫ 0,b 0 ) µ m = q Bz m 1 m,b) h eq r,ǫ) r φ) j r ψ) i [ m 1 m,b) heq r,ǫ) ǫ,b) m 1 tot 2 ǫ,b) +m 1 m,b) h eq r,ǫ) ˇm 1 +m 1 m,b) h eq r,ǫ) ǫ,b)š 1 ǫ ˇm 1 0,b 0 ) tot +m 1 m,b) h eq r,ǫ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) 17 βq r ψ) j ˇv i ǫ 0,b 0 ) ] + +α 0,2 ) ] d 3 5.4)
18 m 1 m,b) h eq r,ǫ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ 0,b 0 ) m 1 m,b) h eq r,ǫ) ǫ,b)š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) tot +m 1 m,b) h eq r,ǫ) m 1 m,b) h eq r,ǫ) m 1 m,b) h eq r,ǫ) +m 1 m,b) h eq r,ǫ) m 1 m,b) h eq r,ǫ) Š v i,b)v j,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ v ˇ i v j)ǫ,b) ǫtot ǫ 0,b 0 ) +m 1 m,b) h eq r,ǫ) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ ǫ 0,b 0 ) +m 1 m,b) h eq r,ǫ) ǫ Šv 1 i ǫ,b)v j,b) m 1 m,b) h eq r,ǫ) ǫ Šv 1 i ǫ,b)ˇv j ǫ,b) m 1 m,b) h eq r,ǫ) ǫ,b)š 1 ǫ tot ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] +q 2 β 2 r ψ) i r ψ) j [ + m 1 m,b) h eq r,ǫ) i,j=1 +m 1 m,b) h eq r,ǫ) α 1,1 v i,b)v j,b) m 1 m,b) h eq r,ǫ) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) m 1 m,b) h eq r,ǫ) v i ˇv j )ǫ,b) tot 2 ǫ,b) +m 1 m,b) h eq r,ǫ) m 1 m,b) h eq r,ǫ) Š 1ˇ ˇv i ǫ,b) ˇv j ǫ,b) v i v j)ǫ,b) +m 1 m,b) h eq r,ǫ) Š 1 ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) ǫ 0,b 0 ) 18
19 m 1 m,b) h eq r,ǫ) ǫ,b)š 1 v i v j ǫ,b),b) tot +m 1 m,b) h eq r,ǫ) ǫ,b)š 1 ˇv i v j ǫ,b),b) tot +m 1 m,b) h eq r,ǫ) ǫ,b)š 1 v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) +m 1 m,b) h eq r,ǫ) βq rψ) j v i,b) m 1 m,b) h eq r,ǫ) βq rψ) j ˇv i ǫ 0,b 0 ) m 1 m,b) h eq r,ǫ) ˇv βq r ψ) i ǫ 0,b 0 ) ] j +m 1 m,b) h eq r,ǫ) α 0,2 ] 5.5) +βq 2 v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) r φ) j r ψ) i [ +v m,b) heq r,ǫ) ǫ ˇ tot 2 ǫ,b) j,i=0 v ǫ,b) ǫ,b) v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ˇm 1 m 1 ˇm 1 ǫ 0,b 0 ) v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ǫ ˇv iˇv j ǫ 0,b 0 ) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) v i,b)v j,b) tot 3 ǫ,b) ǫ +v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ 19
20 +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) Š ˇ ǫ v i v 0,b 0 ) j)ǫ,b) tot 2 ǫ,b) ǫtot v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ 0,b 0 ) tot 2 ǫ v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) ǫ Šv 1 i ǫ,b)v j,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ǫ Šv 1 i ǫ,b)ˇv j ǫ,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ǫ ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) α 1,1 +q 2 β 2 r ψ) i r ψ) j [ v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) i,j=1 v i,b)v j,b) +v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) v i ˇv j )ǫ,b) tot 2 ǫ,b) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ǫ 0,b 0 ) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ˇ v i v j)ǫ,b) ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) v i v j ǫ,b),b) ˇv i v j ǫ,b),b) v m,b) h eq r,ǫ) ǫ ˇv ǫ,b) v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) βq rψ) j v i,b) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) βq rψ) j ˇv i ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) ˇv βq r ψ) i ǫ 0,b 0 ) ] j 20
21 v m,b) h eq r,ǫ) ǫ vˇ ǫ,b) α 0,2 ] 5.6) +βq 2 r φ) j r ψ) i [ j,i=0 v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) heq r,ǫ) ǫtot tot 2 ǫ,b) m 1 tot 2 ǫ,b) v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ 1 ˇm tot 2 ǫ,b) ˇm 1 ǫ 0,b 0 ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ 0,b 0 ) ǫ ˇv iˇv j ǫ 0,b 0 ) v i,b)v j,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ Š ˇ v i v j)ǫ,b) ǫtot ǫ 0,b 0 ) v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ 0,b 0 ) tot 2 ǫ v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ 21 ǫ Š 1 v i ǫ,b)v j,b) ǫ Š 1 v i ǫ,b)ˇv j ǫ,b) ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) ] v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) α 1,1
