Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value


 Erick Bryant
 4 years ago
 Views:
Transcription
1 Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig the future value of moey back to the preset is called fidig the Preset Value (PV) of a future dollar Discout Rate To fid the preset value of future dollars, oe way is to see what amout of moey, if ivested today util the future date, will yield that sum of future moey The iterest rate used to fid the preset value discout rate There are idividual differeces i discout rates Preset orietatiohigh rate of time preferece high discout rate Future orietatio low rate of time preferece low discout rate Notatio: rdiscout rate The issue of compoudig also applies to Preset Value computatios. 2 Preset Value Factor To brig oe dollar i the future back to preset, oe uses the Preset Value Factor (PVF): PVF ( + r) Preset Value (PV) of Lump Sum Moey For lump sum paymets, Preset Value (PV) is the amout of moey (deoted as P) times PVF Factor (PVF) PV P PVF P ( + r) 3 4 A Example Usig Aual Compoudig Suppose you are promised a paymet of $00,000 after 0 years from a legal settlemet. If your discout rate is 6%, what is the preset value of this settlemet? PV P PVF 00,000, ( + 6%) A Example Usig Mothly Compoudig You are promised to be paid $00,000 i 0 years. If you have a discout rate of 2%, usig mothly compoudig, what is the preset value of this $00,000? First compute mothly discout rate Mothly r 2%/2%, 20 moths PV P PVF 00,000 00,000* $30, ( + %) 6
2 A Example Comparig Two Optios Suppose you have wo lottery. You are faced with two optios i terms of receivig the moey you have wo: () $0,000 paid ow; (2) $,000 paid five years later. Which oe would you take? Use aual compoudig ad a discout rate of 0% first ad a discout rate of % ext. Your aswer will deped o your discout rate: Discout rate r0% aually, aual compoudig Optio (): PV0,000 (ote there is o eed to covert this umber as it is already a preset value you receive right ow). Optio (2): PV,000 *(/ (+0%)^) $9,33.82 Optio () is better Discout rate r % aually, aual compoudig Optio (): PV0,000 Optio (2): PV,000*(/ (+%)^) $,72.89 Optio (2) is better 7 8 Preset Value (PV) of Periodical Paymets For the lottery example, what if the optios are () $0,000 ow; (2) $2,00 every year for years, startig from a year from ow; (3) $2,380 every year for years, startig from ow? The aswer to this questio is quite a bit more complicated because it ivolves multiple paymets for two of the three optios. First, let s agai assume aual compoudig with a 0% discout rate. Aual discout rate r 0%, aual compoudig Optio (): PV0,000 Optio (2): PV of moey paid i year 200*[/(+0%) ] PV of moey paid i 2 years 200*[/(+0%) 2 ] PV of moey paid i 3 years 200*[/(+0%) 3 ] PV of moey paid i 4 years 200*[/(+0%) 4 ] PV of moey paid i years 200*[/(+0%) ] 2.30 Total PV Sum of the above PVs 9, Optio (3): PV of moey paid ow (year 0) 2380 (o discoutig eeded) PV of moey paid i year 2380*[/(+0%) ] PV of moey paid i 2 years 2380*[/(+0%) 2 ] PV of moey paid i 3 years 2380*[/(+0%) 3 ] PV of moey paid i 4 years 2380*[/(+0%) 4 ] 62.7 Total PV Sum of the above PVs 9, Optio () is the best, optio (3) is the secod, ad optio (2) is the worst. 9 0 Are there simpler ways to compute preset value for periodical paymets? Just as i Future Value computatios, if the periodic paymets are equal value paymets, the Preset Value Factor Sum (PVFS) ca be used. Preset Value (PV) is the periodical paymet times Preset Value Factor Sum (PVFS). I the formula below P p deotes the periodical paymet: PVP p *PVFS Preset Value Factor Sum (PVFS) If the first paymet is paid right ow (so the first paymet does ot eed to be discouted), it is called the Begiig of the moth (BOM): PVFS ( + r) + ( + r) ( + r) + r ( + r) 2
