Drift-Diffusion Model: Introduction

Size: px
Start display at page:

Download "Drift-Diffusion Model: Introduction"

Transcription

1 Drift-Diffusio Model: Itroductio Preared by: Dragica Vasileska Associate Professor Arizoa State Uiversity

2 The oular drift-diffusio curret equatios ca be easily derived from the oltzma trasort equatio by cosiderig momets of the TE. Cosider steady state coditios ad, for simlicity, a 1-D geometry. With the use of a relaxatio time aroximatio, the oltzma trasort equatio may be writte [1] ee f f f0 f( v, x) + v = m* v x τ. (0.1) I writig Eq. (3.1) arabolic bads have bee assumed for simlicity, ad the charge e has to be take with the roer sig of the article (ositive for holes ad egative for electros). The geeral defiitio of curret desity is reeated here for comleteess J ( x) = e vf( v, x) dv (0.) where the itegral o the right had side reresets the first momet of the distributio fuctio. This defiitio of curret ca be related to Eq. (3.1) after multilyig both sides of (3.1) by v ad itegratig over v. From the RHS of Eq. (3.1) we get 1 J ( x) vf0dv vf (, v x) dv = τ eτ (0.3) The equilibrium distributio fuctio is symmetric i v, ad hece the first itegral is zero. Therefore, we have eτ f d = m* v dx J ( x) e E v dv eτ v f( v, x) dv (0.4) Itegratig by arts we have f v dv = [ vf ( v, x) ] f ( v, x) dv = ( x) v (0.5) ad we ca write

3 v f (, v x ) dv = () x v (0.6) where v is the average of the square of the velocity. The drift-diffusio equatios are derived eτ µ = itroducig the mobility m* ad relacig 3kT * v kt with its average equilibrium value m * for a 1D case ad m for a 3D case, therefore eglectig thermal effects. The diffusio coefficiet D is also itroduced, ad the resultig drift-diffusio curret exressios for electros ad holes are d J = q( x) µ E( x) + qd dx d J = q( x) µ E( x) qd dx (0.7) resectively, where q is used to idicate the absolute value of the electroic charge. Although o direct assumtios o the o-equilibrium distributio fuctio, f(v,x), were made i the derivatio of Eqs. (3.7), i effect, the choice of equilibrium (thermal) velocity meas that the drift-diffusio equatios are oly valid for small erturbatios of the equilibrium state (low fields). The validity of the drift-diffusio equatios is emirically exteded by itroducig fielddeedet mobility µ ( E) ad diffusio coefficiet D(E), obtaied from emirical models or detailed calculatio to cature effects such as velocity saturatio at high electric fields due to hot carrier effects. Physical Limitatios o Numerical Drift-Diffusio Schemes The comlete drift-diffusio model is based o the followig set of equatios i 1D: 1. Curret equatios d J = q( x) µ E( x) + qd dx d J = q( x) µ E( x) qd dx (0.8)

4 . Cotiuity equatios 1 = J + U t q 1 = J + U t q (0.9) 3. Poisso's equatio + ( D A ) ε V = + N N (0.10) where U ad U are the et geeratio-recombiatio rates. The cotiuity equatios are the coservatio laws for the charge carriers, which may be easily derived takig the zeroth momet of the time deedet TE. A umerical scheme which solves the cotiuity equatios should 1. Coserve the total charge iside the device, as well as that eterig ad leavig.. Resect the local ositive defiite ature of carrier desity. Negative desity is uhysical. 3. Resect mootoicity of the solutio (i.e. it should ot itroduce surious sace oscillatios). Coservative schemes are usually achieved by subdivisio of the comutatioal domai ito atches (boxes) surroudig the mesh oits. The currets are the defied o the boudaries of these elemets, thus eforcig coservatio (the curret exitig oe elemet side is exactly equal to the curret eterig the eighborig elemet through the side i commo). For examle, o a uiform -D grid with mesh size, the electro cotiuity equatio may be discretized i a exlicit form as follows [] x 1 x 1 y 1 x (, ; ) (, ; ) (, ; ) (, 1 i (, jk ; + 1) i (, jk, ) J i+ j k J i j k J i j+ k J i j ; k) = + t q q (0.11)