22 +q 2 β 2 r ψ) i r ψ) j [ v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) i,j=1 +v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ v,b)v m,b) h eq r,ǫ) ǫ v i,b)v j,b) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) v i ˇv j )ǫ,b) tot 2 ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) ˇ v i v j)ǫ,b) ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) ǫ 0,b 0 ) +v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) Šv 1 v i j ǫ,b),b) v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) Šv 1 ˇv i j ǫ,b),b) v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) v,b)v m,b) h eq r,ǫ) ǫ +v,b)v m,b) h eq r,ǫ) ǫ βq rψ) j v i,b) βq rψ) j ˇv i ǫ 0,b 0 ) +v,b)v m,b) h eq r,ǫ) ǫ tot 2 ǫ,b) ˇv βq r ψ) i ǫ 0,b 0 ) ] j v,b)v m,b) h eq r,ǫ) ǫ α 0,2 ] 5.7) +βq 2 r φ) j r ψ) i [ j,i=0 +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) heq r,ǫ)ˇvǫ,b) ǫtot tot 2 ǫ,b) m 1 tot 2 ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ 22 1 ˇm tot 2 ǫ,b) ˇm 1 ǫ 0,b 0 ) ǫ ˇv i ǫ,b)v j,b) tot ǫ 0,b 0 )
23 v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot ǫ 0,b 0 ) ǫ ˇv iˇv j ǫ 0,b 0 ) v i,b)v j,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) Š ˇ ǫ v i v 0,b 0 ) j)ǫ,b) tot 2 ǫ,b) ǫtot +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ 0,b 0 ) tot 2 ǫ +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ ǫ Š 1 v i ǫ,b)v j,b) ǫ Š 1 v i ǫ,b)ˇv j ǫ,b) ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) ] +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) α 1,1 +q 2 β 2 r ψ) i r ψ) j [ + v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) i,j=1 v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v i,b)v j,b) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) v i ˇv j )ǫ,b) tot 2 ǫ,b) ˇv i ǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) ˇ v i v j)ǫ,b) ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) ǫ 0,b 0 ) 23
24 v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) Šv 1 v i j ǫ,b),b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) Šv 1 ˇv i j ǫ,b),b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) v i ǫ 0,b,b)Šv 1 0 ) j ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ βq rψ) j v i,b) βq rψ) j ˇv i ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ tot 2 ǫ,b) ˇv βq r ψ) i ǫ 0,b 0 ) ] j +v m,b) h eq r,ǫ) ˇv ǫ,b) ǫ α 0,2 ] 5.8) +βq 2 r φ) j r ψ) i [ j,i=0 v m,b) ǫ v ǫ,b)h eq r,ǫ) +v m,b) heq r,ǫ)ˇvǫ,b) ǫtot tot 2 ǫ,b) m 1 tot 2 ǫ,b) v m,b) ǫ Šv 1 ˇm 1 ǫ,b)h eq r,ǫ) tot 2 ǫ,b) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š 1 ǫ ˇm 1 0,b 0 ) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ 0,b 0 ) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) v i,b)v j,b) tot 3 ǫ,b) ǫ +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ˇv iǫ,b)v j,b) tot 3 ǫ,b) ǫ +v m,b) ǫ Šv 1 v i ˇv j )ǫ,b) ǫ,b)h eq r,ǫ) tot 3 ǫ,b) ǫ v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ˇv iǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š v ˇ ǫ i v 0,b 0 ) j)ǫ,b) tot 2 ǫ,b) ǫtot 24