3 If the first paymet is paid a period away from ow, the the first paymet eeds to be discouted for oe period. I this case, the ed of the moth (EOM) formula applies: PVFS ( + r) ( + r) r ( + r) BOM or EOM I most cases Ed of the Moth (EOM) is used i PVFS computatio. So use EOM as the default uless the situatio clearly calls for Begiig of the Moth (BOM) calculatio. Appedix PVFS Table uses EOM. 3 4 Use PVFS to solve the example problem but use a % discout rate: discout rate r% Optio (): PV 0,000 Optio (2): PV 200 PVFS ( r %,, EOM ) ( + %) , % Optio (3): PV 2380 PVFS ( r %,, BOM ) (+ %) 2380 ( + % ) ,89.36 Applicatios of Preset Value: Computig Istallmet Paymets You buy a computer. Price$3,000. No dow paymet. r8% with mothly compoudig, 36 moths. What is your mothly istallmet paymet M? The basic idea here is that the preset value of all future paymets you pay should equal to the computer price. Optio (2) is the best. 6 Aswer: Apply PVFS, 36, mothly r8%/2.%, ed of the moth because the first paymet usually does ot start util ext moth (or else it would be cosidered a dow paymet) 3000 M PVFS ( r.%, 36, EOM ), 3000 M PVFS ( r.%, 36, EOM ) ( +.%).% Applicatio of Preset Value: Rebate vs. Low Iterest Rate Suppose you are buyig a ew car. You egotiate a price of $2,000 with the salesma, ad you wat to make a 30% dow paymet. He the offers you two optios i terms of dealer fiacig: () You pay a 6% aual iterest rate for a fouryear loa, ad get $600 rebate right ow; or (2) You get a 3% aual iterest rate o a fouryear loa without ay rebate. Which oe of the optios is a better deal for you, ad why? What if you oly put % dow istead of 30% dow (Use mothly compoudig) I this case because your dow paymet is the same for these two optios, ad both loas are of four years, comparig mothly paymets is sufficiet. 7 8
4 30% dow situatio Optio. Amout borrowed is 2,000*(30%) 600 7,800 Mothly r6%/20.%, moths 7800 M PVFS ( r 0.%,, EOM ) 7800 ( + 0.%) 0.% Optio 2. The amout borrowed: 2,000*(30%)8,400 Mothly r3%/20.2%, moths % dow situatio Optio. Amout borrowed is 2,000*(%) 600 0,800 Mothly r6%/20.%, moths 0,800 M PVFS ( r 0.%,, EOM) 0,800 ( + 0.%) 0.% 0, Optio 2. The amout borrowed: 2,000*(%),400 Mothly r3%/20.2%, moths 8400 M PVFS ( r 0.2%,, EOM ) 8400 ( + 0.2%) 0.2% Optio is better because it has a lower mothly paymet 9,400 M PVFS ( r 0.2%,, EOM ),400 ( + 0.2%) 0.2%, Optio 2 is better ow because it has a lower mothly paymet 20 Applicatio of Preset Value: Auity Auity is defied as equal periodic paymets which a sum of moey will produce for a specific umber of years, whe ivested at a give iterest rate. Example: You have built up a est egg of $00,000 which you pla to sped over 0 years. How much ca you sped each year assumig you buy a auity at 7% aual iterest rate, compouded aually? Auity calculatio is a applicatio PVFS because the preset value of all future auity paymets should equal to the estegg oe has built up. 00,000 M PVFS( r 7%, 0, EOM ), 00,000 M PVFS( r 7%, 0, EOM ) 00,000 0 ( + 7%) 7% 00,000 $4, If you kow how much moey you wat to have every year, give the iterest rate ad the iitial amout of moey, you ca compute how log the auity will last. Say you have $0,000 ow, you wat to get $2,000 a year. The aual iterest rate is 7% with aual compoudig (EOM) Approximate solutio: Step : $0,000/$2,000 Step 2: Fid a PVFS that is the closest possible to PVFS(r7%,, EOM) PVFS(r7%, 6, EOM) close to PVFS(r7%, 7, EOM) close to Because is ibetwee PVFS(6) ad PVFS(7), this auity is goig to last betwee 6 ad 7 years Exact solutio: $0,000/$2,000 PVFS (r7%,?, EOM) > [ /(+7%)^]/7% 0.3/(.07)^ 0.6/(.07)^ /0.6(.07)^ Log(/0.6) log(.07) log(/0.6)/log(.07)6.37 years Note: Homework, Quiz ad Exam questios will ask for approximate solutio, ot the exact solutio, although for those who uderstad the exact solutio the computatio ca be easier
5 Appedix: A StepbyStep Example for PVFS Computatio ( + 7%) PVFS (, r 7%, EOM ) 7%.4022 ( + )
Simple Annuities Present Value.
Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX9850GB PLUS to efficietly compute values associated with preset value auities.
More informationLearning objectives. Duc K. Nguyen  Corporate Finance 21/10/2014
1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the timevalue
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationTime Value of Money. First some technical stuff. HP10B II users
Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle
More information2 Time Value of Money
2 Time Value of Moey BASIC CONCEPTS AND FORMULAE 1. Time Value of Moey It meas moey has time value. A rupee today is more valuable tha a rupee a year hece. We use rate of iterest to express the time value
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationCHAPTER 11 Financial mathematics
CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula
More informationFI A CIAL MATHEMATICS
CHAPTER 7 FI A CIAL MATHEMATICS Page Cotets 7.1 Compoud Value 117 7.2 Compoud Value of a Auity 118 7.3 Sikig Fuds 119 7.4 Preset Value 122 7.5 Preset Value of a Auity 122 7.6 Term Loas ad Amortizatio 123
More informationI. Why is there a time value to money (TVM)?
Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios
More informationMMQ Problems Solutions with Calculators. Managerial Finance
MMQ Problems Solutios with Calculators Maagerial Fiace 2008 Adrew Hall. MMQ Solutios With Calculators. Page 1 MMQ 1: Suppose Newma s spi lads o the prize of $100 to be collected i exactly 2 years, but
More informationChapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
More informationTerminology for Bonds and Loans
³ ² ± Termiology for Bods ad Loas Pricipal give to borrower whe loa is made Simple loa: pricipal plus iterest repaid at oe date Fixedpaymet loa: series of (ofte equal) repaymets Bod is issued at some
More informationFM4 CREDIT AND BORROWING
FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer
More informationTime Value of Money, NPV and IRR equation solving with the TI86
Time Value of Moey NPV ad IRR Equatio Solvig with the TI86 (may work with TI85) (similar process works with TI83, TI83 Plus ad may work with TI82) Time Value of Moey, NPV ad IRR equatio solvig with
More informationQuestion 2: How is a loan amortized?
Questio 2: How is a loa amortized? Decreasig auities may be used i auto or home loas. I these types of loas, some amout of moey is borrowed. Fixed paymets are made to pay off the loa as well as ay accrued
More informationCDs Bought at a Bank verses CD s Bought from a Brokerage. Floyd Vest
CDs Bought at a Bak verses CD s Bought from a Brokerage Floyd Vest CDs bought at a bak. CD stads for Certificate of Deposit with the CD origiatig i a FDIC isured bak so that the CD is isured by the Uited
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationTO: Users of the ACTEX Review Seminar on DVD for SOA Exam FM/CAS Exam 2
TO: Users of the ACTEX Review Semiar o DVD for SOA Exam FM/CAS Exam FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Exam FM (CAS
More informationUnderstanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions
Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isketu tadeoff ad time value of
More informationBond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond
What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixedicome security that typically pays periodic coupo paymets, ad a pricipal
More informationBENEFITCOST ANALYSIS Financial and Economic Appraisal using Spreadsheets
BENEITCST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal  Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts
More informationSolving Logarithms and Exponential Equations
Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationHow to use what you OWN to reduce what you OWE
How to use what you OWN to reduce what you OWE Maulife Oe A Overview Most Caadias maage their fiaces by doig two thigs: 1. Depositig their icome ad other shortterm assets ito chequig ad savigs accouts.