5 I Eq. (3.11), the idices i,j describe satial discretizatio, k corresods to the time rogressio, ad the suerscrits x ad y deote the x- ad y-coordiate of the curret desity vector. This simle aroach has certai ractical limitatios, but is sufficiet to illustrate the idea behid the coservative scheme. With the reset covetio for ositive ad egative comoets, it is easy to see that i the absece of geeratio-recombiatio terms, the oly cotributios to the overall device curret arise from the cotacts. Remember that, sice electros have egative charge, the article flux is oosite to the curret flux. The actual determiatio of the curret desities aearig i Eq. (3.11) will be discussed later. Whe the equatios are discretized, usig fiite differeces for istace, there are limitatios o the choice of mesh size ad time ste [3]: 1. The mesh size x is limited by the Debye legth.. The time ste is limited by the dielectric relaxatio time. A mesh size must be smaller tha the Debye legth where oe has to resolve charge variatios i sace. A simle examle is the carrier redistributio at a iterface betwee two regios with differet doig levels. Carriers diffuse ito the lower doed regio creatig excess carrier distributio which at equilibrium decays i sace dow to the bulk cocetratio with aroximately exoetial behavior. The satial decay costat is the Debye legth LD = εkt q N (0.1) where N is the doig desity. I GaAs ad Si, at room temerature the Debye legth is aroximately 400 Å whe N 10 cm 16 3 ad decreases to about oly 50 Å whe N cm. The dielectric relaxatio time is the characteristic time for charge fluctuatios to decay uder the ifluece of the field that they roduce. The dielectric relaxatio time may be estimated usig t dr = ε qn µ (0.13)

6 To see the imortace of resectig the limitatios related to the dielectric relaxatio time, imagie we have a satial fluctuatio of the carrier cocetratio, which relaxes to equilibrium accordig to the rate equatio ( t = 0) = t t dr (0.14) A fiite differece discretizatio of this equatio gives at the first time ste t (0) ( t) = (0) t dr (0.15) Clearly, if t > tdr, the value of ( t) is egative, which meas that the actual cocetratio is evaluated to be less tha the equilibrium value, ad it is easy to see that the solutio at higher time stes will decay oscillatig betwee ositive ad egative values of. A excessively large t may lead, therefore, to ohysical results. I the case of high mobility, the dielectric relaxatio time ca be very small. For istace, a samle of GaAs with a mobility of 6000 cm / V s ad doig time ste cm has aroximately t should be chose to be cosiderably smaller. tdr s, ad i a simulatio the Steady State Solutio of iolar Semicoductor Equatios The geeral semicoductor equatios for electros ad holes may be rewritte i 3D as ( ε V) q( N ) = + J = qu(, ) + q t J = qu(, ) + q t kt q J = qµ V + J = qµ V kt q (0.16)

7 with N = NA ND. We ote that the above equatios are valid i the limit of small deviatios from equilibrium, sice the Eistei relatios have bee used for the diffusio coefficiet, ormally valid for low fields or large devices. The geeratio-recombiatio term U will be i geeral a fuctio of the local electro ad hole cocetratios, accordig to ossible differet hysical mechaisms, to be examied later i more detail. We will cosider from ow o steady state, with the time deedet derivatives set to zero. These semicoductor equatios costitute a couled oliear set. It is ot ossible, i geeral, to obtai a solutio directly i oe ste, rather a oliear iteratio method is required. The two more oular methods for solvig the discretized equatios are the Gummel's iteratio method [4] ad the Newto's method [5]. It is very difficult to determie a otimum strategy for the solutio, sice this will deed o a umber of details related to the articular device uder study. There are i geeral three ossible choices of variables. 1. Natural variable formulatio (V,,). Quasi-Fermi level formulatio ( V, φ, ) φ, where the quasi-fermi levels derive from the followig defiitio of carrier cocetratio out of equilibrium (for o-degeerate case) qv ( φ ) = i ex kt q( φ V ) = i ex kt (,, ) 3. Slotboom formulatio V Φ Φ where the Slotboom [6] variables are defied as qφ Φ = iex kt qφ Φ = iex kt The Slotboom variables are, therefore, related to the carrier desity exressios, ad the extesio to degeerate coditios is cumbersome.

8 Normally, there is a referece for the quasi-fermi level formulatio i steady state simulatio, ad for the atural variables ad i trasiet simulatio. Normalizatio ad Scalig For the sake of clarity, all formulae have bee reseted without the use of simlificatios or ormalizatio. It is however commo ractice to erform the actual calculatio usig ormalized uits to make the algorithms more efficiet, ad i cases to avoid umerical overflow ad uderflow. It is advisable to iut the data i M.K.S. or ractical uits (the use of cetimeters is for istace very commo i semicoductor ractice, istead of meters) ad the rovide a coversio block before ad after the comutatio blocks to ormalize ad deormalize the variables. It is advisable to use cosistet scalig, rather tha set certai costats to arbitrary values. The most commo scalig factors for ormalizatio of semicoductor equatios are listed i Table 0-1 [7]. Table 0-1. Scalig factors Variable Scalig Variable Formula Sace Itrisic Debye legth (N= i ) ε kt L = q N Extrisic Debye legth (N=N max ) Potetial Thermal voltage kt V* = q Carrier cocetratio Itrisic cocetratio N= i Diffusio coefficiet Mobility Geeratio- Recombiatio Maximum doig cocetratio Practical uit Maximum diffusio coefficiet N=N max D = 1 cm s D = D max D M = V * DN R = L