25 v m,b) ǫ v ǫ,b)h eq r,ǫ)š ˇv i ǫ,b)ˇv j ǫ,b) ǫ ǫ 0,b 0 ) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ǫš 1 v i ǫ,b)v j,b) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ǫš 1 v i ǫ,b)ˇv j ǫ,b) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š 1 ǫ ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ)α 1,1 +q 2 β 2 r ψ) i r ψ) j [ v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) v i,b)v j,b) tot 2 ǫ,b) i,j=1 +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) +v m,b) ǫ Šv 1 v i ˇv j )ǫ,b) ǫ,b)h eq r,ǫ) tot 2 ǫ,b) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ˇv iǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š 1ˇ ǫ 0,b 0 ) v i v j)ǫ,b) v m,b) ǫ v ǫ,b)h eq r,ǫ) Š 1 ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) +v m,b) ǫ Šv 1 v i ǫ,b)h eq r,ǫ) Š 1 v j ǫ,b),b) v m,b) ǫ Šv 1 ˇv i ǫ,b)h eq r,ǫ) Š 1 v j ǫ,b),b) v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) Š 1 v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) v m,b) ǫ v ǫ,b)h eq r,ǫ) +v m,b) ǫ v ǫ,b)h eq r,ǫ) βq rψ) j v i,b) βq rψ) j ˇv i ǫ 0,b 0 ) +v m,b) ǫ Šv 1 ǫ,b)h eq r,ǫ) ˇv βq r ψ) i ǫ 0,b 0 ) ] j v m,b) ǫ v ǫ,b)h eq r,ǫ) α 0,2 ]d 3 5.9) 25
26 = Bz + ǫš 1 v i ǫ,b)v j,b) v i,b)v j,b) D m = Sv 1,b)v m,b) h eq r,ǫ) + h 1,1 r, ) + h 0,2 r, )) d 3 = Bz v m,b)v 0,b 0 ) h eq r,ǫ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v m h eq ǫ,b)š 1 v ǫ 0,b 0 )[ + v i,b)v j,b) βq 2 r φ) j r ψ) i [ j,i=0 + ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) ǫ ˇv iǫ,b)v j,b) tot 3 ǫ,b) ǫ ǫš 1 v i ǫ,b)ˇv j ǫ,b) v i,b) ˇv j ǫ,b) +βq 2 m 1 + ˇ v i v j )ǫ,b) 3 tot ˇm 1 ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot ǫ 0,b 0 ) + Š 1 ǫ ˇm ǫ,b) 1 0,b 0 )+ Š 1 ǫ ˇv iˇv j ǫ 0,b 0 )+ ǫ + ˇv iǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ Š v ˇ ǫ i v 0,b 0 ) + Š ˇviǫ,b)ˇvjǫ,b) ǫ 0,b 0 )+ j)ǫ,b) tot 2 ǫ,b) ǫtot tot 2 ǫ Š 1 ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) ] + α 1,1 ) + q 2 β 2 v i ˇv j )ǫ,b) tot 2 ǫ,b) + ˇv iǫ,b) ˇv j ǫ,b) tot 2 ǫ,b) Š 1 j,i=0 Š 1ˇ v i v j)ǫ,b) r ψ) i r ψ) j [ i,j=1 ǫ 0,b 0 ) + Š 1 ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) v i v j ǫ,b),b) + ˇv i Š 1 v j ǫ,b),b) + Š 1 v i ǫ 0,b 0 )+,b)š 1 v j ǫ,b) + βq rψ) j v i,b) βq rψ) j ˇv i ǫ 0,b 0 ) D m = Bz v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) r φ) j r ψ) i [ v mǫ,b)v ǫ,b 0 ) heq r,ǫ) ǫ 0,b 0 ) m 1 tot 2 ǫ,b) +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) βq r ψ) j ˇv i ǫ 0,b 0 ) ] + ˇm 1 +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) )Š 1 ǫ ǫ 0,b ˇm 1 0,b 0 ) 0 +α 0,2 ) ] 5.10) d 3 26
27 +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot ǫ 0,b 0 ) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) v i,b)v j,b) tot 3 ǫ,b) ǫ v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) Š v ˇ ǫ i v 0,b 0 ) j)ǫ,b) tot 2 ǫ,b) ǫtot +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ ǫ 0,b 0 ) +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ǫ Šv 1 i ǫ,b)v j,b) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ǫ Šv 1 i ǫ,b)ˇv j ǫ,b) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) )Š 1 ǫ 0,b ǫ 0 ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) α 1,1 +q 2 β 2 r ψ) i r ψ) j [ + v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) i,j=1 v i,b)v j,b) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) v i ˇv j )ǫ,b) tot 2 ǫ,b) +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) Š 1ˇ ˇv i ǫ,b) ˇv j ǫ,b) v i v j)ǫ,b) ǫ 0,b 0 ) 27
28 +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) Š 1 ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) )Š 1 v i v ǫ 0,b j ǫ,b),b) 0 +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) )Š 1 ˇv i v ǫ 0,b j ǫ,b),b) 0 +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) )Š 1 ǫ 0,b 0 v i ǫ 0,b,b)Šv 1 0 ) j ǫ,b) +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) βq rψ) j v i,b) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) βq rψ) j ˇv i ǫ 0,b 0 ) v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) ˇv βq r ψ) i ǫ 0,b 0 ) ] j +v m ǫ,b)v ǫ,b 0 ) h eq r,ǫ) α 0,2 ] 5.11) +βq 2 j,i=0 v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) r φ) j r ψ) i [ +v m,b) heq r,ǫ)ˇv ǫ 0,b 0 ) ǫ 0,b 0 ) m 1 tot 2 ǫ,b) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ˇm 1 ˇm 1 ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot ǫ 0,b 0 ) ǫ ˇv iˇv j ǫ 0,b 0 ) v i,b)v j,b) tot 3 ǫ,b) ǫ ˇv i ǫ,b)v j,b) tot 3 ǫ,b) ǫ v i ˇv j )ǫ,b) tot 3 ǫ,b) ǫ 28