More informationTHE TIME VALUE OF MONEY
QRMC04 9/17/01 4:43 PM Page 51 CHAPTER FOUR THE TIME VALUE OF MONEY 4.1 INTRODUCTION AND FUTURE VALUE The perspective ad the orgaizatio of this chapter differs from that of chapters 2 ad 3 i that topics
More informationMoney Math for Teens. Introduction to Earning Interest: 11th and 12th Grades Version
Moey Math fo Tees Itoductio to Eaig Iteest: 11th ad 12th Gades Vesio This Moey Math fo Tees lesso is pat of a seies ceated by Geeatio Moey, a multimedia fiacial liteacy iitiative of the FINRA Ivesto Educatio
More informationFinance Practice Problems
Iteest Fiace Pactice Poblems Iteest is the cost of boowig moey. A iteest ate is the cost stated as a pecet of the amout boowed pe peiod of time, usually oe yea. The pevailig maket ate is composed of: 1.
More informationVALUATION OF FINANCIAL ASSETS
P A R T T W O As a parter for Erst & Youg, a atioal accoutig ad cosultig firm, Do Erickso is i charge of the busiess valuatio practice for the firm s Southwest regio. Erickso s sigle job for the firm is
More informationLearning Objectives. Chapter 2 Pricing of Bonds. Future Value (FV)
Leaig Objectives Chapte 2 Picig of Bods time value of moey Calculate the pice of a bod estimate the expected cash flows detemie the yield to discout Bod pice chages evesely with the yield 21 22 Leaig
More informationDiscounting. Finance 100
Discoutig Fiace 100 Prof. Michael R. Roberts 1 Topic Overview The Timelie Compoudig & Future Value Discoutig & Preset Value Multiple Cash Flows Special Streams of Cash Flows» Perpetuities» Auities Iterest
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More informationPENSION ANNUITY. Policy Conditions Document reference: PPAS1(7) This is an important document. Please keep it in a safe place.
PENSION ANNUITY Policy Coditios Documet referece: PPAS1(7) This is a importat documet. Please keep it i a safe place. Pesio Auity Policy Coditios Welcome to LV=, ad thak you for choosig our Pesio Auity.
More informationClassic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More informationCHAPTER 4: NET PRESENT VALUE
EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,
More informationSavings and Retirement Benefits
60 Baltimore Couty Public Schools offers you several ways to begi savig moey through payroll deductios. Defied Beefit Pesio Pla Tax Sheltered Auities ad Custodial Accouts Defied Beefit Pesio Pla Did you
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationInstitute of Actuaries of India Subject CT1 Financial Mathematics
Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationListing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2
74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More informationRepeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
More informationManaging Your Money. UNIT 4D Loan Payments, Credit Cards, and Mortgages: We calculate monthly payments and explore loan issues.