9 Time L T = D Refereces 1 S. Selberherr, Simulatio of Semicoductor Devices ad Processes (Sriger-Verlag, Wie New York). 3 K. Tomizawa, Numerical Simulatio of Submicro Semicoductor Devices (The Artech House Materials Sciece Library). 4 H. K. Gummel, A self-cosistet iterative scheme for oe-dimesioal steady state trasistor calculatio, IEEE Trasactios o Electro Devices, Vol. 11, (1964). 5 T. M. Aostol, Calculus, Vol. II, Multi-Variable Calculus ad Liear Algebra (laisdell, Waltham, MA, 1969) ch. 1 6 J.W. Slotboom, Comuter-aided two-dimesioal aalysis of biolar trasistors, IEEE Trasactios o Electro Devices, Vol. 0, (1973). 7 A. DeMari, A accurate umerical steady state oe-dimesioal solutio of the - juctio, Solid-state Electroics, Vol. 11, (1968).

Doped semiconductors: donor impurities

Doped semiconductors: donor impurities Doed semicoductors: door imurities A silico lattice with a sigle imurity atom (Phoshorus, P) added. As comared to Si, the Phoshorus has oe extra valece electro which, after all bods are made, has very

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

3 Energy. 3.3. Non-Flow Energy Equation (NFEE) Internal Energy. MECH 225 Engineering Science 2

3 Energy. 3.3. Non-Flow Energy Equation (NFEE) Internal Energy. MECH 225 Engineering Science 2 MECH 5 Egieerig Sciece 3 Eergy 3.3. No-Flow Eergy Equatio (NFEE) You may have oticed that the term system kees croig u. It is ecessary, therefore, that before we start ay aalysis we defie the system that

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Semiconductor Devices

Semiconductor Devices emicoductor evices Prof. Zbigiew Lisik epartmet of emicoductor ad Optoelectroics evices room: 116 e-mail: [email protected] Uipolar devices IFE T&C JFET Trasistor Uipolar evices - Trasistors asic

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Heat (or Diffusion) equation in 1D*

Heat (or Diffusion) equation in 1D* Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

THE HEIGHT OF q-binary SEARCH TREES

THE HEIGHT OF q-binary SEARCH TREES THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich [email protected] [email protected] Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

More information

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Entropy of bi-capacities

Entropy of bi-capacities Etropy of bi-capacities Iva Kojadiovic LINA CNRS FRE 2729 Site école polytechique de l uiv. de Nates Rue Christia Pauc 44306 Nates, Frace [email protected] Jea-Luc Marichal Applied Mathematics

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Solving the Navier-Stokes! Equations in Primitive Variables!

Solving the Navier-Stokes! Equations in Primitive Variables! ttp://www.d.edu/~gtryggva/cfd-course/ Outlie Solvig te Navier-Stokes Equatios i Primitive Variables Te projectio metod review Metods for te Navier-Stokes Equatios Moi ad Kim Bell, et al Colocated grids

More information

How To Solve The Phemean Problem Of Polar And Polar Coordiates

How To Solve The Phemean Problem Of Polar And Polar Coordiates ISSN 1 746-733, Eglad, UK World Joural of Modellig ad Simulatio Vol. 8 (1) No. 3, pp. 163-171 Alterate treatmets of jacobia sigularities i polar coordiates withi fiite-differece schemes Alexys Bruo-Alfoso

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Moments of a Binomial Distribution A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature. Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.

More information

A New Method To Simulate Bipolar Transistors Combining Analytical Solution And Currend-Based MC Method

A New Method To Simulate Bipolar Transistors Combining Analytical Solution And Currend-Based MC Method A New Method To Simulate Bipolar Trasistors Combiig Aalytical Solutio Ad Curred-Based MC Method Semesterwor Vicet Peiert ETH Zurich, Switzerlad performed at ITET 3.4.2007-18.5.2007 uder supervisio of Dr.