29 v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ˇv i ǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ Š ˇ v i v j)ǫ,b) ǫtot ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ 0,b 0 ) tot 2 ǫ v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ǫ Šv 1 i ǫ,b)v j,b) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ǫ Šv 1 i ǫ,b)ˇv j ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ǫ v i ǫ,b) ˇv j ǫ,b) ǫ 0,b 0 ) ] v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) α 1,1 +q 2 β 2 r ψ) i r ψ) j [ v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) i,j=1 v i,b)v j,b) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v i ˇv j )ǫ,b) tot 2 ǫ,b) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ˇ ˇv i ǫ,b) ˇv j ǫ,b) v i v j)ǫ,b) ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v i v j ǫ,b),b) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ˇv i v j ǫ,b),b) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) v i ǫ 0,b 0 ),b)š 1 v j ǫ,b) v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) βq rψ) j v i,b) βq rψ) j ˇv i ǫ 0,b 0 ) 29
30 +v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) ˇv βq r ψ) i ǫ 0,b 0 ) ] j v m,b) h eq r,ǫ) ˇv ǫ 0,b 0 ) α 0,2 ] 5.12) +βq 2 j,i=0 v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) r φ) j r ψ) i [ +v mh eq ǫ,b)š 1 v ǫ 0,b 0 )m 1 tot 2 ǫ,b) v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ˇm 1 v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š 1 ǫ ˇm 1 0,b 0 ) v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ǫ ˇv i ǫ,b)v j,b) tot 2 ǫ 0,b 0 ) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ǫ ˇv i ǫ,b)ˇv j ǫ,b) tot 2 ǫ 0,b 0 ) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š 1 ǫ ˇv iˇv j ǫ 0,b 0 ) v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) v i,b)v j,b) tot 3 ǫ,b) ǫ +v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ˇv iǫ,b)v j,b) tot 3 ǫ,b) ǫ v i ˇv j )ǫ,b) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) tot 3 ǫ,b) ǫ v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ˇv iǫ,b)ˇv j ǫ,b) tot 3 ǫ,b) ǫ +v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š v ˇ ǫ i v 0,b 0 ) j)ǫ,b) tot 2 ǫ,b) ǫtot v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š ˇv i ǫ,b)ˇv j ǫ,b) ǫ ǫ 0,b 0 ) v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ǫš 1 v i ǫ,b)v j,b) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ǫš 1 v i ǫ,b)ˇv j ǫ,b) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š 1 ǫ ǫ Šv 1 i ǫ,b) ˇv j ǫ,b) 0,b 0 ) ] v m h eq ǫ,b)š 1 v ǫ 0,b 0 )α 1,1 +q 2 β 2 r ψ) i r ψ) j [ v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) v i,b)v j,b) tot 2 ǫ,b) i,j=1 30
31 +v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) v i,b) ˇv j ǫ,b) tot 2 ǫ,b) v i ˇv j )ǫ,b) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) tot 2 ǫ,b) v m h eq ǫ,b)š 1 v ǫ 0,b )ˇv iǫ,b) ˇv j ǫ,b) 0 tot 2 ǫ,b) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š 1ˇ ǫ 0,b 0 ) v i v j)ǫ,b) v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š 1 ˇv i ǫ,b) ˇ v j ǫ,b) ǫ 0,b 0 ) v i +v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š 1 v j ǫ,b),b) ˇv i v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š 1 v j ǫ,b),b) v m h eq ǫ,b)š 1 v ǫ 0,b 0 )Š 1 v i,b) v j ǫ,b) ǫ 0,b 0 ) v m h eq ǫ,b)š 1 βq rψ) v ǫ 0,b 0 ) j v i,b) +v m h eq ǫ,b)š 1 βq rψ) v ǫ 0,b 0 ) j ˇv i ǫ 0,b 0 ) +v m h eq ǫ,b)š 1 v ǫ 0,b 0 ) ˇv βq r ψ) i ǫ 0,b 0 ) ] j v m h eq ǫ,b)š 1 v ǫ 0,b 0 )α 0,2 ]d ) 31