A fool ad his moey are soo parted. Eglish proverb Maagig Your Moey Maagig your persoal fiaces is a complex task i the moder world. If you are like most Americas, you already have a bak accout ad at least
More information10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationBINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients
652 (1226) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you
More informationINVESTMENT PERFORMANCE COUNCIL (IPC)
INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationSwaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps
Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while
More informationElementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationFor customers Key features of the Guaranteed Pension Annuity
For customers Key features of the Guarateed Pesio Auity The Fiacial Coduct Authority is a fiacial services regulator. It requires us, Aego, to give you this importat iformatio to help you to decide whether
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationGet advice now. Are you worried about your mortgage? New edition
New editio Jauary 2009 Are you worried about your mortgage? Get advice ow If you are strugglig to pay your mortgage, or you thik it will be difficult to pay more whe your fixedrate deal eds, act ow to
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationHow to set up your GMC Online account
How to set up your GMC Olie accout Mai title Itroductio GMC Olie is a secure part of our website that allows you to maage your registratio with us. Over 100,000 doctors already use GMC Olie. We wat every
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationFINANCIAL MATHEMATICS 12 MARCH 2014
FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationAmendments to employer debt Regulations
March 2008 Pesios Legal Alert Amedmets to employer debt Regulatios The Govermet has at last issued Regulatios which will amed the law as to employer debts uder s75 Pesios Act 1995. The amedig Regulatios
More informationFuture Value of an Annuity
Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%
More informationTHE ARITHMETIC OF INTEGERS.  multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS  multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
More informationA Guide to the Pricing Conventions of SFE Interest Rate Products
A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationHandling. Collection Calls
Hadlig the Collectio Calls We do everythig we ca to stop collectio calls; however, i the early part of our represetatio, you ca expect some of these calls to cotiue. We uderstad that the first few moths
More informationProject Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments
Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 612 pages of text (ca be loger with appedix) 612 figures (please
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationPreSuit Collection Strategies
PreSuit Collectio Strategies Writte by Charles PT Phoeix How to Decide Whether to Pursue Collectio Calculatig the Value of Collectio As with ay busiess litigatio, all factors associated with the process
More informationI apply to subscribe for a Stocks & Shares ISA for the tax year 20 /20 and each subsequent year until further notice.
IFSL Brooks Macdoald Fud Stocks & Shares ISA Trasfer Applicatio Form IFSL Brooks Macdoald Fud Stocks & Shares ISA Trasfer Applicatio Form Please complete usig BLOCK CAPITALS ad retur the completed form
More informationCurrent Year Income Assessment Form
Curret Year Icome Assessmet Form Academic Year 2015/16 Persoal details Perso 1 Your Customer Referece Number Your Customer Referece Number Name Name Date of birth Address / / Date of birth / / Address
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More informationPROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
More informationComparing Credit Card Finance Charges
Comparig Credit Card Fiace Charges Comparig Credit Card Fiace Charges Decidig if a particular credit card is right for you ivolves uderstadig what it costs ad what it offers you i retur. To determie how
More informationINCOME PROTECTION POLICY CONDITIONS GUARANTEED PREMIUMS
INCOME PROTECTION POLICY CONDITIONS GUARANTEED PREMIUMS Documet referece: MIMIIP12G This is a imptat documet Please keep it i a safe place. Icome Protectio Guarateed Premiums Policy Coditios Welcome to
More informationNEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,
NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationProfessional Networking
Professioal Networkig 1. Lear from people who ve bee where you are. Oe of your best resources for etworkig is alumi from your school. They ve take the classes you have take, they have bee o the job market
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More information10/19/2011. Financial Mathematics. Lecture 24 Annuities. Ana NoraEvans 403 Kerchof AnaNEvans@virginia.edu http://people.virginia.
Math 40 Lecture 24 Autes Facal Mathematcs How ready do you feel for the quz o Frday: A) Brg t o B) I wll be by Frday C) I eed aother week D) I eed aother moth Aa NoraEvas 403 Kerchof AaNEvas@vrga.edu http://people.vrga.edu/~as5k/
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationTO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC
TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies
More informationHow to read A Mutual Fund shareholder report
Ivestor BulletI How to read A Mutual Fud shareholder report The SEC s Office of Ivestor Educatio ad Advocacy is issuig this Ivestor Bulleti to educate idividual ivestors about mutual fud shareholder reports.
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More informationPage 1. Real Options for Engineering Systems. What are we up to? Today s agenda. J1: Real Options for Engineering Systems. Richard de Neufville
Real Optios for Egieerig Systems J: Real Optios for Egieerig Systems By (MIT) Stefa Scholtes (CU) Course website: http://msl.mit.edu/cmi/ardet_2002 Stefa Scholtes Judge Istitute of Maagemet, CU Slide What
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More information