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE

ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau

More information

Unit 8: Inference for Proportions. Chapters 8 & 9 in IPS

Unit 8: Inference for Proportions. Chapters 8 & 9 in IPS Uit 8: Iferece for Proortios Chaters 8 & 9 i IPS Lecture Outlie Iferece for a Proortio (oe samle) Iferece for Two Proortios (two samles) Cotigecy Tables ad the χ test Iferece for Proortios IPS, Chater

More information

REVIEW OF INTEGRATION

REVIEW OF INTEGRATION REVIEW OF INTEGRATION Trig Fuctios ad Itegratio by Parts Oeriew I this ote we will reiew how to ealuate the sorts of itegrals we ecouter i ealuatig Fourier series. These will iclude itegratio of trig fuctios

More information

BASIC STATISTICS. f(x 1,x 2,..., x n )=f(x 1 )f(x 2 ) f(x n )= f(x i ) (1)

BASIC STATISTICS. f(x 1,x 2,..., x n )=f(x 1 )f(x 2 ) f(x n )= f(x i ) (1) BASIC STATISTICS. SAMPLES, RANDOM SAMPLING AND SAMPLE STATISTICS.. Radom Sample. The radom variables X,X 2,..., X are called a radom sample of size from the populatio f(x if X,X 2,..., X are mutually idepedet

More information

Research Article Sign Data Derivative Recovery

Research Article Sign Data Derivative Recovery Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov

More information

Regression with a Binary Dependent Variable (SW Ch. 11)

Regression with a Binary Dependent Variable (SW Ch. 11) Regressio with a Biary Deedet Variable (SW Ch. 11) So far the deedet variable (Y) has bee cotiuous: district-wide average test score traffic fatality rate But we might wat to uderstad the effect of X o

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS

COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Systems Design Project: Indoor Location of Wireless Devices

Systems Design Project: Indoor Location of Wireless Devices Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: [email protected] Supervised

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

More information

Estimating Probability Distributions by Observing Betting Practices

Estimating Probability Distributions by Observing Betting Practices 5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

LECTURE 13: Cross-validation

LECTURE 13: Cross-validation LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

More information

Data Analysis and Statistical Behaviors of Stock Market Fluctuations

Data Analysis and Statistical Behaviors of Stock Market Fluctuations 44 JOURNAL OF COMPUTERS, VOL. 3, NO. 0, OCTOBER 2008 Data Aalysis ad Statistical Behaviors of Stock Market Fluctuatios Ju Wag Departmet of Mathematics, Beijig Jiaotog Uiversity, Beijig 00044, Chia Email:

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

, a Wishart distribution with n -1 degrees of freedom and scale matrix.

, a Wishart distribution with n -1 degrees of freedom and scale matrix. UMEÅ UNIVERSITET Matematisk-statistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

Partial Di erential Equations

Partial Di erential Equations Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio

More information

Escola Federal de Engenharia de Itajubá

Escola Federal de Engenharia de Itajubá Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica Pós-Graduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

An Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function

An Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function A Efficiet Polyomial Approximatio of the Normal Distributio Fuctio & Its Iverse Fuctio Wisto A. Richards, 1 Robi Atoie, * 1 Asho Sahai, ad 3 M. Raghuadh Acharya 1 Departmet of Mathematics & Computer Sciece;

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

INVESTMENT PERFORMANCE COUNCIL (IPC)

INVESTMENT PERFORMANCE COUNCIL (IPC) INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks

More information

Basic Measurement Issues. Sampling Theory and Analog-to-Digital Conversion

Basic Measurement Issues. Sampling Theory and Analog-to-Digital Conversion Theory ad Aalog-to-Digital Coversio Itroductio/Defiitios Aalog-to-digital coversio Rate Frequecy Aalysis Basic Measuremet Issues Reliability the extet to which a measuremet procedure yields the same results

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Automatic Tuning for FOREX Trading System Using Fuzzy Time Series

Automatic Tuning for FOREX Trading System Using Fuzzy Time Series utomatic Tuig for FOREX Tradig System Usig Fuzzy Time Series Kraimo Maeesilp ad Pitihate Soorasa bstract Efficiecy of the automatic currecy tradig system is time depedet due to usig fixed parameters which

More information

How To Calculate A Radom Umber From A Probability Fuctio

How To Calculate A Radom Umber From A Probability Fuctio Iteral Report SUF PFY/96 Stockholm, December 996 st revisio, 3 October 998 last modificatio September 7 Had-book o STATISTICAL DISTRIBUTIONS for experimetalists by Christia Walck Particle Physics Group

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,

NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff, NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

Lecture 7: Stationary Perturbation Theory

Lecture 7: Stationary Perturbation Theory Lecture 7: Statioary Perturbatio Theory I most practical applicatios the time idepedet Schrödiger equatio Hψ = Eψ (1) caot be solved exactly ad oe has to resort to some scheme of fidig approximate solutios,

More information

A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length

A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 49-60 A Faster Clause-Shorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece

More information