32 6 Implemetatio to C++ The formulas from sectio 5 had to be implemeted to C++. I sectio 2.2 is argued that withi our scatterig model 2.12 the M X i i Eq. 2.5 deped oly o dopig desity ad o the electro desity N. The idea was to geerate tables of the Mi X which are matrixes of matrixes themselves). At least iterested users oly eed these tables to operate with the semi-aalytical solutio o their semicoductor devices. The formula is implemeted i the DMu2dOrder class. Method DMu2dOrder) ow allows to set the umber of differet electro desities N ad the umber of differet dopig desities NN. Four N NN tables oe for each M1 D,MD 2, Mµ 1, Mµ 2 ) are geerated ad saved i datafiles. The differeces betwee the desities are choose to be equidistat o a logarithmical scale. The 155 fuctios per compoet 9) for µ ad 93 fuctios per compoet 9) for D i sectio 5 eeded to be itegrated over the hole Brilloui zoe umerically. But at first 9 MISOs per compoet eeded to be calculated. The formulas stay the same for every table elemet. The oly thigs that chage with the dopig ad electro desities are the total scatterig rate ad some of the MISOs, which deped o the scatterig rate. For the calculatio of the MISOs I could use the classes EBZFuctios, BufferedSparseMatrix ad IverseScatterigOperator writte by S.C. Brugger. I CreateMomets.cc all MISOs are calculated ad stored i datafiles. They are just iitially loaded i DMu2dOrder.h ad most of them eed to be calculated agai for every table etry. This is doe i ComputeAllMomets). The MISOs deped o the eergy ad ot o the mometum. Also the other fuctios are itegrated over iso- eergy surfaces to mae them eergy deped istead of mometum deped. This way oe ca operate a faster itergratio just over the eergy istead of the hole -space. e use Bz hǫ)g )d 3 = ǫmax ǫ mi hǫ)zǫ)ǧǫ)dǫ 6.1) where hǫ) ad g ) are ay fuctios of ǫ respectively ad Z is the desity of states. Due to symmetry reasos may compoets of the fuctio which basically cotai the electro mass tesor ad the velocity vector) are zero. Most of the fuctios already existed i datafiles the others had to be computed with the EBZFuctios class which was doe by S. C. Brugger. Fially I just eeded to load these fuctios withi the DMu2dOrder class. A method to itegrate the eergy depeded fuctios has already bee implemeted by S. C. Brugger. 32
33 7 Code validatio The used formulas themselves especially their sigs) were calculated several times. The code was tested i strog collaboratio with S.C Brugger. To test the code, coefficiets were computed o bul silico. Several error sources existed: Forgotte or extra costats,mixed coordiate systems but also a few bugs i used classes could be foud. The accuracy of umerics had to be advaced, too. Ad still the umerics are ot precise eough, because the Eistei relatio is ot fulfilled exactly see subsectio 7.1). The problem is, that at actual time of the semesterwor, the used Fiite Elemet Method i the Scatterig Operator classes is based o a equidistat mesh. But the lower eergy regios cotribute much more the the higher oces. But because of computatioal expese i the high eergy regios it is ot efficiet to high up the umber of discretizatio poits agai. The followig tests were made to correct the code: 7.1 Eistei s relatio The Eistei relatio betwee µ eq ad D eq i 2.5 must be fulfilled. D eq = µ eq B T 7.1) This relatio is early fulfilled with a absolut error of m2 ad a relative error of I s 2 parabolic bad approximatio which was doe by S. C. Brugger) the Eistei relatio is fulfilled perfectly, so that the implemetatio is varified for the zero order. 7.2 Symmetries May compoets i the Mi X matrixes must be idetical for physical reasos. Especially for bul every compoet value has to occure may times. Every sigle symmetry was checed ad is fulfilled fially. 7.3 Compariso with Mote Carlo simulatios Fially we compared the secod order expressio with a Mote Carlo simmulatio uder same coditios. e extracted curves which show the Mote Carlo simulatio as well as the secod order approximatio depeded o the exteral electric field. The we rised up the dopig to show how valid rage icreases with the dopig. Oe ca see that all the aalytical solutios show the expected shapes. 33
34 Figure 3: This figure shows diffusio ad mobility i bul silico with dopig N = 0. Mote Carlo simulatio ad aalytical solutio i secod order show the expected behavior. The aalytical solutio is valid for µ if E < 1500 V V cm ad D if E < 2000cm. 34
35 Figure 4: This figure shows diffusio ad mobility i bul silico with dopig N = Mote Carlo simulatio ad aalytical solutio i secod order show the expected behavior. The aalytical solutio is valid for µ if E < V V cm ad D if E < cm. 35
36 Figure 5: This figure shows diffusio ad mobility i bul silico with dopig N = Mote Carlo simulatio ad aalytical solutio i secod order show the expected behavior. The aalytical solutio is valid for µ if E < V V cm ad D if E < cm. The valid rage of µ decreases because of the used scatterig model. 36
37 8 Coclusio Aalytical expressios for secod order coefficiets of mobility ad diffusio were derived ad implemeted to C++. The explicit calculatios show that coefficiets i frot of the mixed term ψ φ gradiet quasi Fermi potetial ad electrical field) are ot zero ad ot egligible. This cofutes the practice of popular simulators lie ModelSim where these coefficiets are assumed to vaish. Together with the Curred based Mote Carlo method this exact solutio is the basis for a ew simulatio method, where Mote Carlo is oly ecessary i those regios where the aalytical solutio is ot valid. But the higher the dopig, the better the adaptability of the aalytical solutio. Bipolar trasistors represet a possible applicatio of the ew method. The aalytical coefficiets oly deped o dopig ad electro/hole cocetratios. The C++ implemetatio geerates tables with dopig i the first ad electro desity i the secod ra. These tables are applicable by aybody o ay device where the solutio is valid. Symmetry argumets ad comparisos with Mote Carlo simulatio show, that the implemetatio is correct. Refereces [1] S. C. Brugger, Computatio of Semicoductor Properties Usig Momets of the Iverse Scatterig Operator of the Boltzma Equatio Hartug-Gorre 2006 [2] S. C. Brugger ad A. Sche, New Oe-Particle Mote Carlo Method for Naoscale Device Simulatio NSTI Coferece 2006 [3] S. C. Brugger ad A. Sche, Momets of the Iverse Scatterig Operator of the Boltzma Equatio: Theory ad applicatios SIAM Joural o Applied Mathematics 2006 [4] F. Vetury, E. C. Sagiorgi, ad B. Ricco, A geeral-purpose device simulator couplig poisso ad mote-carlo trasport with applicatio tp deep sub-micro MOSFETs IEEE Trasactios o Electro Devices 1991 [5] N.A.Zahleiu, Noequilibrium drift-diffiuso trasport i semicoductors i presece of strog ihomogeeuos electric fields 37
38 Applied Physics Letters 89,
Soving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
A probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
Incremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich [email protected] [email protected] Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
Sequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
Modified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
Semiconductor Devices
emicoductor evices Prof. Zbigiew Lisik epartmet of emicoductor ad Optoelectroics evices room: 116 e-mail: [email protected] Uipolar devices IFE T&C JFET Trasistor Uipolar evices - Trasistors asic
How To Solve The Phemean Problem Of Polar And Polar Coordiates
ISSN 1 746-733, Eglad, UK World Joural of Modellig ad Simulatio Vol. 8 (1) No. 3, pp. 163-171 Alterate treatmets of jacobia sigularities i polar coordiates withi fiite-differece schemes Alexys Bruo-Alfoso
Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps
Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while
CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
CHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork
Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the
Properties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
Confidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
Department of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
Lecture 7: Stationary Perturbation Theory
Lecture 7: Statioary Perturbatio Theory I most practical applicatios the time idepedet Schrödiger equatio Hψ = Eψ (1) caot be solved exactly ad oe has to resort to some scheme of fidig approximate solutios,
Probabilistic Engineering Mechanics. Do Rosenblatt and Nataf isoprobabilistic transformations really differ?
Probabilistic Egieerig Mechaics 4 (009) 577 584 Cotets lists available at ScieceDirect Probabilistic Egieerig Mechaics joural homepage: wwwelseviercom/locate/probegmech Do Roseblatt ad Nataf isoprobabilistic
THE HEIGHT OF q-binary SEARCH TREES
THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average
Theorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius
Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
Chapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
Overview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments
Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please
In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
Lesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig
THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
I. Chi-squared Distributions
1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.
Class Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
How to use what you OWN to reduce what you OWE
How to use what you OWN to reduce what you OWE Maulife Oe A Overview Most Caadias maage their fiaces by doig two thigs: 1. Depositig their icome ad other short-term assets ito chequig ad savigs accouts.
Case Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
CHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
Solving Logarithms and Exponential Equations
Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:
Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
LECTURE 13: Cross-validation
LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M
CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
Systems Design Project: Indoor Location of Wireless Devices
Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: [email protected] Supervised
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
Finding the circle that best fits a set of points
Fidig the circle that best fits a set of poits L. MAISONOBE October 5 th 007 Cotets 1 Itroductio Solvig the problem.1 Priciples............................... Iitializatio.............................
Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
Drift-Diffusion Model: Introduction
Drift-Diffusio Model: Itroductio Preared by: Dragica Vasileska Associate Professor Arizoa State Uiversity The oular drift-diffusio curret equatios ca be easily derived from the oltzma trasort equatio by
NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,
NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical
5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
Normal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
A Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
Doped semiconductors: donor impurities
Doed semicoductors: door imurities A silico lattice with a sigle imurity atom (Phoshorus, P) added. As comared to Si, the Phoshorus has oe extra valece electro which, after all bods are made, has very
hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
CS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least
5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
Building Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
Analyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
Solving the Navier-Stokes! Equations in Primitive Variables!
ttp://www.d.edu/~gtryggva/cfd-course/ Outlie Solvig te Navier-Stokes Equatios i Primitive Variables Te projectio metod review Metods for te Navier-Stokes Equatios Moi ad Kim Bell, et al Colocated grids
Section 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
The Fundamental Forces of Nature
Gravity The Fudametal Forces of Nature There exist oly four fudametal forces Electromagetism Strog force Weak force Gravity Gravity 2 The Hierarchy Problem Gravity is far weaker tha ay of the forces! Why?!?
A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design
A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 [email protected] Abstract:
Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
Elementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
Heat (or Diffusion) equation in 1D*
Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire
FM4 CREDIT AND BORROWING
FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer
Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
3. Greatest Common Divisor - Least Common Multiple
3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
AP Calculus BC 2003 Scoring Guidelines Form B
AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet
Research Article Sign Data Derivative Recovery
Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov
DAME - Microsoft Excel add-in for solving multicriteria decision problems with scenarios Radomir Perzina 1, Jaroslav Ramik 2
Itroductio DAME - Microsoft Excel add-i for solvig multicriteria decisio problems with scearios Radomir Perzia, Jaroslav Ramik 2 Abstract. The mai goal of every ecoomic aget is to make a good decisio,
INVESTMENT PERFORMANCE COUNCIL (IPC)
INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks
INFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
Engineering Data Management
BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package
THE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.
S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,
arxiv:1506.03481v1 [stat.me] 10 Jun 2015
BEHAVIOUR OF ABC FOR BIG DATA By Wetao Li ad Paul Fearhead Lacaster Uiversity arxiv:1506.03481v1 [stat.me] 10 Ju 2015 May statistical applicatios ivolve models that it is difficult to evaluate the likelihood,
Determining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
Basic Elements of Arithmetic Sequences and Series
MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
Lesson 15 ANOVA (analysis of variance)
Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi
Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory
Ekkehart Schlicht: Economic Surplus and Derived Demand
Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/
Time Value of Money, NPV and IRR equation solving with the TI-86
Time Value of Moey NPV ad IRR Equatio Solvig with the TI-86 (may work with TI-85) (similar process works with TI-83, TI-83 Plus ad may work with TI-82) Time Value of Moey, NPV ad IRR equatio solvig with
How To Solve The Homewor Problem Beautifully
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
Output Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
2-3 The Remainder and Factor Theorems
- The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value
Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig
Subject CT5 Contingencies Core Technical Syllabus
Subject CT5 Cotigecies Core Techical Syllabus for the 2015 exams 1 Jue 2014 Aim The aim of the Cotigecies subject is to provide a groudig i the mathematical techiques which ca be used to model ad value
INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology
Adoptio Date: 4 March 2004 Effective Date: 1 Jue 2004 Retroactive Applicatio: No Public Commet Period: Aug Nov 2002 INVESTMENT PERFORMANCE COUNCIL (IPC) Preface Guidace Statemet o Calculatio Methodology
Intelligent Sensor Placement for Hot Server Detection in Data Centers - Supplementary File
Itelliget Sesor Placemet for Hot Server Detectio i Data Ceters - Supplemetary File Xiaodog Wag, Xiaorui Wag, Guoliag Xig, Jizhu Che, Cheg-Xia Li ad Yixi Che The Ohio State Uiversity, USA Michiga State
Decomposition of Gini and the generalized entropy inequality measures. Abstract
Decompositio of Gii ad the geeralized etropy iequality measures Stéphae Mussard LAMETA Uiversity of Motpellier I Fraçoise Seyte LAMETA Uiversity of Motpellier I Michel Terraza LAMETA Uiversity of Motpellier
where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
Infinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
Escola Federal de Engenharia de Itajubá
Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica Pós-Graduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José
*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
